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Abstract: The current study attempted, for the first time, to qualitatively and quantitatively determine
the phytochemical components of Elatostema papillosum methanol extract and their biological activities.
The present study represents an effort to correlate our previously reported biological activities
with a computational study, including molecular docking, and ADME/T (absorption, distribution,
metabolism, and excretion/toxicity) analyses, to identify the phytochemicals that are potentially
responsible for the antioxidant, antidepressant, anxiolytic, analgesic, and anti-inflammatory activities
of this plant. In the gas chromatography-mass spectroscopy analysis, a total of 24 compounds were
identified, seven of which were documented as being bioactive based on their binding affinities. These
seven were subjected to molecular docking studies that were correlated with the pharmacological
outcomes. Additionally, the ADME/T properties of these compounds were evaluated to determine
their drug-like properties and toxicity levels. The seven selected, isolated compounds displayed
favorable binding affinities to potassium channels, human serotonin receptor, cyclooxygenase-1 (COX-
1), COX-2, nuclear factor (NF)-κB, and human peroxiredoxin 5 receptor proteins. Phytol acetate, and
terpene compounds identified in E. papillosum displayed strong predictive binding affinities towards
the human serotonin receptor. Furthermore, 3-trifluoroacetoxypentadecane showed a significant
binding affinity for the KcsA potassium channel. Eicosanal showed the highest predicted binding
affinity towards the human peroxiredoxin 5 receptor. All of these findings support the observed
in vivo antidepressant and anxiolytic effects and the in vitro antioxidant effects observed for this
extract. The identified compounds from E. papillosum showed the lowest binding affinities towards
COX-1, COX-2, and NF-κB receptors, which indicated the inconsequential impacts of this extract
against the activities of these three proteins. Overall, E. papillosum appears to be bioactive and could
represent a potential source for the development of alternative medicines; however, further analytical
experiments remain necessary.

Keywords: Elatostema papillosum; phytochemicals; medicinal plants; traditional medicine;
molecular docking
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1. Introduction

Depression is the most widespread mental disorder and is recognized to present with
heterogenous symptoms associated with a variety of psychological and biological fac-
tors [1]. Despite the availability of well-known antidepressant drugs [2], basic neuroscience
suggests that the discovery of novel mechanisms may lead to the development of more
effective pharmacotherapies, which has resulted in the exploration of new molecules with
rapid-onset antidepressant and anxiolytic effects while being associated with fewer side
effects than current medications [3]. The International Association for the Study of Pain
defines pain as an unpleasant sensory and emotional experience, which is typically associ-
ated with actual or potential tissue damage [4]. Inflammation is the multifarious biological
reaction of the vascular tissue in response to injurious stimuli, including the presence of
pathogens, damaged cells, or irritants. Inflammation can result in the local accumulation
of plasmatic exudations and blood cells, resulting in the development of inflammatory
diseases, such as various types of arthritis, including rheumatoid and gouty arthritis and
shoulder tendinitis [5]. Despite the development of recent therapies, the medical commu-
nity continues to seek more potent and useful analgesics [6], which has encouraged interest
in secondary metabolites derived from plants as potential sources of new drug molecules
that are clinically effective. Oxidation, which is initiated by reactive free radical species, is
another compelling issue. Free radicals can cause various types of disorders in humans,
including central nervous system (CNS) injuries, ischemia, atherosclerosis, reperfusion,
cancer, gastritis, AIDS, and arthritis [7]. Recently, plant-derived secondary metabolites
have been increasingly analyzed as part of the search for novel free radical scavengers [8].
To reduce the occurrence of free-radical-induced diseases, however, additional information
regarding the antioxidant effects of plant-derived substances must be elucidated. Because
of these existing limitations, attempts are in progress to explore better replacement of these
drugs. In this context, indigenous information can contribute to the development of new
drugs from medicinal plants [9–13].

We selected the plant E. papillosum, which belongs to the Urticaceae family, for our
study. Several Elatostema species are located in the regions of Africa, Asia, Australia, and
Oceania. E. papillosum is found throughout China, Bhutan, India, and Bangladesh [12]. This
species is typically found in the hilly areas of the Chittagong district in Bangladesh [12]. E.
papillosum was selected because most of the pharmacological activities associated with this
plant, including the isolation of bioactive phytochemicals have not been well-investigated.
Previous reports state that crushed E. papillosum plants are used in traditional medicine for
hysteria and abdominal pain treatment. To our knowledge, there have been no reported
pharmacological outcomes of E. papillosum except the applications for hysteria treatment
by local practitioners [12]. In the present study, we aimed to explore the bioactive phyto-
chemicals found in E. papillosum using gas chromatography-mass spectrometry (GC-MS).
Systemic, guided, separation and identification techniques are essential for revealing the
potential bioactive and toxic phytochemicals found in plants, as plants contain a variety of
phytochemicals [13]. GC-MS, together with the use of proper detection techniques, repre-
sents a vital means for the separation and identification of phytochemicals [14]. GC-MS
can be easily used to analyze small, volatile, and thermostable components [15–18].

Previously, our group investigated the in vivo antidepressant, analgesic, and anti-
inflammatory activities and the in vitro antioxidant and antibacterial activities of various
fractions of crude methanol E. papillosum extracts [19]. The crude methanol extract and its
chloroform soluble (CS) fraction showed significant antidepressant, analgesic, and anti-
inflammatory activities. The methanol extract and its CS fraction also showed significant
DPPH free-radical-scavenging activity, and the methanol extract showed antimicrobial
activity. Similarly, the petroleum ether soluble (PES) fraction showed significant antide-
pressant and anti-inflammatory activities [19].

Because the extracts of this plant showed various beneficial effects, we aimed to corre-
late these previously reported biological activities, especially the antidepressant, anxiolytic,
and antioxidant activities, with the results of a computationally-aided molecular docking
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study to provide some evidence for the traditional and novel therapeutic applications of
E. papillosum.

2. Results
2.1. GC-MS Analysis

A total of 24 compounds were isolated from E. papillosum using GC-MS spectroscopy,
which are listed in Figure 1 and Table 1, along with their chemical compositions. The
total ionic chromatogram (TIC) is shown in Figure 2. Seven compounds were selected for
molecular docking analyses because the specific biological activities of interest have not
yet been established for these compounds.
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Figure 1. Chemical structures of (A) 3-trifluoroacetoxypentadecane, (B) 13-docosenamide,
(C) eicosanal, (D) linoelaidic acid, (E) linoelaidic acid ethyl ester, (F) tricosanoic acid methyl es-
ter, and (G) phytol acetate (structures were drawn using ChemDraw Professional version 16.0).
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Table 1. Quantitative compounds identified from the E. papillosum methanol extract using gas chromatography-mass spectrometry (GC-MS) analysis.

Sl No. Name RT m/z Area PA (%) Molecular
Formula Nature

1 3-butynoic acid 6.24 40 53,887 0.282064878 C4H4O2 Monocarboxylic acid
2 Allene 7.655 40 116,762 0.611176337 C3H4 Dienes
3 Sebacic acid 11.722 40 36,746 0.19234242 C16H34O4Si2 Fatty acids
4 9-octadecen-1-ol 12.355 40 73,511 0.384784294 C18H36O Fatty alcohol
5 Phytol acetate 12.57 81 705,294 3.691774752 C22H42O2 Diterpene
6 Hexadecanoic acid, methyl ester 13.499 74 3,180,878 16.64991492 C17H34O2 Fatty acid
7 Pentadecanoic acid, 14-methyl-, methyl ester 13.499 74 3,180,878 16.64991492 C17H34O2 Fatty acid
8 Linoleic acid ethyl ester 15.387 44 90,498 0.473700657 C20H36O2 Fatty acid
9 Linoelaidic acid 15.387 44 90,498 0.473700657 C18H32O2 Fatty acid

10 Phytol 15.387 44 90,498 0.473700657 C20H40O Diterpene
11 Heptacosanoic acid, methyl ester 15.53 74 546,048 2.858221139 C28H56O2 Fatty acid
12 Tricosanoic acid methyl ester 15.53 74 546,048 2.858221139 C24H48O2 Fatty acid
13 3-trifluoroacetoxypentadecane 17.635 44 63,831 0.334115524 C17H31F3O2 Ester

14 Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester 20.199 44 81,277 0.425434466 C19H38O4
Fatty acid glycerol

ester
15 Epinephrine 21.777 44 40,058 0.209678677 C9H13NO3 Alkaloid
16 Cis-11-eicosenamide 24.584 59 4,682,201 24.50840562 C20H39NO Amide

17

2-(16-acetoxy-11-hydroxy-4,8,10,14-tetramethyl-3-
oxohexadecahydrocyclopenta[a]phenanthren-17-ylidene)-6-
methyl-hept-5-enoic acid, methyl
ester

24.655 207 160,560 0.840431585 C32H48O6 Fatty acid

18 3-ethoxy-1,1,1,5,5,5-hexamethyl-3-(trimethylsiloxy)trisiloxane 25.46 207 231,720 1.212909858 C17H50O7Si7 Silicate
19 1,2-bis(trimethylsilyl)benzene 29.405 207 37,161 0.194514687 C12H22Si2 Organic compound
20 Stigmasterol 30.575 207 93,362 0.488691913 C29H48O Phytosterols
21 Beta-sitosterol 30.894 207 126,310 0.66115417 C29H50O Phytosterols
22 Eicosanal 17.635 44 67,933 0.355586939 C20H40O Aldehyde
23 13-docosenamide 24.584 59 4,682,201 24.50840562 C22H43NO Amide
24 Gamma-sitosterol 30.894 207 126,310 0.66115417 C29H50 O Phytosteroids

RT: retention time; m/z: m stands for mass and z stands for the charge number of ions; PA: peak area; MW: molecular weight; FAME: fatty acid methyl ester.
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spectrometry (GC-MS).

2.2. Molecular Docking Associated with Antidepressant Activity

When examining antidepressant properties, the molecular docking simulation study
showed docking score ranges from −3.628 to −0.797 kcal/mol against human serotonin re-
ceptor [Protein Data Bank (PDB) ID: 5I6X], and phytol acetate (−3.628 kcal/mol) displayed
the highest binding affinity, followed by 3-trifluoroacetoxypentadecane (−3.423 kcal/mol),
eicosanal (−2.525 kcal/mol), and linoelaidic acid (−0.797 kcal/mol; Table 2). Imipramine
was used as a reference drug for antidepressant activity, which exhibited a docking score
of −5.35 kcal/mol, which was greater than all of the selected compounds. In Figure 3,
phytol acetate interacted with our target receptor through the formation of hydrogen bonds
with Trp573 and Gln246 residues and the formation of hydrophobic bonds with Trp573,
Tyr171, Leu577, Ile581, Leu492, Leu492, Val479, Val473, Val488, and Leu248 residues. In
contrast, imipramine HCl interacted with Tyr171 through hydrogen bonds and interacted
with Val479, Leu492, and Ile581 through hydrophobic bonds.

Table 2. Docking score of the selected compounds identified from the E. papillosum methanol extract against the ts3 human
serotonin transporter (PDB ID: 5I6X), potassium channel receptor (PDB ID: 4UUJ), COX-1 (PDB ID: 2OYE), COX-2 (PDB
ID: 6COX), NF-κB (PDB ID: 5LDE), and human peroxiredoxin 5 receptor (PDB ID: 1HD2) for antidepressant, anxiolytic,
anti-inflammatory, analgesic, and antioxidant activity, respectively.

Compounds Name
Docking Score (kcal/mol)

5I6X 4UUJ COX-1 COX-2 5LDE 1HD2

3-trifluoroacetoxypentadecane −3.423 −2.512 −3.458 - −4.012 −1.469
13-docosenamide - - - - - -
Linoelaidic acid −0.797 −0.265 −0.410 −2.960 −1.194 1.170

Linoleic acid ethyl ester - - - - - -
Eicosanal −2.525 −3.199 −3.561 - 2.696 −3.928

Phytol acetate −3.628 −2.913 −3.533 −5.236 −4.153 −1.469
Tricosanoic acid methyl ester - - - - - -

Standard (Imipramine HCl/ Diazepam/
Diclofenac-Na/ Ascorbic acid) −5.350 −4.035 −4.590 −7.260 −5.758 −5.134

Bold text indicates the best docking score.
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of the ts3 human serotonin transporter (PDB ID: 5I6X). Green color illustrates the residues forming
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color illustrates the residues with hydrophobic (pi-pi/pi-alkyl) stacking.

2.3. Molecular Docking Associated with Anxiolytic Activity

For the molecular docking simulation study to examine anxiolytic activity, the com-
pounds were docked against the potassium channel receptor (PDB ID: 4UUJ), which re-
sulted in docking scores that ranged from −3.199 to −0.265 kcal/mol. Eicosanal displayed
the highest binding affinity (−3.199 kcal/mol), followed by phytol acetate (−2.913 kcal/mol),
3-trifluoroacetoxypentadecane (−2.512 kcal/mol), and linoelaidic acid (−0.265 kcal/mol),
as shown in Table 2. The three other phytochemicals did not show any interaction with
our target receptor, whereas the reference drug diazepam yielded a docking score of
−4.035 kcal/mol. Eicosanal interacted with our target receptor through Asn161, Lys142,
and Tyr173 residues. The reference drug diazepam formed various types of hydrophobic
bonds with Trp163 (3), Thr164, Asp165, Asp143, and Lys142, as shown in Figure 4.



Molecules 2021, 26, 809 7 of 19
Molecules 2021, 26, x FOR PEER REVIEW 8 of 21 
 

 

A

B

 

Figure 4. Best-ranked poses for eicosanal (A), and diazepam (B), in the binding pocket of the KcsA 

potassium channel (PDB ID: 4UUJ). Green color illustrates the residues forming hydrogen bonds, 

white color illustrates the residues with carbon–hydrogen interaction and pink color illustrates the 

residues with hydrophobic (pi-pi/pi-alkyl) stacking. 

2.4. Molecular Docking Associated with Analgesic Activity 

The analgesic potentials of the selected compounds were investigated by performing 

molecular docking studies using the cyclooxygenase-1 (COX-1; PDB ID: 2OYE) and COX-

2 (PDB ID: 6COX) receptors as the target proteins. The docking scores of the selected com-

pounds against the COX-1 receptor ranged from −3.561 to −0.41 kcal/mol. Eicosanal ex-

hibited the best binding affinity (−3.561 kcal/mol) against COX-1, followed by phytol ace-

tate (−3.533 kcal/mol), 3-trifluoroacetoxypentadecane (−3.458 kcal/mol), and linoelaidic 

acid (−0.41 kcal/mol). The reference drug diclofenac-Na displayed a docking score of −4.59 

kcal/mol. Eicosanal interacted with the Leu99 and Leu92 residues of our target protein via 

hydrophobic bonds. Diclofenac-Na interacted with His90, His95, and Pro514 by forming 

various hydrophobic bonds and formed two hydrogen bonds with His90 and Pro514. 

Additionally, phytol acetate exhibited the best binding affinity (−5.236 kcal/mol) 

against the COX-2 protein, followed by linoelaidic acid (−2.96 kcal/mol). None of the other 

compounds interacted with this target protein. The reference drug diclofenac-Na exhib-

ited a docking score of −7.26 kcal/mol. Phytol acetate interacted via hydrophobic bonds 

with Leu352, Leu359, Leu531, Leu93, Val349, Val89, Pro86, and Tyr115 residues. The ref-

erence drug formed hydrogen bonds with Arg120 and various hydrophobic bonds with 

Val349 (2), Leu352, Ser353, Val523, Gly526, and Ala527 (3). 

The results of the docking study are shown in Table 2, and the docking figures are 

presented in Figures 5 and 6. 

Figure 4. Best-ranked poses for eicosanal (A), and diazepam (B), in the binding pocket of the KcsA
potassium channel (PDB ID: 4UUJ). Green color illustrates the residues forming hydrogen bonds,
white color illustrates the residues with carbon–hydrogen interaction and pink color illustrates the
residues with hydrophobic (pi-pi/pi-alkyl) stacking.

2.4. Molecular Docking Associated with Analgesic Activity

The analgesic potentials of the selected compounds were investigated by perform-
ing molecular docking studies using the cyclooxygenase-1 (COX-1; PDB ID: 2OYE) and
COX-2 (PDB ID: 6COX) receptors as the target proteins. The docking scores of the selected
compounds against the COX-1 receptor ranged from −3.561 to −0.41 kcal/mol. Eicosanal
exhibited the best binding affinity (−3.561 kcal/mol) against COX-1, followed by phytol
acetate (−3.533 kcal/mol), 3-trifluoroacetoxypentadecane (−3.458 kcal/mol), and linoe-
laidic acid (−0.41 kcal/mol). The reference drug diclofenac-Na displayed a docking score
of −4.59 kcal/mol. Eicosanal interacted with the Leu99 and Leu92 residues of our target
protein via hydrophobic bonds. Diclofenac-Na interacted with His90, His95, and Pro514
by forming various hydrophobic bonds and formed two hydrogen bonds with His90 and
Pro514.

Additionally, phytol acetate exhibited the best binding affinity (−5.236 kcal/mol)
against the COX-2 protein, followed by linoelaidic acid (−2.96 kcal/mol). None of the
other compounds interacted with this target protein. The reference drug diclofenac-Na
exhibited a docking score of −7.26 kcal/mol. Phytol acetate interacted via hydrophobic
bonds with Leu352, Leu359, Leu531, Leu93, Val349, Val89, Pro86, and Tyr115 residues. The
reference drug formed hydrogen bonds with Arg120 and various hydrophobic bonds with
Val349 (2), Leu352, Ser353, Val523, Gly526, and Ala527 (3).

The results of the docking study are shown in Table 2, and the docking figures are
presented in Figures 5 and 6.
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Figure 5. Best-ranked pose of eicosanal (A), and diclofenac-Na (B), in the binding pocket of COX-1
(PDB ID: 2OYE) enzymes. Green color illustrates the residues forming hydrogen bonds, white color
illustrates the residues with carbon–hydrogen interaction and pink color illustrates the residues with
hydrophobic (pi-pi/pi-alkyl) stacking.

2.5. Molecular Docking Associated with Anti-Inflammatory Activity

From the data reported in Table 2 it can be observed that, phytol acetate exhib-
ited the highest binding affinity with nuclear factor kappa-light-chain-enhancer of ac-
tivated B cells (NF-κB; PDB ID: 5LDE), with a score of −4.153 kcal/mol, followed by
3-trifluoroacetoxypentadecane (−4.012 kcal/mol). The reference drug, diclofenac-Na,
showed a binding score of −5.758 kcal/mol. However, 13-docosenamide, linoleic acid
ethyl ester, and tricosanoic acid methyl ester did not bind with NF-κB. As shown in Figure 7,
phytol acetate interacted with the target protein through Ala34, Ala26, Tyr3, and Lys4
residues. Diclofenac-Na formed hydrophobic bonds with Ala34 and Leu5 and a hydrogen
bond with Asp40.
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2.6. Molecular Docking Associated with Antioxidant Activity

Our study revealed a range of docking scores ranging from −3.928 to −1.17 kcal/mol
against human peroxiredoxin 5 enzyme (PDB ID: 1HD2) when evaluating potential antioxi-
dant activity (Table 2). Eicosanal possessed the best docking score (−3.928 kcal/mol), followed
by phytol acetate (−1.469 kcal/mol), 3-trifluoroacetoxypentadecane (−1.469 kcal/mol), and
linoelaidic acid (−1.17 kcal/mol). Eicosanal interacted with the Lys49 residue of the target
protein via hydrogen bond and with the Pro45 residue through hydrophobic interaction.
However, ascorbic acid, which was used as a reference drug for antioxidant activity, exhib-
ited the highest docking score of −5.134 kcal/mol, interacting with Arg176 (2), His256 (2),
Asn254, Val227, and Gln228 via hydrogen bonds (Figure 8).
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carbon–hydrogen interaction and pink color illustrates the residues with hydrophobic (pi-pi/pi-
alkyl) stacking.

2.7. Ligand-Based ADME/T Predictions

The seven selected bioactive compounds were screened for drug-candidacy by evalu-
ating their pharmacokinetic and physicochemical properties using the QikProp module
of Schrödinger Suite-Maestro, version 10.1. The range of different ADME (absorption,
distribution, metabolism, and excretion) parameters that were evaluated included the
molecular weight, the estimated number of hydrogen bond donors (HB donors) and ac-
ceptors (HB acceptors) in the solute when combined with water molecules in an aqueous
solution, and the total solvent accessible surface area (SASA) value. These values for all
compounds were found to be within the acceptable ranges. These compounds also demon-
strated good brain/blood partition coefficient (QPlogBB) values, ranging from −1.523
to 0.25, which suggested that the compounds are within acceptable limits. The values
of the octanol/water partition coefficient (QPlog Po/w) ranged from 4.826 to 7.528. The
aqueous solubility (QPlogS) values for the selected compounds ranged from −13.069 to
−5.802. All of the selected compounds fulfilled Lipinski’s rule of five (RO5), with none
of the compounds contravening more than one of Lipinski’s rules (Table 3). The selected
compounds displayed high percentages of human oral absorption, with all exceeding 80%,
and most of the phytochemicals exhibited 100% oral absorption.
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Table 3. ADME and drug-likeness properties of 3-trifluoroacetoxypentadecane, 13-docosenamide, linoelaidic acid, linoe-
laidic acid ethyl ester, eicosanal, phytol acetate, and tricosanoic acid methyl ester, as determined by QikProp.

Compound
Name MW a HB

Donors b
HB

Acceptors c SASAd QPlogPo/w e QPlogBB f QPlogS g
%Human

Oral
Absorption h

3-
trifluoroacetoxy
pentadecane

324.426 0 2 721.905 6.548 −0.338 −7.253 100

13-
docosenamide 337.588 2 3 864.813 5.197 −0.461 −9.339 88.609

Linoelaidic
acid 280.45 1 2 717.95 5.83 −1.523 −6.373 90.462

Linoleic acid
ethyl ester 308.503 0 3 670.733 4.826 0.25 −7.357 100

Eicosanal 296.535 0 2 838.966 6.518 −0.086 −11.068 100
Phytol
acetate 338.573 0 2 681.355 6.661 −0.623 −5.802 100

Tricosanoic
acid methyl

ester
368.642 1 3 977.143 7.528 0.138 −13.069 100

a Molecular weight (acceptable range: <500). b Hydrogen bond donor (acceptable range: ≤5). c Hydrogen bond acceptor (acceptable range: ≤10).
d Total solvent accessible surface area using a probe with a 1.4 radius (acceptable range: 300–1000). e Predicted octanol/water partition coefficient
(acceptable range: −2–6.5). f Predicted blood–brain partition coefficient (acceptable range: −3–1.2). g Predicted aqueous solubility, S in mol/dm−3

(acceptable range: −6.5–0.5). h Predicted human oral absorption on 0 to 100% scale (<25% is poor and >80% is high).
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2.8. Molecular Mechanics Generalized Born Surface Area (MM-GBSA) Analysis and Ligand
Efficiency

In Table 4, the compounds showing MM-GGBSA ∆G bind against particular receptors.
There was a good correlation between MMGBSA ∆G bind and binding affinity. We also
report on the use of an in silico approach to predict the binding affinities and ligand
efficiencies of E. papillosum constituents towards distinct receptors.

Table 4. Binding affinity (kcal/mol) and ligand efficiencies estimation of the best docked compounds
and the standard drugs.

Compound Name/Standard MM-GBSA ∆G Bind Ligand Efficiency

Antidepressant Activity

Phytol acetate −72.00 3.00
Imipramine HCl (Standard) −49.18 2.24

Anxiolytic Activity

Eicosanal −42.06 2.00
Phenobarbital (Standard) −30.65 1.80

Anti-inflammatory Activity Cyclooxygenase-1 (COX-1)

Eicosanal −47.86 2.28
Diclofenac-Na (Standard) −37.32 1.87

Cyclooxygenase-2 (COX-2)

Phytol acetate −75.25 3.14
Diclofenac-Na (Standard) −54.64 2.73

NF-κB

Phytol acetate −88.59 3.69
Diclofenac-Na (Standard) −52.91 2.65

Antioxidant Activity

Eicosanal −48.99 2.33
Ascorbic acid (Standard) −35.54 2.96

2.9. Molecular Dynamics Simulations

The root-mean-square deviations of the drug–protein complexes were explored to
examine the steady-state characteristics of the complexes. Figure 9A demonstrates that the
compound with the best analgesic activity did not display any fluctuations throughout
the entire simulation time, exhibiting a steady conformation. The control 1 antioxidant
and anxiolytic and control 2 showed less deviation, although they initially displayed a
high level of flexibility subsequently but stabilized. The control 3 and analgesic complexes
displayed larger changes during the initial phase but did not exceed an RMSD value above
2.5 Å. The RMSD descriptors from eight complexes in Figure 9A correlates with the stability
of the complexes.

The hydrogen bond formations observed during the simulation define the overall
integrity of the complexes. A higher degree of changes observed in the hydrogen bond
patterning indicates complex instability and increased flexibility. The hydrogen bonds
depicted in Figure 9B showed that all eight complexes between the tested compounds and
the target protein displayed stable hydrogen bonding patterns, with no significant changes
in the hydrogen bond numbers observed, suggesting that all eight complexes maintained
structural integrity.
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3. Discussion

Recently, plant-derived substances have garnered significant interest because of their
remarkable applications. Medicinal plants are the richest bioresources for conventional
drugs, modern medicines, nutraceuticals, curative intermediates, and artificial drug chem-
icals. Medicinal plants have also been used by human society to combat diseases since
the dawn of civilization. A large portion of the population, especially those who live in
rural communities, largely depends on herbal remedies. Several herbal remedies have
withstood the test of time, particularly those used to treat allergic, metabolic, and de-
generative diseases associated with aging. However, scarce scientific data regarding the
chemical identities and effectiveness of these herbs are available, except those associated
with the practice of Ayurveda and Unani medicine [8,13]. In this study, we conducted
a correlation study between our previously reported bioactivities and a computer-aided
molecular docking study to provide evidence to support the traditional and novel thera-
peutic use of E. papillosum. Although phytochemicals obtained from medicinal plants were
focused on the empiric experience in the past, currently, the scientific evidence regarding
the chemical composition and therapeutic properties are regarded as the main focus while
isolating several phytochemicals. Expert taxonomists mainly perform the identification
and authentication of medicinal plants; however, one of the main disadvantages includes
the absence of several phenotypic characteristics. In addition, the products used in tradi-
tional medicine are processed in various forms, such as powder, extracts, capsules, and
tablets. Phytochemical characterization could therefore be used in the identification and
authentication of several medicinal plants [20–25].

Molecular docking has become a widely employed tool in the field of computer-aided
drug design because molecular docking allows for binding predictions to be made between
small compounds and large macromolecules and various target proteins [26]. Molecular
docking can also be utilized to understand the probable mechanisms of action for different
pharmacological activities [27]. Several studies have recently used molecular docking
analysis to predict the binding mode of numerous phytochemicals obtained from several
medicinal plant extracts with the respective receptors for various pharmacological activi-
ties [17,28]. In our present study, we implemented a molecular docking analysis to explore
the binding affinities of selected compounds against various target proteins. Eicosanal and
phytol acetate are the two compounds that have displayed the best interactions with a
variety of target proteins to exert a various pharmacological activities (antioxidant, antide-
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pressant, anxiolytic, analgesic, and anti-inflammatory activities). Eicosanal displayed the
highest binding affinity against the target proteins examined to assess analgesic, anxiolytic,
and antioxidant activity, whereas phytol acetate displayed the best docking scores against
the target proteins examined to assess analgesic, anti-inflammatory, and antidepressant
activity.

Pharmacologically, COX-1 and COX-2 are responsible for the formation of prostanoids,
which act in several pathways [29,30]. In general, the synthesis of prostanoids is mediated
by phospholipase A2, which regulates the release of arachidonic acid from membrane phos-
pholipids [4,31]. Therefore, COX inhibition correlates not only with the pharmacological
inhibition of various downstream biochemical effects but also inhibits the synthesis of
prostaglandins (PGs) [31]. In our current study, the targeted compounds interacted with
both COX-1 and COX-2; however, the interactions were weaker than that for the positive
control used in the study. Despite having a lower docking score, eicosanal interacted with
the Leu92 residue through hydrophobic interaction. A recent study documented that the
Leu92 residue is responsible for stabilizing the structure. Similar results were observed
during the interaction with COX-2 and the targeted compounds, for which diclofenac-Na
possessed the highest docking score. However, phytol acetate interacted with COX-2
by forming a hydrophobic interaction with several residues, including Leu352, Leu359,
Leu531, Leu93, Val349, Val89, Pro86, and Tyr115. A previous study by Krisnamurti et al.
reported that acetaminophen binds with Leu352 and Val349 through hydrophobic interac-
tions and may interfere with the COX-2 activity [32]. In addition, NF-κB has been viewed
as a prominent target for anti-inflammatory and analgesic responses [33,34]. In the present
experiment, phytol acetate interacted with NF-κB with the greatest affinity. Previously,
NF-κB inhibition was shown to be mediated by phytol acetate found in the hexane extract
of Cymbopogon citratus [35].

To perform the in silico analysis of potential anxiolytic and antidepressant activities,
we selected the potassium channel receptor and the human serotonin receptor, respectively.
Potassium channels regulate the excitability of neurons, and the serotonin receptor is
strongly associated with the etiology and pharmacology of depression [36,37]. Our previous
study demonstrated the inhibition of both receptors by selective phytocompounds isolated
from Piper sylvaticum plant extract [38]. Moreover, we also analyzed the antioxidant
effects of the selected phytocompounds by performing a molecular docking analysis
using the human peroxiredoxin 5 enzyme. Here, eicosanal interacted with the Lys49
residue by forming a hydrogen bond, which agrees with the results of a previous study by
Bharati et al. [39].

In addition to molecular docking simulations, ADME/T analyses were performed.
In the recent era, drug design and discovery approaches have shifted from phenotypic
screens to high throughput screening and combinatorial chemistry. Thus, the physico-
chemical properties are concerned as remarkable characteristics during the selection of
drug molecules, which displayed a shift towards higher molecular weight and lipophilic-
ity. The ADME/T analysis using the “rule of five” (RO5) is currently recognized as a
widespread marker during drug designing that depicts the solubility profile and perme-
ability. The selected phytocompounds were further analyzed using the QikProp module
of the Schrödinger suite-Maestro, version 10.1, to explore their drug-likeness behaviors
and their physicochemical and pharmacokinetic characteristics. Compounds that con-
travene any of Lipinski’s RO5 may encounter problems due to permeability, absorption,
and bioavailability, as ligand molecules with lower molecular weights, hydrogen bond
capacities, and lipophilicity typically exhibit better permeability [40], faster absorption, and
higher bioavailability [41,42]. According to Lipinski’s RO5, our selected phytocompounds
displayed good orally-active drug-candidacy profiles. Additionally, assessments of the
abilities of the drugs to pass through the blood–brain barrier (QPlogBB), the total SASA,
and the percent human oral absorption also indicated that these compounds might be
considered as potential drug molecules with receptor-based optimization.
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4. Materials and Methods
4.1. Preparation of Crude Methanolic Extract

Whole plant parts of E. papillosum were collected from Chittagong district (22◦36′00” N,
91◦40′14.13” E) of Bangladesh. The plants were sun dried for several days and then oven
dried for 24 h at considerably low temperature (below 40 ◦C) to facilitate grinding. The
powdered material (500 g) was macerated in 2.5 L of methanol for 15 days and then filtered
through a cotton plug followed by Whatman filter paper number 1. The extract was
concentrated with a rotary evaporator (RE 200, Bibby Sterling Ltd., UK) at low temperature
(40–45 ◦C) and reduced pressure. The viscous mass was stored in a refrigerator (4 ◦C) for
future use.

4.2. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis

The methanolic leaf extract of E. papillosum was inspected using a mass spectrometer
(TQ 8040, Shimadzu Corporation, Kyoto, Japan) using the electron impact ionization
method, and a gas chromatograph (GC-17A, Shimadzu Corporation) fused with silica
capillary column (Rxi-5 ms; 0.25 m film, 30 m long, and internal diameter: 0.32 mm) coated
with DB-1 (J&W). The oven temperature was programmed as 70 ◦C (0 min) increasing to
150 ◦C, at 10 ◦C/s. with a hold time of 10 min. A 260 ◦C temperature was maintained as
the inlet temperature. The flow rate was set to a speed of 0.6 mL/min, using helium gas at
a 90 kPa constant pressure. The interface temperature from GC to MS was maintained at a
constant 280 ◦C. The MS was set in scan mode with a scanning range of 40–350 amu; the
ionization mode was EI (electron ionization) type. The injection volume of the sample was
one microliter. The entire GC-MS procedure lasted for 50 min [31]. A comparison with the
National Institute of Standards and Technology (NIST) GC-MS library version 08-S was
performed to identify the compounds in the peak areas

4.3. Computational Molecular Docking Analysis
4.3.1. Chemical Compounds Studied

Seven bioactive compounds were selected for molecular docking analysis, and the
PubChem database (https://pubchem.ncbi.nlm.nih.gov (accessed on 7 February 2021))
was used to download the structures of the compounds. The selected compounds were
3-trifluoroacetoxypentadecane (PubChem CID: 534406), 13-docosenamide, (Z)-(PubChem
CID: 5365371), linoelaidic acid (PubChem CID: 5282457), linoleic acid ethyl ester (PubChem
CID: 5282184), eicosanal (PubChem CID: 75458), phytol acetate (PubChem CID: 6428538),
and tricosanoic acid methyl ester (PubChem CID: 75519) (see Figure 1).

4.3.2. Preparation of Ligand

The chemical structures of the seven compounds that were isolated by GC-MS analysis
were downloaded from PubChem. The structures were neutralized at pH 7.0 ± 2.0 and
minimized by force field OPLS 2005 embedded in Schrödinger Suite-Maestro, version 10.1.

4.3.3. Preparation of Receptor/Enzymes

Three-dimensional crystallographic enzyme structures were obtained from the PDB [43]:
KcsA potassium channel (PDB ID: 4UUJ), ts3 human serotonin transporter (PDB ID:
5I6X) [44], human peroxiredoxin 5 (PDB ID: 1HD2) [45], NF-κB (PDB ID: 5LDE), COX-1
(PDB ID: 2OYE) and COX-2 (PDB ID: 6COX) [46–49]. The enzymes were prepared for
the docking experiment by the Protein Preparation Wizard embedded in Schrödinger
Suite-Maestro, version 10.1.

4.3.4. Glide Docking

A molecular docking study was performed to interpret the potential mechanisms
of the selected compounds against several suitable proteins associated with anxiolytic,
antidepressant, antioxidant, analgesic, and anti-inflammatory activities. Docking analy-

https://pubchem.ncbi.nlm.nih.gov
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sis was performed using Maestro by standard precision scoring function, as previously
described [50,51].

4.4. Ligand-Based Pharmacokinetic Parameter Analysis

The QikProp module of the Schrödinger Suite-Maestro, version 10.1, is a quick, precise,
easy-to-use, online-based program designed to predict significant pharmacokinetic and
physicochemical descriptors linked to ADME properties. QikProp evaluates the admis-
sibility of ADME properties to ascertain the drug-likeness of selected ligand molecules,
based on Lipinski’s RO5. The ADME/T properties of the selected bioactive compounds
(3-trifluoroacetoxy pentadecane, 13-docosenamide, linoelaidic acid, linoleic acid ethyl es-
ter, eicosanal, phytol acetate, and tricosanoic acid methyl ester) were analyzed using the
QikProp 3.2 module [52].

4.5. Prime Molecular Mechanics Generalized Born Surface Area (MM-GBSA) and
Ligand Efficiency

Prime MM-GBSA approach was used to calculate ligand-binding energies and lig-
and strain energies for a ligand and a receptor. The Prime MM-GBSA module from the
Schrodinger software package was utilized to calculate the binding affinity. MM-GBSA is a
method that amalgams OPLS 2005 molecular mechanics energies (EMM), an SGB solvation
model for polar solvation (GSGB), and a nonpolar solvation term (GNP) composed of
the nonpolar solvent surface area and Van der Waals interactions. The higher degree of
rigidity of the ligand attached protein is indicated by the higher negative MM-GBSA value.
The Prime MM-GBSA process consists of three different approaches; OPLS molecular
mechanics energies, an SGB solvation model, and a nonpolar solvent [53]. The binding free
energies were calculated from the following equations:

∆Gbind = Gcomplex − (Gprotein + Gligand), (1)

where
G = EMM + VSGB + GNP. (2)

Therefore, to perceive their rigidity along with motion and structural stability in
simulation conditions, the best three ligands are selected for further processing. For each
ligand, the ligand efficiency was also calculated using the ratio of ∆G to the number of
heavy atoms (NHA) for each ligand, ligand efficiency = −(∆G)/NHA).

4.6. Computational Molecular Dynamic Simulations Analysis

The molecular dynamics simulation of the docked complexes was analyzed in YASARA
dynamics to evaluate the conformational variations [54]. The AMBER14 force field [55] was
used, and the complexes were initially cleaned and optimized. The Particle Mesh Ewald
method was applied to calculate the long-range electrostatic interactions [56]. The periodic
boundary condition was maintained, and the system was neutralized with the addition
of 0.9% NaCl, 7.4 pH at a temperature of 36 ◦C. The Berendsen thermostat was used to
maintain the temperature of the simulation cell [57]. The simulation cell was extended
20Å beyond the complexes, providing more flexibility. The normal simulation time step of
1.25 fs was maintained. The simulation trajectories were saved after every 100-ps interval,
and the simulation was run for 50-ns to analyze RMSD and root mean square fluctuation
(RMSF) [58,59]. Imipramine HCl, diazepam, diclofenac-Na, and ascorbic acid were denoted
as control 1, control 2, control 3, and control 4, respectively.

5. Conclusions

To the best of our knowledge, this is the first report describing an in silico correlation
between the predicted pharmacological activities of E. papillosum and the chemical com-
pounds that characterize its methanolic extract. However, further studies remain necessary
to elucidate the mechanisms underlying these effects. Previously, no data regarding this



Molecules 2021, 26, 809 17 of 19

plant has been published; therefore, we believe that E. papillosum may be an exemplary
sample for alternative therapeutic sources. It is necessary to characterize the structures of
secondary metabolites found in the plant and to highlight novel compounds as potential
therapeutic components. Thus, this contemporary research can offer some preliminary
pharmacological evidence for the ethnomedical uses of E. papillosum and it reveals that this
plant contains some active agents that may be responsible for these activities.
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