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Although oscillations in membrane potential are a prominent feature of sensory, motor, and cognitive function, their
precise role in signal processing remains elusive. Here we show, using a combination of in vivo, in vitro, and theoretical
approaches, that both synaptically and intrinsically generated membrane potential oscillations dramatically improve
action potential (AP) precision by removing the membrane potential variance associated with jitter-accumulating
trains of APs. This increased AP precision occurred irrespective of cell type and—at oscillation frequencies ranging
from 3 to 65 Hz—permitted accurate discernment of up to 1,000 different stimuli. At low oscillation frequencies,
stimulus discrimination showed a clear phase dependence whereby inputs arriving during the trough and the early
rising phase of an oscillation cycle were most robustly discriminated. Thus, by ensuring AP precision, membrane
potential oscillations dramatically enhance the discriminatory capabilities of individual neurons and networks of cells
and provide one attractive explanation for their abundance in neurophysiological systems.
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Introduction

Within neurons there exist various sources of membrane
noise, including stochasticity of membrane conductances [1–
3], stimulus nonspecific synaptic conductances [4–6], and
variable synaptic transmission [7]. While noise sources may
prove beneficial, for example, via stochastic resonance effects
[8,9], they generally limit action potential (AP) precision and
thus the fidelity of communication between cells [2,3]. This is
supported by numerous experimental [10–13] and theoretical
[14–16] studies that indicate that even for identical stimuli,
the exact timing of AP discharge may differ substantially
between trials. Spike output, however, is all the information a
postsynaptic neuron has available to potentially discern
specific patterns of activity occurring upstream in presynap-
tic cells. Are there mechanisms in place that might increase
the robustness of spike discharge? Intrinsic events such as
dendritic Naþ, Ca2þ, or N-methyl-D-aspartate (NMDA) spikes
[17–22] might reliably signal the presence of a particular type
of event. Due to their all-or-none nature, they do not,
however, readily permit the discrimination of more than a
subset of stimuli. Furthermore, they appear insensitive to
subtle stimulus-specific differences in the temporal proper-
ties of synaptic input patterns.

In the scenario where individual synaptic events are large
enough to evoke spikes, it is well documented that specific
patterns of large fast input waveforms are one means of
producing temporally precise AP discharge [10,13]. However,
stimulus-evoked patterns of subthreshold activity often
consist of a series of rather small temporally dispersed events
occurring over a few to hundreds of milliseconds [5,23,24]. In
most cells such inputs are typically processed in a highly
nonlinear fashion in electrotonically dispersed dendritic
locations and result in patterns of AP discharge that reflect

stimulus-specific properties of the input and subsequent
integrations performed within the cell [25]. Recently, it has
been shown that in small, electrically compact cells that
receive very few synaptic contacts, even individual quanta are
capable of supporting reliable information transmission [23].
Most cell types, however, receive an extremely high number
of synaptic inputs and a considerable fraction are needed to
achieve threshold and encode a specific stimulus or motor
command [5,26–28]. In such cases, many evoked currents
must be integrated over time to produce AP discharge [28–
30]—the patterns of which are thought to represent a specific
sensorimotor signal.
Membrane potential oscillations (MPOs) are a common

feature of sensorimotor processing. They may be generated
by synaptic and/or intrinsic mechanisms and have been
attributed to synchronizing stimulus-relevant cell assemblies
[31,32] and providing a phase ‘‘tag’’ to individual spikes for
efficient readout [33–39]. In the hippocampus and the
olfactory system, MPOs, at the individual cell level, are
suggested to serve as an internal reference signal whereby
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spike trains could encode information by their phase relative
to the background oscillation cycle [36,37,39].

Here we have tested the hypothesis that MPOs facilitate the
discrimination of input patterns composed of small ampli-
tude synaptic events. We show that MPOs ensure AP
precision in the olfactory bulb in vivo. Using in vitro
recordings, we subsequently describe the cellular mechanisms
underlying the optimization of AP precision by MPOs and
how this dramatically improves the discrimination of synaptic
input patterns. Finally, using a variety of theoretical and in

vitro approaches, we show that for a broad range of MPO
properties, stimulus, and cellular parameters, ongoing oscil-
latory activity ensures near-perfect discrimination of tempo-
rally complex small amplitude synaptic input patterns.

Results

Synaptically Generated MPOs Enhance AP Precision
In Vivo
A major limitation in determining the impact of oscillatory

activity on signal processing in vivo has been the inability to

Figure 1. Synaptically Driven Oscillations Optimize AP Precision In Vivo

(A) Schematic of the rodent olfactory receptor neuron (ORN) projection to a glomerulus in the olfactory bulb illustrating that oscillatory sensory input is
coupled to the ‘‘sniff cycle’’ (inset, lower left). An example trace (top right) of a whole-cell recording from a representative mitral cell in a freely
breathing mouse showing network-evoked oscillations in membrane potential due to background room-odor and overt odor (black line) stimulation. At
the time indicated by the black horizontal bar, an overt odor stimulus (0.1% amyl acetate) evoked AP discharge. The simultaneously recorded thorax
distention signal is shown directly underneath. Below an average trace is displayed, showing the subthreshold theta oscillation in the freely breathing
preparation (traces averaged with respect to the thoracal breathing cycle [37]).
(B1 and B2) Average of subthreshold voltage traces showing that the inherent oscillatory membrane potential in the freely breathing animal can be
abolished and reproduced in a tracheotomized preparation. Below are single example traces showing that continuous airflow through the nose
removes the MPO (B1), whereas pulsed nasal airflow (triggered by the thorax signal) mimics the subthreshold oscillatory drive and controls spike timing
(B2). The inset shows an example of an overt odor-evoked response in the tracheotomized preparation. From top to bottom: membrane voltage
recording (scale bars are 20 mV and 500 ms), nasal suction, and odor valve opening. Odor presented was 10% hexanol. In the constant airflow case,
positive constant current was injected to evoke approximately the same number of APs per thoracal breathing cycle.
(C) Overlapping histograms of AP times for continuous and pulsed airflow. Overlaid is the Gaussian fit of the pulsed airflow case (dashed red trace, n¼3
animals) and the freely breathing case (n¼ 7, gray trace).
(D) AP precision was determined by combining respiration cycles with the same number of APs and quantified by measuring the average distance of
each AP to the mean AP time. The mean distance (‘‘AP jitter’’) is measured relative to the thorax signal and plotted as a function of the number of APs
per cycle. Pooled data from n¼ 3 cells showing AP precision for the oscillation (red) and nonoscillation case (black). Lower values of the jitter indicate
higher precision (plotted is the mean 6 SEM).
(E) AP precision data from the same experiments as in D, but normalized (gray lines) to the nonoscillation case for the first, second, third, and fourth AP
within each oscillation cycle. Dashed line (red) is a linear fit to the oscillation data points. Note the jitter accumulation with AP number within an
oscillation cycle for the synaptically driven oscillation.
DOI: 10.1371/journal.pbio.0040163.g001
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record evoked activity in the controlled presence and absence
of a natural oscillatory rhythm. In vivo experiments in mitral
cells in the olfactory bulb of freely breathing mice reveal that
the membrane potential is governed by a strong oscillatory
synaptic rhythm (Figure 1A) that is tightly coupled to the
breathing cycle [37,40–42]. It is sensory-evoked by nasal
airflow and thus sensitive to naris occlusion and blockers of
excitatory synaptic transmission [37,40,41]. We directly
measured the impact of the oscillatory rhythm on AP
precision in vivo using a double tracheotomy approach [40]
that mimics the oscillation observed in freely breathing
animals (Figure 1B1 and 1B2) while controlling overall
excitability by injecting small amounts of constant current.
Using the distention of the thorax as an external reference
signal to track the oscillatory input [37,42,43], comparison of
the normalized AP times for freely breathing and tracheo-
tomized animals with pulsed nasal airflow confirms that both
the sensory-evoked oscillations (Figure 1A and 1B2) and
overall AP distributions are indistinguishable in the two
preparations (Kolmogorov-Smirnov, p . 0.05; n ¼ 7 freely
breathing, n ¼ 3 tracheotomized; Figure 1C). This finding
indicates a high degree of similarity between the oscillation-
controlled AP patterning in the freely breathing and
tracheotomized preparations. Importantly, this tracheotomy
approach enables us to compare AP precision during sensory
stimulation under oscillatory and nonoscillatory conditions
in the presence of in vivo levels of membrane noise and
background synaptic activity (Figure 1B1 and 1B2).

By carefully controlling the overall, room odor–evoked AP
rates via injection of depolarizing and/or hyperpolarizing
current (in both the control and oscillation cases), we could
compare AP precision. We found that the oscillatory drive
greatly enhanced the overall precision of APs irrespective of
how many APs were evoked within an oscillation cycle [F(1,656)
¼ 20.1, p , 0.001; n ¼ 3 mice, Figure 1D]. However, the
dependence of AP precision on the number of preceding APs
was highly significant [F(3,240)¼7, p , 0.001; n¼3 mice, Figure
1E] and specific to the oscillation [nonoscillation case: F(3,91)¼
2, p . 0.1; n ¼ 3 mice, Figure 1E]. This indicates that
oscillatory activity in vivo, although providing an overall
enhancement of AP precision, results in precision decay or
jitter accumulation with increasing AP number per oscilla-
tion cycle.

Intrinsically Generated MPOs Enhance AP Precision
In Vitro

The precision of a given AP is, in general, determined by
two main factors: the noisy background intrinsic and synaptic
currents, and the accumulating jitter of earlier spikes [10,13].
To explore how oscillations achieve AP precision, we
examined AP precision in olfactory bulb slices, a preparation
that permits precise control of the input waveforms to mitral
cells. In slices we not only can mimic background oscillatory
drive by injecting sinusoidal current waveforms but also can
quantitatively correlate injected input trains (Figure 2A1)
with patterned AP output.

It was crucial to first determine whether the general finding
observed in vivo could be faithfully reproduced in the slice
where noise and input sources can largely be exogenously
controlled. We therefore injected stimulus patterns into
mitral cells that consisted of a series of excitatory post-
synaptic potential (EPSP) waveforms (containing noise) with

and without oscillatory current (Figure 2A1). We then
compared the precision of AP trains within each oscillation
period to those AP trains occurring within the same period
under control conditions (Figure 2A2, bottom). We found
that oscillatory current injection not only resulted in an
oscillatory peristimulus time histogram (PSTH) (Figure 2A3)

Figure 2. Current-Injection Evoked Oscillations Maintain Optimal AP

Precision In Vitro

(A1) Experimental configuration for examining the impact of oscillations
on AP precision in vitro. Under control conditions, mitral cells recorded in
vitro received input current injected via the pipette consisting of known
Poisson trains convoluted with EPSC-like waveforms and added noise
(see Materials and Methods). In the oscillation condition, a sine wave was
added to the control stimulus.
(A2) (Top) Single traces showing the voltage recorded under the two
conditions in A1. Immediately below are rasters of AP discharge for ten
repetitions (different random seeds for noise generation) for a single
stimulus under control and oscillatory conditions. (Bottom) PSTH from
the raster plots above. Spike trains were smoothed with a Gaussian filter
(5 ms).
(A3) Autocorrelation of the PSTHs shown in A2.
(B) AP precision data from experiments as in A2, where AP jitter is
normalized (gray line) to the nonoscillation case for the first, second,
third, and fourth AP within each oscillation cycle. Dashed line (red) is a
linear fit to the oscillation data points. Note that—as with the in vivo
data (Figure 1E)—AP jitter accumulates with AP number within an
oscillation cycle.
DOI: 10.1371/journal.pbio.0040163.g002
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but also greatly enhanced the overall precision of APs. This
enhancement was highly similar to that observed with
synaptically generated oscillations in vivo (first AP: p ,

0.05, n¼ 3 in vivo; p , 0.05, n¼ 7 in vitro; Figures 1E and 2B).
One obvious effect of the oscillation arises from compres-

sion or bundling of spikes around the cycle peak. However,
this explanation does not account for the development of
jitter across a single oscillation cycle. Despite spike train
compression (Figure 2A2 and 2A3), APs in the oscillation case
deteriorated rapidly toward randomness as a function of the
number of evoked APs within each cycle (Figure 2B). This
finding is in remarkable agreement with the synaptically
generated in vivo data (fourth AP, p . 0.3; n¼3 in vivo, n¼7 in
vitro; Figure 1E). Thus, in both the in vitro and in vivo
preparations, we found that APs occurring during oscillation
cycles are far more precise than under control conditions,
with precision deteriorating as a function of AP number.
Furthermore, ‘‘synaptic’’ and ‘‘intrinsic’’ (injected) oscillations
produced quantitatively identical spike precision behavior.

Mechanism of Oscillation-Mediated AP Precision
The quantitative similarity between the in vivo and the in

vitro data indicates that both the enhanced precision and its

deterioration are cellular phenomena independent of any
unique features of the in vivo environment. As such,
oscillation-mediated enhancement of precision could occur
in a variety of cell types and the mechanism of AP precision
can be examined in the more controlled environment of the
in vitro preparation. We propose that the trough of the
oscillation removes AP jitter by ensuring an extended period
without AP discharge, thus interrupting and preventing the
accumulation of AP jitter. To test this hypothesis, we
subjected cells to square depolarizing pulses interleaved by
hyperpolarizing pulses, the simplest imitation of an in vivo
oscillation (Figure 3A1). Spiking periods of long duration
evoked by depolarizing current steps induced AP jitter
accumulation over time (0.07 6 0.03 versus 0.26 6 0.1, first
versus second AP, p , 0.001, n¼ 11 cells; Figure 3A1 and 3A2)
as observed previously across each individual oscillation cycle
(Figure 2B). Introducing hyperpolarizing intervals between
the first and second APs fully preserved the precision of the
following AP (0.07 6 0.03 ms versus 0.07 6 0.03 ms, n ¼ 11,
first versus next AP, p . 0.2; Figure 3A2). Furthermore, if AP
jitter was permitted to accumulate over an AP train (Figure
3A2), we found that the same level of hyperpolarization
recovered 100% of AP precision (99 6 5% recovery, n ¼ 11;

Figure 3. Membrane Potential Hyperpolarization Recovers AP Precision

(A1) Five overlaid consecutive traces of the membrane voltage of a representative mitral cell in response to a long current injection that elicited an AP
train of increasing imprecision. Red bars (above) indicate increasing AP jitter accumulation with time. (Right) Five voltage traces from the same cell where
spiking is interrupted by 100-ms hyperpolarizing pulses, thus imitating oscillations with one, two, and three APs. Current pulse amplitude is 250 pA.
(A2) The mean 6 SEM of the AP jitter from recordings with (red) and without (black) intermittent hyperpolarizing pulses plotted against AP number.
Each data point is normalized to the jitter of the sixth spike. AP precision is fully preserved or recovered by the hyperpolarizing intervals (n ¼ 11).
(B1) Five overlaid consecutive traces of the membrane voltage of a representative CA1 pyramidal cell in response to a long current injection that elicited
an AP train of increasing imprecision. Red bars (above) indicate increasing AP jitter accumulation with time. (Right) Five voltage traces from the same
cell where spiking is interrupted by 100-ms hyperpolarizing pulses, thus imitating oscillations with one, two, and three APs. Current pulse amplitude is
300 pA.
(B2) The mean 6 SEM of the AP jitter from recordings with (red) and without (black) intermittent hyperpolarizing pulses plotted against AP number.
Each data point is normalized to the jitter of the sixth spike. AP precision is fully preserved or recovered by the hyperpolarizing intervals (CA1 pyramids,
triangles, n¼ 5, left axis; and Purkinje neurons, squares, n¼ 3, right axis).
DOI: 10.1371/journal.pbio.0040163.g003
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Figure 3A2). Since mitral cells are known to possess an
unusual set of intrinsic conductances [44–46], we repeated
the jitter accumulation protocol in other principal cells
(Figure 3B), most notably Purkinje cells in the cerebellum
(Figure 3B2; n ¼ 3) and CA1 pyramidal neurons of the
hippocampus (Figure 3B1 and 3B2; n ¼ 5). In these experi-
ments, we observed a virtually identical effect of hyper-
polarization on AP precision recovery (98 6 24% and 114 6

6%, respectively; Figure 3B), indicating that oscillations
improve AP precision irrespective of cell-specific intrinsic
properties.

To determine the minimum time necessary for full
precision recovery, we allowed jitter to accumulate across
spike trains and varied the duration of the hyperpolarizing
pulse from 2 to 400 ms (Figure 4A1). The timing of the first
posthyperpolarization AP (‘‘post-AP’’; Figure 4A1) was
calculated and found to be highly sensitive to the membrane
potential at the end of the hyperpolarization period.
Depolarized potentials elicited early spikes, and hyperpolar-
ized potentials evoked late spikes (R2 ¼ 0.66 6 0.17, slope ¼
�1.03 6 0.15 ms/mV, p , 0.0005, n¼ 4; Figure 4A2). Thus, for
brief hyperpolarization periods where the membrane poten-
tial remained highly variable, AP times were highly variable
(correlation between jitter and posthyperpolarization mem-
brane potential [Vmpost] variability; R

2 ¼ 0.86, n ¼ 4; Figure
4A3 and 4A4, inset). Since longer hyperpolarization periods
(greater than 20 ms) dramatically reduced the variance of
Vmpost, AP precision was reset to the levels of the most
precise ‘‘control’’ AP [F(13,39) ¼ 8.94, p , 0.001, n ¼ 4 cells;
Figure 4A4]. In this way, membrane potential hyperpolariza-
tions can ensure ongoing levels of ‘‘optimal’’ precision.

In Figure 4B we show the decorrelation between the
membrane potential immediately prior to the hyperpolariza-
tion (Vmpre) and that following the hyperpolarization
(Vmpost). When compared to Figure 4A4, is evident that the
time course of the decorrelation (Figure 4B, black) closely
matches the kinetics of precision recovery (Figure 4B, red,
and 4A4). Together, this indicates that cells exhibit a
‘‘memory’’ of the preceding membrane variance for approx-
imately 20 ms and that the level of membrane potential
variance at the end of the hyperpolarization determines the
precision of the following AP. It further suggests that other
‘‘state’’ variables such as inactivation of channels or ion
concentrations govern precision predominantly by influenc-
ing the membrane potential. To understand the factors
contributing to such membrane potential variance, we
examined the relationship between Vmpre and preceding
AP times. Figure 4C shows that the dynamics of this
relationship reflects the kinetics of the afterhyperpolariza-
tion (AHP). This indicates that variable APs and their
concomitant AHPs are the main source of membrane
potential variance and AP jitter accumulation within spike
trains. These conclusions are consistent with the observation
that, within an oscillation cycle, spike trains become increas-
ingly less precise when an intervening hyperpolarizing trough
is absent (Figure 2B).

If the overall level of AP precision relies on an ongoing
reset mechanism, then it should be possible to recover some
of the lost precision by injecting brief, large current
transients to evoke a precise AP. Such a precise AP should
provide the necessary reset to remove the accumulated AP
jitter. Rather than assaying AP precision using step current

injections from hyperpolarized potentials (Figures 3 and 4A)
we injected constant DC to maintain the cell at threshold and
evoked a precise AP randomly with respect to the preceding
AP time (Figure 4D1). We found that this precise AP indeed
acted in part as a reset switch; the next AP was significantly
more precise than preceding APs (normalized jitter 1 6 0.17
versus. 0.53 6 0.14, p , 0.001, n¼ 6 mitral cells; Figure 4D2).
Although the absolute level of precision recovery was lower
than that observed for APs evoked by step current injections
(i.e., instantaneous depolarizations, Figures 3 and 4A [10,13]),
this result was observed in all cell types examined (Figure
4D2; n ¼ 5 CA1 pyramids, n ¼ 3 Purkinje cells) and suggests
that MPOs ensure AP precision at least in part by abolishing
the membrane potential variance associated with otherwise
ongoing, compounding variable APs/AHPs.

MPOs Permit Reliable Separation of Spike Trains
The fundamental question arising from these data is

whether neurons can make use of the improved precision
that accompanies MPOs. We therefore next analyzed spike
discharge patterns in response to two stimuli consisting of
different trains of EPSP-like waveforms. The two stimuli
differed only in the temporal arrangement of inputs (Figure
5A1), not in average input rate or EPSP waveform. By
‘‘presenting’’ two stimuli to an individual CA1 pyramidal cell
and repeating each stimulus ten times under different,
randomly seeded background noise conditions (as in Figure
2), output spike trains can be compared in the presence and
absence of the background MPO (Figure 5A2). We compared
the spike times across the entire stimulus period for
repetitions of different stimuli in the absence and presence
of an oscillation. Again, we found that the overall AP
precision is strongly improved in the oscillation case (Figure
5B, p , 10�5). To investigate whether the two stimuli result in
distinguishable discharge patterns, we compared the resulting
PSTHs (Figure 5B). In the nonoscillation case, the PSTHs for
both stimuli are relatively flat and variable, consistent with
low precision (indicated by the large standard deviation
exemplified for stimulus 1, gray shading in Figure 5B). The
PSTH for stimulus 2 (blue) is consistently overlapping the
PSTH for stimulus 1 (within the shaded area demarking one
standard deviation of the PSTH for green stimulus 1). Thus,
the difference between the two PSTHs is always smaller than
the SD (Figure 5C1, left), making it impossible to separate the
two stimuli. In contrast, the presence of an MPO results in
clear, distinct peaks, indicative of the high degree of
precision (Figure 5B, right). More important, AP timing is
clearly different for the two stimuli as seen by the PSTHs that
do not overlap during long stimulation epochs (e.g., arrow-
heads in Figure 5B, right). During these epochs (bars in Figure
5C1, right), the difference between the two PSTHs is
substantially larger than the variance, making stimulus
separation possible (Figure 5C1, right). Thus, the fraction of
time where the two PSTHs are significantly different
indicates how readily two stimuli can be distinguished
(termed ‘‘PSTH difference’’).
We repeated this analysis for seven neurons and a total of

77 stimulus pairs. In all cases, MPOs dramatically increased
the PSTH difference (Figure 5C2, p , 5310�17, n¼7 cells, n¼
77 stimulus pairs). This observation was independent of the
magnitude of injected and intrinsic noise (Figure 5C3 and
5C4 low noise, p , 5 3 10�14; high noise, p , 5 3 10�5).
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Figure 4. Hyperpolarizations Maintain AP Precision by Minimizing Membrane Potential Variance

(A1) Schematic showing the experimental configuration and analysis parameters of the mitral cell membrane voltage recorded while varying the
hyperpolarization period (Dt; 2 to 400 ms). AP jitter was created by injecting a depolarizing current pulse (150 to 250 pA for 100 ms) and estimated by
calculating the standard deviation of the pre-AP time. The effect of the hyperpolarizing pulse on precision recovery was measured by determining the
jitter of the AP immediately following the hyperpolarization pulse (post-AP) and comparing it to the control AP. The relationship between membrane
potential at the beginning (Vmpre) and at the end (Vmpost) was determined by calculating the mean voltage over the first 250 ls and the last 100 ls of
the nonspiking interval.
(A2) Two example traces of a 2-ms hyperpolarizing pulse with post-APs showing that depolarized (�48 mV) and hyperpolarized (�58 mV) potentials
evoked early and late post-APs, respectively. The red ellipse highlights the variable membrane potential at the end of the hyperpolarizing pulse; red
lines indicate the variable AP times of the post-AP that reflect post-AP jitter.
(A3) Representative voltage traces of APs for hyperpolarization intervals of 2, 6, 24, and 80 ms show a large variation in Vmpre (see also C); traces with
the earliest and the latest prehyperpolarization AP are highlighted in black. Ten overlaid traces show the reduction in the variable membrane potential
across the recovery period. The associated reduction in post-AP jitter is indicated by the red bars above the clipped APs.
(A4) Post-AP jitter as a function of the recovery interval (mean 6 SEM, n¼4 cells). The data points were fitted with a single exponential (s¼6.8 ms). The
precision of the control AP is indicated by the dashed line. Inset: Correlation between the post-AP jitter and membrane potential variance at Vmpost (R2

¼ 0.86).
(B) The correlation between Vmpre and Vmpost plotted as a function of the recovery interval (n¼ 4). The graph is overlaid by the single exponential fit
shown in A4 (red line). Inset: The Vmpre and Vmpost values are plotted for a 2-ms interval (filled circles) and compared to that for a 120-ms interval (open
circles).
(C) (Top) Example traces showing the relationship between the pre-AP time (relative to the pulse onset) and Vmpre. (Below) A plot of Vmpre against pre-
AP time for a single cell. A single AHP trace is superimposed on the graph.
(D1) Five consecutive traces from a mitral cell show spontaneous AP jitter relative to the same randomly chosen point in time (black) and the jitter of
the AP (red) immediately following a precise AP (left). Cells were held at threshold by injecting constant current and the precise AP (pAP) was elicited by
brief current injection (1,000 pA for 2 ms).
(D2) Population data from mitral cells (n¼6), pyramidal neurons (n¼5), and Purkinje neurons (n¼ 3) showing the normalized jitter of ongoing APs and
the AP immediately following the injected pAP (mean 6 SEM, p , 0.001 in all cell types). Precision recovery is similar in the three cell types.
DOI: 10.1371/journal.pbio.0040163.g004
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Furthermore, in these experiments the parameters of the
MPO remained constant. Since the two stimuli differed only
in the temporal sequence of EPSPs, we can thus conclude
that—through enhancing AP precision—MPOs allow for the
discernment of different, temporally complex input patterns.

MPOs Ensure High-Fidelity Pattern Discrimination
Thus far, we have examined the separability of two

different stimuli by comparing PSTHs compiled from many
repetitions of each stimulus. Does this improved temporal
separation of spike trains actually permit reliable readout of
different stimulus situations in a single trial? To address this
question we analyzed the in vitro recordings using a
template-matching scheme, essentially asking; ‘‘Can one
determine whether a spike train resulting from stimulus 1
was actually generated by stimulus 1 or by stimulus 2, 3, and
so on?’’ Since our analysis requires discharge patterns
generated in response to multiple stimuli, we restricted it
to those cells in which responses to the most stimuli could be

recorded. For each stimulus, two repetitions (A and B) were
recorded using different random seeds for noise generation
(Figure 6A). The spike discharge pattern in response to
stimulus 1 (noise A) was then cross-correlated with all
discharge patterns for stimuli 1 to 7 (noise B). Reliable
stimulus discrimination based on these correlations is
possible only if the correlation between 1A and 1B is greater
than all other correlations. Based on the number of stimuli
that are more similar to stimulus X (noise A) than the
repetition of stimulus X (i.e., noise B), we can attribute a
‘‘rank value’’ to the discrimination task. Rank values range
from 1 (optimal match) to the number of stimuli (N)
compared; chance performance results in a mean rank of
(Nþ1)/2. From this analysis of the in vitro data (Figure 6A2) it
is apparent that, in the absence of an oscillation, rank values
are obtained that are close to those obtained by chance. In
the presence of an MPO, many cases are observed in which
stimulus discrimination is perfect or near-perfect (indicated
by a mean rank score less than 2; Figure 6A2). Overall,

Figure 5. Oscillation-Mediated AP Precision Permits Separation of Stimulus-Specific Spike Trains In Vitro

(A1) Stimuli (with the addition of randomly seeded noise, not shown) were evoked in CA1 pyramidal cells via the recording pipette in the absence and
presence of an oscillation.
(A2) Example raster plots show ten repetitions for two different stimuli with and without MPOs.
(B) The normalized PSTH was calculated by averaging the ten smoothed (Gaussian filter; r¼5 ms) spike trains shown in (A) and is plotted for stimulus 1
(green) and stimulus 2 (blue) separately (ordinate axis shown on left). Gray indicates the variance of the PSTH for stimulus 1 (SD of the ten [smoothed]
repetitions shown in A2). Bar graphs show the overall AP precision for the entire stimulus period and both stimuli (ordinate axis far right).
(C1) A PSTH difference plot showing the difference between the mean PSTHs corresponding to the two stimuli normalized to the variance (red bars
indicate where the two stimulus-evoked spike trains can be separated because the normalized PSTH difference is larger than 1, dashed line).
(C2) Population data showing temporal separation of all pairs of stimuli. Values given are the fraction of time the normalized PSTH difference was larger
than 1 (e.g., red bars in C1, n ¼ 7 cells, n¼ 77 stimulus pairs).
(C3 and C4) PSTH differences separated based on the amplitude of injected noise (low r¼ 0.1–0.2 mV, n¼ 3 cells, 48 stimulus pairs; high r¼ 0.3–0.5
mV, n ¼ 4 cells, 29 stimulus pairs). Dotted line indicates chance level.
DOI: 10.1371/journal.pbio.0040163.g005
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stimulus discrimination as measured by the mean rank value
is dramatically enhanced by the presence of an oscillatory
drive (n ¼ 3 cells; 135 stimulus comparisons, p , 10�14).

For many neurons, the potential number of different input
patterns to be discriminated will exceed the number of
stimuli that can be experimentally presented during an in
vitro recording. To determine whether oscillations actually
enhance the coding capacity of cells, we took advantage of
computer simulations that permit a detailed analysis of the
importance of specific cellular and stimulus parameters. In a
first step we used an integrate-and-fire (InF) model neuron as
it is both general and computationally efficient. As with the in
vitro experiments, Poisson-train stimuli were used to gen-
erate EPSP input under realistically noisy conditions (r¼ 0.2
mV) to determine whether the postsynaptic neuron can
readily discern different input stimuli based on its firing
pattern. Again as in the experimental situation, sinusoidal
current was injected into the soma to mimic the oscillation.

Without an oscillation present, we found that it was
impossible for the postsynaptic cell to discriminate the
presented stimuli (Figure 6B1, open circles). If, however, an
MPO was introduced, we again observed almost perfect levels
of stimulus discrimination (Figure 6B1, red circles). Further-
more, the difference between the control and oscillation case
increased drastically with larger numbers of stimuli [Figure
6B1; F(14,270)¼ 2,194, p , 10�6, two-way ANOVA]. Thus, these
simulations in simple InF neurons not only reproduced the in
vitro data but also show that by ensuring near-perfect
discrimination between large numbers of stimuli, MPOs
actually increase the coding capacity of a given neuron.
To obtain a direct measure of discrimination that is

independent of stimulus space size we converted the mean
rank (r) into a ‘‘discrimination score’’ (d), ranging from 0
(chance performance) to 1 (perfect discrimination; see
Materials and Methods). We find that in the absence of any
oscillatory drive, discrimination between stimuli deteriorates

Figure 6. Oscillations Boost Stimulus Discrimination by Optimizing AP Precision

(A1) Scheme showing the template-matching discrimination analysis: Spike trains of repetition A are correlated to trains from repetition B. Correlation
coefficients are ranked and the rank of the correct match indicates level of discrimination: Examples shown are perfect (stimulus 1, highest correlation
coefficient between 1A and 1B ! rank 1) and near-perfect (stim. 3, second-highest correlation coefficient for 3A and 3B ! rank 2).
(A2) Stimulus discrimination plotted as the mean rank for the ten most separable stimulus sets from a single CA1 cell in vitro under control (no
oscillation) and oscillation conditions (p , 10�12 for all n ¼ 135 stimulus sets in n ¼ 3 cells).
(B1) Stimulus discrimination plotted as mean rank as a function of stimulus number in simulation in an InF neuron. Inset: Mean rank scores for low
numbers of stimuli. For all panels, filled red circles indicate where the discrimination for the oscillation case is significantly better than the respective
control discrimination (p , 0.05, Mann-Whitney). Dotted lines indicate perfect and chance levels of stimulus discrimination.
(B2) Discrimination in an InF neuron is plotted against injected noise levels (Gaussian noise, low pass filtered at 830 Hz, value given is SD of membrane
potential) for ten (circles), 100 (triangles), and 1,000 (diamonds) stimuli with (red) and without oscillatory current injection (black open circles, black/
gray-filled triangles and diamonds). Solid lines are sigmoidal least square fits. The inset trace (top right) is an example of the in vivo membrane potential
(recorded in the presence of TTX) used to estimate realistic noise levels (arrow). This level of noise is used in all simulations unless otherwise stated.
Scale bar is 200 ms and 200 lV. Dotted lines indicate optimal and chance levels of stimulus discrimination.
(C) Increased discrimination in InF neurons is due to enhanced AP precision. (C1) AP precision was measured for control and oscillation cases. The
difference in AP precision was subtracted (jitter was added to the output spikes as described in Materials and Methods) from the oscillation case so that
overall AP precision was identical to control conditions and the simulation was re-run. The sigmoidal fit to both oscillation data (red) and control data
(open circles) is plotted. Sigmoidal fits from B2 are provided for comparison.
(C2) In this simulation, the oscillatory drive was replaced by brief, large amplitude current injections every 250 ms to evoke precise APs. Discrimination is
plotted as a function of membrane noise and is indistinguishable from the oscillation case [F(1,120) ¼ 1.32, p . 0.25]. Lines indicate best fits of the
discrimination data for oscillation and nonoscillation conditions shown in B2.
DOI: 10.1371/journal.pbio.0040163.g006
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rapidly when realistic levels of noise are introduced [F(14,126)¼
50.7, p , 0.001, Figure 6B2]. Again, a background oscillatory
current ensured almost perfect discrimination for all relevant
noise levels [Figure 6B2, F(1,120) ¼ 94.2, p , 10�6]. Discrim-
ination values were up to ten times higher than in the absence
of an oscillation and independent of the number of stimuli
tested (compare circles, triangles, and diamonds in Figure
6B2). This allows for stimulus space-independent compar-
isons of stimulus discrimination in the absence and presence
of the oscillation. Virtually identical results were obtained
when we carried out the same analysis using five other types
of published single- or multi-compartment model neurons
(Figure S1). When alternative discrimination assessment
strategies including spike distance metrics [47] or mutual
information [12,48] were implemented (Figure S2), similar
results were achieved. Furthermore, as with AP precision
(Figure 1), using oscillatory input trains to generate background
oscillations produced the same improvement in pattern
discrimination as that achieved by ‘‘intrinsic’’ (injected)
oscillations (Figure S3).

Stimulus Discrimination Relies on MPO-Mediated
AP Precision
Having established that oscillations optimize AP precision,

both in vivo and in vitro, it is tempting to propose that the
enhanced discrimination is actually due to optimized AP
precision. To confirm this we calculated AP jitter in the
oscillation and nonoscillation cases in the simulated InF
neuron. We found that for the oscillation case, AP precision
was again enhanced (unpublished data). Preventing this
increase in precision, by imposing additional AP jitter in
the oscillation case, resulted in discrimination levels identical
to the nonoscillation case [noise range 0.012 to 0.360 mV;
F(1,120) ¼ 0.009, p . 0.9; Figure 6C1]. In the in vitro
experiments, we found that replacing the oscillation cycle
with precise APs (generated by very brief and large current
injections) abolished jitter accumulation and recovered the
precision of subsequent APs (see Figure 4D). This mirrored
the precision enhancement with oscillatory current injections
and synaptically driven oscillations. In simulations, we
replaced the oscillatory drive with phase-locked APs whose
timing was independent of the actual stimuli used. In
agreement with the experimental data, these brief current
pulses again recovered AP precision for subsequent APs.
Furthermore, stimulus discrimination levels were numerically
identical to those achieved by the oscillation [F(1,120)¼ 1.32, p
. 0.25, Figure 6C2]. Exactly the same result was obtained
when the same number of large current injections were given
at arbitrary times but fixed relative to the stimulus
presentation (unpublished data). Together, these data in-
dicate that MPOs permit stimulus discrimination by increasing
AP precision and preventing jitter accumulation.

The Dependence of Discrimination on MPO Parameters
and Stimulus Locking
Making use of the flexibility simulations offer, we next

asked what parameters of the oscillation were important for
MPO-mediated discrimination. In a first step, we varied the
oscillation frequency from 0.3 to 150 Hz while maintaining a
peak-to-peak amplitude of 10 mV or changed oscillation
amplitude, keeping frequency constant. In both cases, we
observed near-perfect stimulus discrimination across most
reported physiologically relevant frequencies (3 to 65 Hz; p ,

10�6, Figure 7A) and amplitudes (p , 10�6 for amplitudes
greater than 1.5 mV, 4-Hz oscillation, Figure 7B). Varying the
overall input Poisson train frequency revealed a range of
overall spike rates that appears to be physiologically highly
plausible (3 to 300 Hz, unpublished data). The resultant
synaptic currents were also manipulated in different ways.
First, we varied EPSC amplitude in the absence and presence
of a constant 10-mV peak-to-peak oscillation. As expected,
increasing EPSP amplitude (and thus increasing signal-to-
noise) consistently improved discrimination in both the
absence and the presence of a background oscillation (Figure
7C). Interestingly, it was also across the physiologically most
relevant ranges of unitary EPSP amplitudes that we observed
a dramatic enhancement in stimulus discrimination in the
presence of an oscillation (Figure 7C), and varying the decay
time of the EPSP failed to prevent this enhancement (Figure
S4). However, discrimination deteriorated for slower EPSPs,
and in a more pronounced way for the nonoscillation case
(Figure S4). Together, these data show that under oscillatory
conditions, enhanced stimulus discrimination occurs within

Figure 7. Improved Stimulus Encoding Is Largely Independent of

Oscillation and Stimulus Properties

(A) Stimulus discrimination in an InF neuron for ten different stimulus
situations is shown as mean 6 SEM for ten repetitions as a function of
oscillation frequency. Horizontal black line indicates the mean discrim-
ination level for the control case without oscillatory current injection.
Filled red symbols indicate where discrimination for the oscillation case is
significantly better than for the control case (p , 0.05, Mann-Whitney).
The terms theta, beta, and gamma indicate the respective physiologically
relevant oscillation frequency ranges with respect to the levels of
discrimination observed in the oscillation condition.
(B) Same as (A) but with varying oscillation amplitude.
(C) The dependence of stimulus discrimination on input strength in an
InF neuron is shown by varying stimulus EPSP amplitude. For large
inputs, discrimination is similar in the presence or absence of oscillatory
activity, whereas the subthreshold drive significantly increases discrim-
ination for lower EPSP amplitudes.
(D) Influence of imperfect phase-locking of stimuli. Stimulus repetitions
were presented after introducing a temporal shift (‘‘jitter’’) obtained
from a Gaussian distribution with a width indicated as jitter (range: 0.1 to
600 ms). All other parameters, including noise, input and output firing
rate, membrane time constant, EPSP kinetics, and amplitude, were kept
constant (see Materials and Methods). Oscillation-enhanced discrim-
ination begins to decline only when jitter values exceed 10 ms.
DOI: 10.1371/journal.pbio.0040163.g007
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physiologically realistic ranges of firing rates, EPSP kinetics,
and oscillation parameters.

Thus far, we have used stimuli that were tightly locked to
the ongoing oscillatory drive since input synchronization
with a precision of less than a few milliseconds is frequently
reported [49] and communication in many brain regions is
thought to occur in ‘‘bursts’’ of activity tightly locked to an
ongoing rhythm [50,51]. However, to determine the impor-
tance of such locking for MPO-mediated discrimination, for
stimulus repetitions we temporally shifted the input trains
relative to the oscillation (i.e., we imposed a random ‘‘phase
jitter’’ from 0.1 ms to 1 s). This resulted in no substantial
alteration in the levels of MPO-mediated discrimination for
jitter up to tens of milliseconds (Figure 7D). It also indicates
that MPO-mediated discrimination does not require unreal-

istic locking of stimulus input trains to the ongoing
oscillatory rhythm.

The Role of Oscillation Phase in Stimulus Discrimination
Having established that oscillations permit temporal

separation of different stimulus situations, we then asked
whether synaptic inputs arriving at different phases of an
oscillation cycle were equally well discriminated (Figure 8). In
in vitro experiments, we therefore compared stimuli that
differed solely during either the falling or rising phase of the
oscillatory drive (Figure 8A1 and 8A2, respectively). Stimuli
that only differed in the falling phase showed strongly
overlapping PSTHs, while stimuli differing in the rising
phase of the oscillation resulted in clearly separable PSTHs
(compare green and blue in Figure 8B1). Quantifying the

Figure 8. Oscillation Phase Is Critical for Optimal Discrimination

(A) Two examples of input waveforms, each containing seven stimulus input trains (overlaid) that differed only during the indicated 1008 windows
(centered around �208 for the peak/falling phase situation (1) and 1608 for the rising phase situation (2); the phase was measured relative to the
downward midline crossing of the oscillatory drive).
(B1) Rasters from an in vitro recording from a CA1 pyramidal neuron. The two stimuli only differ in the phase window indicated in (A). (Middle panels)
PSTHs for both stimuli; the gray shading indicates the SD of the PSTH for stimulus 2. Note that while for the falling phase (1) both PSTHs overlap, they
are easily separable for stimuli differing in the rising phase (2). (Bottom panels) Difference between the two PSTHs normalized to the combined SD. Red
bars indicate where this normalized difference is larger than 1, that is, regions where the two stimuli are discernible based on the PSTHs.
(B2) Summary of the in vitro recordings for the PSTH difference (the fraction of time where the normalized difference between the two PSTHs is larger
than 1) for 22 stimulus pairs. The PSTH difference for rising phase stimuli is significantly larger than for falling phase stimuli (p , 0.05).
(C1) Stimulus discrimination is plotted under control and oscillation conditions as a function of the phase of the window for simulations in an InF
neuron. A sinusoidal fit to the membrane potential is shown as a thin red line for reference. Stimulus windows similar to those shown in (A) are
indicated by (1) and (2). To allow for higher temporal resolution the phase window was reduced to 608 and varied in steps of 128 across the cycle. Phase
is measured relative to the downward midline crossing of the MPO. Solid bar indicates a period of best discrimination, while the open bar shows the
period for the oscillatory case where discrimination is relatively poor.
(C2) A sinusoid is fitted to the discrimination–phase plot. ‘‘Phase dominance’’ is defined as the peak-to-trough amplitude of the fitted sinusoid and
plotted as a function of the oscillation frequency. As a control, the black line indicates the average phase dominance in the absence of a MPO. The red
line is a Gaussian fit on a lin-log scale.
DOI: 10.1371/journal.pbio.0040163.g008
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PSTH difference we found it to be more than double for
stimuli differing in the rising phase compared to the falling
phase (2.6 6 0.8% versus 5.7 6 1.0%, n¼ 22 stimulus pairs; p
, 0.05; Figure 8B2). To further assess the phase dependence
of discrimination we used simulations with stimuli varying at
different phases across the entire oscillation cycle (Figure 8C1
and 8C2). In support of the in vitro data, we found that those
EPSPs evoked in the trough and the early period of the rising
phase were most reliably discriminated, while those inputs
arriving at the peak and the early falling phase of the cycle
were the least discriminated (08 versus 1208, p , 10�7, Figure
8C1). In a final steps, we varied the underlying oscillation
frequency. For low oscillation frequencies, we find that the
relative phase of synaptic inputs strongly determines the
extent to which they will be discriminated (Figure 8C2). It was
only at frequencies above 20 Hz that this phase-relation
began to ‘‘smear out’’ over the entire cycle (Figure 8C2). For
all physiological oscillation frequencies, however, discrim-
ination across the entire oscillation cycle was never worse
than for the control case. These data indicate that partic-
ularly for low oscillation frequencies, the timing of inputs
relative to the phase of an oscillation cycle may play an
important role in determining the accuracy of stimulus
discrimination.

Discussion

Neuronal oscillatory activity is considered a physiological
hallmark of sensory, motor, and cognitive function
[31,32,35,39,52–60]. Here we have shown that oscillations
ensure optimal levels of AP precision that in turn permit very
high levels of stimulus discrimination. This was independent
of whether oscillations were directly injected in vitro or
whether the actual input stimuli provided the oscillatory
drive. Mechanistically, oscillations achieve this as they
establish a period of hyperpolarization that prevents the
accumulation of jitter otherwise inherently associated with
ongoing spike trains.

We found that MPOs enhance discrimination in real
neurons and in simulation using InF or conductance-based
models (Figure S1). Such discrimination relies on an increase
in AP precision ensured by the ongoing MPOs. In InF
neurons, every AP is associated with a complete reset of the
membrane potential. Imprecision in AP time produces
variability in the onset of the next integration window.
Therefore, the time of a given AP will be not only variable
due to ongoing background noise but also related to the
variability of the previous spike. Thus, in both real [10,13] and
InF neurons, jitter accumulates across ongoing spike trains.
Here we have examined how MPOs might prevent such jitter
accumulation. By studying the time course of this interaction,
we find that the minimum hyperpolarization time necessary
to fully recover AP precision is approximately 20 ms. This
reflects the time needed to restore coherence in the relevant
membrane properties, such as to ensure full decay of voltage
variability (Figure 4A) or to allow, for example, Naþ channels
to recover from inactivation associated with an AP.

The specific role of oscillations has long been debated.
Such rhythmic activity ranges from theta (1 to 10 Hz) [37–
39,42,52,53,61] to gamma frequencies (.40 Hz)
[31,32,54,62,63] and has been observed in single cells, both
in vivo and in vitro, and across neuronal networks [64–69]. At

the network level, various roles for such activity have been
suggested and most notably include the synchronization of
stimulus relevant patterns of activity [31,32,56,70]. In this
scheme oscillatory rhythms are used by neuronal networks to
temporally bind together the firing of a specific subset of cells
that are activated under a specific set of stimulus-driven
conditions. At the single-cell level, oscillatory activity has
been described as rhythmic almost sinusoidal deflections of
the membrane potential, generated both synaptically
[37,42,66,71–73] and by intrinsic mechanisms [57,58,74–76].
In the hippocampus and the olfactory system, for example,
such oscillations at the individual cell level are suggested to
serve as an internal reference signal whereby spike trains
could encode information by their phase relative to the
background oscillation cycle [31,35,37,39]. In the hippo-
campus, this type of phase coding is believed to underlie
the representation of an animal’s location in space [38,39].
Here, a temporal code might be generated from a firing rate
code by means of an inhibitory oscillatory drive [38]. In the
olfactory bulb, phase coding could be used to reflect the
relative amount of sensory input to a mitral cell [37,42].
Therefore, the timing of synaptic input—relative to an
oscillation cycle—might be a useful means of representing
stimulus-specific information [3,35,60,77,78]. The oscillation-
mediated enhancement of precision described here will
contribute to enhancing the fidelity of such phase codes by
increasing the precision of the phase relative to the theta
rhythm.
The interplay between excitatory and inhibitory connec-

tions and an intrinsic resonance might be sufficient to
establish a network of synchronously oscillating neurons
[66,79–81]. Individual interneurons have been shown to
efficiently coordinate activity by providing postinhibitory
rebound activation in pyramidal neurons in hippocampus
[82]. As these pyramids will subsequently activate interneur-
ons, the increase in precision of AP discharge might facilitate
the synchronization of oscillations across such networks.
AP precision is often thought to be the limiting factor in

maximizing neuronal coding capacity [5,83]. Various mech-
anisms for attaining high AP precision have been suggested.
These include synchronization of discharge via electrical gap
junctions [79,80,84,85] and feed-forward and recurrent
inhibition [86,87]. Both mechanisms may further enhance
the robustness of the oscillation and/or directly improve AP
precision. The maintenance of high levels of AP precision will
also allow for easy downstream readout through, for example,
a delay-based mechanism relying on synchrony detection
[33,35,37] or when a postsynaptic integrator is explicitly
provided with the phase of the oscillatory drive from a
common rhythm generator. For slow oscillations both in vivo
and in vitro, the first spike in every cycle was more precise
than later spikes. Although progressively less precise, such
late spikes may still provide substantial information about the
stimulus; readout mechanisms might also benefit from the
occurrence of multiple spikes through, for example, a
depolarizing trigger for short- and long-term plasticity
[88,89].
In mitral, CA1 pyramidal, and Purkinje cells, we found that

oscillations ensure optimal levels of AP precision during
ongoing spike trains. The membrane potential variance
immediately preceding a depolarizing cycle was found to be
the key factor in determining the degree of precision of the
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next AP. Since the recovery of membrane potential variance
was highly correlated with the time course of the AHP, it is
likely that the time course of precision recovery will vary
depending on the intrinsic conductances in a given cell type.
For example, in mitral cells, recent work has shown that an
intricate interplay of slow Id-like Kþ and subthreshold Naþ

currents shapes AP clustering and precision and tunes mitral
cells to respond most reliably to phasic stimuli [44]. Since we
have shown that oscillation-mediated AP precision exists in
very different cell types, both experimentally and theoret-
ically, our observations may generalize to a range of neuronal
populations with differing intrinsic properties.

In our experiments, oscillations were found to recover AP
precision from an otherwise jittery spike train, with a
minimum recovery time period of approximately 20 ms. This
implies that the maintenance of AP precision could be
compromised at oscillation frequencies higher than about 50
Hz. Our finding that stimulus discrimination starts to
deteriorate at oscillation frequencies above 65 Hz supports
this. One must also expect that the time constant of precision
recovery depends to some extent on the membrane time
constant. In simulations, varying the membrane time con-
stant across a physiologically relevant range (8 to 80 ms) was
found to have no effect on the enhanced level of discrim-
ination ensured by oscillations (unpublished data). Again, it
seems likely that the membrane time constant will signifi-
cantly impact oscillation-mediated AP precision only at high
oscillation frequencies.

From recordings in vitro and in simulations, oscillations
unambiguously and dramatically enhanced discrimination
between subtly different input trains by maintaining optimal
levels of AP precision. This was independent of whether we
compared differences in PSTHs or used a template-matching
scheme, spike-distance metrics, or information theory ap-
proaches. Since smoothing the spike trains with sliding
windows of up to 100 ms did not qualitatively alter this
finding, it appears that oscillations are beneficial for
discrimination not only for ‘‘AP timing codes’’ but also for
‘‘rate codes’’ that read out average firing rate across time
windows of 10 to 100 ms.

For theta oscillation frequencies, it was those inputs
arriving during the trough and rising phase that were best
discriminated. This is likely to be due to the fact that input
arriving on the early falling phase and the very beginning of
the hyperpolarizing trough will have largely decayed and thus
not significantly contribute to the discharge of the next AP
(the first AP of the succeeding cycle). Inputs in the trough or
rising phase arrive during the core of the integration window
and thus strongly impact the APs. This was particularly
pronounced for lower frequencies, indicating that the time
window for integration is rather large and provides an
opportunity for many inputs to contribute to the resultant
output. Thus, it seems that for theta frequencies in particular,
the phase of both inputs and outputs [35,36,38,90] are
relevant for encoding information. These results held true
not only for EPSPs but also if purely inhibitory or a mixture
of excitatory and inhibitory input was used (unpublished
data). Furthermore, there was no measurable difference in
the overall discrimination levels between EPSP- and inhib-
itory postsynaptic potential–based stimuli (not shown). This
indicates that under oscillatory conditions, neurons can
distinguish equally well the subtle temporal features of

excitatory and inhibitory input. In the case of EPSPs, it
seems likely that if individual events are large enough or if
only a small number of EPSPs are needed to reliably exceed
threshold [13,23], a different phase relation might be found.
Our data show that, despite its phase and oscillation
frequency, input discrimination of both EPSPs and inhibitory
postsynaptic potentials is never worse than in the non-
oscillation case, the only potential exception being very long
oscillation periods (,2 Hz). This also indicates that, although
providing a ‘‘window of opportunity’’ for integration, the
presence of an oscillatory drive generally does not create
‘‘information holes’’ as one might have expected.
Based on our experiments involving the manipulation of

the EPSP time course, it seems that slow NMDA-like inputs
are less well discriminated than a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionate (AMPA)-like EPSPs. Thus while the
AMPA component might carry most of the stimulus-specific
information that is present during signal processing, the
NMDA component, via its Ca2þ permeability, may be better
suited to providing a trigger that signals a bidirectional
change in synaptic efficacy [91–94]. In this context, it is
interesting that oscillations not only provide a time base for
signaling the most readily discriminated input but also would
ensure that the ‘‘precise APs’’ necessary for the induction of
spike-timing–dependent plasticity (STDP) [95–100] are
evoked. In fact, the phase relation observed for optimal
discrimination—EPSPs preceding the AP being the most
influential—is reminiscent of the known requirements of
STDP that are thought to play important roles in balancing
overall levels of synaptic activity and the formation of sensory
representations. Thus, STDP could be used to tune a given
cell to stimulus-specific situations and ongoing oscillations
might provide a physiologically plausible means of pairing
input and APs over the many trials necessary to produce
measurable changes in synaptic efficacy [95–100].
The robustness and generality of our finding that oscil-

lations enhance stimulus discrimination are probably due to
the simplicity of the underlying mechanism. Oscillations
achieve enhanced discrimination by providing periods of
nonspiking that prevent the accumulation of AP jitter. This
simple principle is likely to occur in any nonlinear system
where information must be integrated and transformed into
discrete output signals. Examples of such systems where
fidelity benefits from intermittent resetting pauses and/or
rhythmic cycles include computer clocks and rhythmic gene
expression systems. From an information transmission stand-
point, essentially any form of communication with inter-
mittent ‘‘pauses’’ (e.g., Morse code) guarantees that errors are
not accumulated and ensures reliability. In neurons, oscil-
lations provide this intermittent pause of firing, reset
precision and permit the accurate transmission of neural
information.

Materials and Methods

In vivo electrophysiology.Male and female C57Bl6 mice aged 3 to 5
wk were anesthetized using a ketamine (50 mg/kg)–xylazine (5 mg/kg)
mixture and supplemented throughout the experiment. In both
freely breathing and artificially respirated animals, a piezoelectric
strap (WPI, Sarasota, Florida, United States) was placed around the
thorax and was used to provide a respiration distention signal for
recording the ongoing oscillation cycle. In freely breathing animals,
odors were presented as previously described [37,101]. In artificially
respirated animals, the trachea was incised and cannulated with one
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tube directed to the lung and the other toward the pharynx, allowing
for the precise control of odorized nasal airflow [40]. During whole-
cell recordings, the online thorax signal was used to trigger the pulsed
nasal inspirations at the natural frequency (oscillation case) or the
odorized nasal airflow was kept constant with the same average flow
rate (no oscillation case). In both cases, AP times were quantified
using the recorded thorax signal as reference. The distribution of AP
times around the mean AP time was used to measure AP precision:
The mean distance reflects AP precision (low values indicating high
precision) and its standard deviation or standard error is shown as
error bars (Figure 1D and 1E).

Whole-cell recordings were carried out as previously described
[102] using low resistance pipettes (5 to 7 MX) containing (in mM) K-
gluconate 135, HEPES 10, phosphocreatine 10, KCl 4, Mg-ATP 4, GTP
0.3 (pH 7.2). Recordings were amplified using an Axoclamp 2B
amplifier (Axon Instruments, Union City, California, United States)
in bridge mode, filtered at 3 to 10 kHz, and digitized at 5 to 20 kHz
(ITC-16; InstruTECH, Port Washington, New York, United States).
Data were acquired using Heka software (Heka Elektronik, Lam-
brecht, Germany) running on a Macintosh computer. In both the
oscillation and nonoscillation case, constant current was sometimes
injected to drive cells to threshold so APs could be recorded and the
number evoked per respiration cycle could be controlled. Precision
of AP timing was thus measured across cycles with the same number
of APs. To estimate realistic levels of membrane noise, membrane
voltage was recorded in the absence of AP-dependent synaptic
activity after superfusion with 20 lM TTX applied to a bath over the
olfactory bulb [101].

In vitro electrophysiology. In vitro recordings were carried out in
horizontal olfactory bulb, transverse hippocampal, and sagittal
cerebellar slices from C57Bl6 mice aged P18 to P30. Slices (300 lm
thick) were cut and incubated for 45 min at 35 8C in standard external
recording solution (125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM
MgCl2, 25 mM NaHCO3, 1.25 mM Na2PO4 and 25 mM D-glucose) as
described previously [101]. During recording, slices were continu-
ously perfused with external solution heated to 32 6 1 8C, bubbled
with 5% CO2 and 95% O2. Patch pipettes had tip resistances of 4 to 8
MX when filled with internal solution containing (in mM) K
methansulfonate 130, HEPES 10, KCl 7, EGTA 0.05, Na2-ATP 2, Mg-
ATP 2, GTP 0.5, and Biocytin 0.4% (pH 7.2 with KOH). Voltage
recordings were obtained from cell somata in the whole-cell
configuration using a Multiclamp 700A amplifier (Axon Instruments).
The signal was filtered at 3 to 10 kHz and digitized at 5 to 20 kHz
(ITC-18; InstruTECH). Measured potentials are not corrected for
junction potentials. Data were acquired using Axograph (Axon
Instruments) software or custom software in Igor (WaveMetrics, Lake
Oswego, Oregon, United States) running on a Macintosh computer.
To estimate AP jitter in vitro, we used the minimal point of the
trough of the injected current in the oscillation case as the beginning
of the oscillation cycle (Figure 2). These same reference time points
were used in the control case and AP precision was measured as in
the in vivo situation. In both cases precision was normalized to that
expected by chance. Subsequently, AP precision for the first–fourth
AP per cycle was combined for cycles containing one to five APs and
normalized to the average control case. As an alternative measure
(e.g., Figure 5B), precision was measured as previously described [13]
with event thresholds adjusted to result in 90% reliability. Recovery
of precision in Figure 3 was measured as (jitter of third � fourth)/
(third� first AP).

Stimulus generation. Stimulus spike trains were drawn from
Poisson distributions with a total mean firing rate of 100 Hz. Input
currents were generated by convoluting these spike trains with an
EPSP-like waveform [vEPSP(t)¼ (1� e�t/10 ms) � e�t/8 ms]. Gaussian noise
filtered at 830 Hz with a root-mean-square of typically 20 pA was
added to the resulting wave. For the oscillation case, a 4-Hz
oscillation was added with the amplitude adjusted to yield an
approximately 10-mV peak-to peak amplitude. Finally, DC levels
were manually adjusted to yield an output firing rate that was
constant (63%) for repetitions, for different stimuli, and for the
oscillation and control case in a given cell.

Mean rank. Spike trains were determined for seven stimulus
situations, each repeated once with a different random seed to
generate the noise, resulting in spike trains 1A, 1B, 2A, 2B, . . . 7A, 7B.
Spike train 1A was then correlated with the templates 1B, 2B, . . .7B
resulting in seven correlation coefficients r1(1), r1(2), r1(3) . . . r1(7). High
correlation coefficients indicate high similarity and will be maximal
for r1(1) in the absence of corrupting noise. Therefore, the degree of
noise corruption can be expressed in the rank of r1(1), calculated by
sorting the correlation coefficients in descending order and measur-
ing the position of r1(1) in that order. If noise levels are high, this will

result, on average, in a rank of 4. Lower ranks point to a similarity
between spike train 1A and 1B that is higher than expected by
chance. Rank values of 1 indicate that spike train 1A is more similar
to template 1B than to any other template AP pattern. This
procedure is repeated by comparing spike train 2A to templates
1B, 2B . . . and similarly for spike trains 3A. . . 7A, resulting in seven
rank values. The mean rank value for the seven stimuli therefore
ranges from 1 to 7, a rank of rchance ¼ 4 reflecting chance
discriminations. If more than two repetitions were acquired this
process was repeated for repetitions C and D . . . etc. Spike trains
were correlated for comparison after capture with a sliding window.
Although rather insensitive against changes in filter, window width
(Figure S2B) usually mean ranks for 2, 5, and 50 ms were calculated
for the oscillatory and the nonoscillatory case and the window size
resulting in the lowest rank was used.

PSTH difference. Spike trains were determined for ten repetitions
for two stimuli and convoluted with a Gaussian (r ¼ 5 ms). The ten
repetitions were averaged resulting for each stimulus in a mean PSTH
(PSTH1, PSTH2) and a respective standard deviation (SD1, SD2). To
compare the two stimuli, the weighed difference d ¼ (PSTH1 �
PSTH2)/SD was calculated for each time point (SD2 ¼ SD1

2 þ SD2
2).

The fraction of time during which this weighed difference exceeds 1
is a measure for the discriminability of the two stimuli and was
calculated for all possible stimulus pairs, e.g., (7 3 6)/2¼ 21 for seven
stimuli.

Simulations. Simulations were carried out using Matlab 6.5 (The
MathWorks, Natick, Massachusetts, United States) in leaky InF
neuron models using the csim_lifnet simulation tool (T. Natschläger,
available at http://www.igi.tugraz.at/tnatschl) with smembrane ¼ 30 ms,
Vthreshold ¼ 15 mV, Vreset ¼ 5 mV, and a refractory period of 5 ms.
Stimuli were generated as in the in vitro experiments with a synaptic
time constant of sSynapse¼ 10 ms. Results from more complex cellular
models are described in detail in Supporting Information. To
measure precision in the simulations (Figure 6C1), precision of the
first, second, third, and fourth APs was determined and averaged. To
subtract the precision difference, a normally distributed time was
added to output spike times. The width of this distribution was
determined by calculating the variance in overall AP discharge times,
which we refer to as ‘‘jitter.’’ Jitter between the control case and the
oscillation was normalized for the uneven distribution of spikes (85%
of spikes fall during 85% of the cycle time for the control case but are
condensed to only 63% of cycle time in the oscillation case; see, e.g.,
Figure 1C). Use of alternative measures such as reliability and
precision [13] or variance versus mean count plots [12] perfectly
reproduced the oscillation-mediated enhancement of AP precision.
Mean ranks were determined as in the in vitro experiments but,
unless otherwise stated, ten simulation runs with different random
seeds were averaged for ten stimuli each. Discrimination (d) was
calculated from the rank value (r) where d¼6 [1� (r�1)/(rchance� 1)]2

and the sign was determined by whether r was larger (þ) or smaller (�)
than chance levels.

Supporting Information

Figure S1. Oscillations Enhance Discrimination Irrespective of Cell
Type or Intrinsic Cellular Properties

(A) Morphologies of neuron models used. Scale bar ¼ 100 lm. (B)
Firing pattern in response to threshold depolarizing and hyper-
polarizing step current injection (from left to right: 615 pA, 6380
pA,�100/þ200 pA, 6100 pA,þ200/�100 pA, 6400 pA). (C) Resonance
properties. (D) Discrimination as a function of noise. InF neuron is
the same as in Figure 6B2 and is displayed for comparison.

Found at DOI: 10.1371/journal.pbio.0040163.sg001 (419 KB PDF).

Figure S2. Oscillations Enhance Discrimination Independent of
Assessment Method

(A1) The PSTH difference in an InF neuron for seven stimuli (21
stimulus pairs) is plotted against the simulated noise (Gaussian noise,
low pass filtered at 830 Hz, value given is SD of subthreshold
membrane potential). Shown is mean 6 SEM for ten repetitions at
each noise level with (red) and without (black open circles) oscillatory
current injection. For all panels, filled red symbols indicate where the
discrimination for the oscillation case is significantly better than the
respective control discrimination (p , 0.05, Mann-Whitney). The
arrows indicate noise levels estimated from in vivo recordings. (A2)
Mutual information between spike trains and stimuli [12] was
calculated as a function of background noise levels. The presence of
the subthreshold drive results in an increase of mutual information

PLoS Biology | www.plosbiology.org June 2006 | Volume 4 | Issue 6 | e1631022

Oscillations Enhance Coding Capacity



consistent with the increased stimulus discrimination (A4). (A3) (Left)
One hundred stimuli were presented and distances between the
resulting spike trains were calculated with (red open circles) and
without (black open circles) oscillatory current injection [47].
Similarly, one stimulus was repeated 100 times in the presence of
noise (0.12 mV, solid circles) and distances between the resulting spike
trains were calculated. Note that distances are virtually unchanged (p¼
0.7) in the absence of oscillations, indicating that different stimuli
cannot be discriminated. Oscillations improve discrimination as
measured by the decreased distance between spike trains resulting
from repetitions (p , 10�5). In the bar chart on the right, mean 6 SEM
of the differences between ‘‘different stimuli’’ and ‘‘repetitions’’ is
depicted. (B) Influence of oscillations on stimulus discrimination as a
function of the filter width used for spike train comparison.

Found at DOI: 10.1371/journal.pbio.0040163.sg002 (279 KB PDF).

Figure S3. Synaptic Oscillations Can Effectively Substitute for
Sinusoidal Current Injection

(A1) Presynaptic firing for one stimulus consisting of excitatory and
inhibitory inputs. Firing rates are drawn from Poisson distributions
with a modulated firing rate proportional to (1þS � sin3(62pft) with S
being the strength of the modulation) for excitatory and inhibitory
inputs, respectively. S was (from top to bottom) 0, 0.3, and 1. Total
mean firing rate was in all cases maintained at 100 Hz. (A2) Input
currents evoked by the three stimulus situations shown in A1. EPSCs
are displayed as upward deflections. (A3) Resulting membrane
potential corresponding to the three conditions. Hyperpolarizing
current was injected to extract the subthreshold membrane response.
(B) Discrimination values for the three situations depicted in (A) and
ten different stimuli. (C) Same as in (B) for the strong modulation
case with varying noise levels. Note that the noise dependence of the
discrimination value is identical to that observed with direct
sinusoidal current injection (Figure 6B2).

Found at DOI: 10.1371/journal.pbio.0040163.sg003 (333 KB PDF).

Figure S4. Oscillations Improve Discrimination for Fast and Slow
EPSPs

Discrimination was measured for an InF neuron as a function of the
time constant of the EPSP.

Found at DOI: 10.1371/journal.pbio.0040163.sg004 (78 KB PDF).

Protocol S1. Supporting Results and Methods

Analysis showing that stimulus discrimination is improved by MPOs
irrespective of cell types, assessment methods, and origin of
oscillations.
Found at DOI: 10.1371/journal.pbio.0040163.sd001 (95 KB PDF).
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