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Purpose: The aim of this study is to use a population pharmacokinetic (PK) approach to 
evaluate the optimal dosing strategy for linezolid (LNZ) in critically ill patients.
Methods: This multicenter, prospective, open-label, observational study was conducted in 
152 patients, and 117 of them were included in the PK model, whereas the rest were in the 
validation group. The percentage of therapeutic target attainment (PTTA) comprising two 
pharmacodynamic indices and one toxicity index was used to evaluate dosing regimens 
based on Monte Carlo simulations stratified by low, normal, and high renal clearance for 
MICs of 0.25–4 mg/L.
Results: A single-compartment model with a covariate creatinine clearance (CrCL) was 
chosen as the final model. The PK parameter estimates were clearance of 5.60 L/h, with 
CrCL adjustment factor of 0.386, and a distribution volume of 43.4 L. For MIC ≤2 mg/L, the 
standard dosing regimen (600 mg q12h) for patients with severe renal impairment (CrCL, 
40 mL/min) and standard dosing or 900 mg q12h for patients with normal renal functions 
(CrCL, 80 mL/min) could achieve PTTA ≥74%. The dose of 2400 mg per 24-h continuous 
infusion was ideal for augmented renal clearance (ARC) with MIC ≤1 mg/L. For MICs 
>2 mg/L, rare optimal dose regimens were found regardless of renal function.
Conclusion: In critically ill patients, the standard dose of 600 mg q12h was sufficient for 
MIC ≤2 mg/L in patients without ARC. Moreover, a 2400 mg/day 24-h continuous infusion 
was recommended for ARC patients.
Keywords: critically ill patients, linezolid, population pharmacokinetic

Introduction
Linezolid (LNZ), an oxazolidinone antibiotic,1 is an important therapeutic choice 
for infections caused by methicillin-resistant Staphylococcus aureus (MRSA),2,3 

and Enterococcus-induced complicated intra-abdominal infections,4,5 especially in 
critically ill patients. Its property of low protein binding (~27%) and wide distribu
tion achieved high concentrations in infected organs, such as the lungs, brain, and 
skin.5,6 As a time-dependent antibiotic, the area under the curve of 0–24 h at steady- 
state divided by the minimum inhibitory concentration (AUC24/MIC) >80 and the 
percentage of time that the plasma concentrations surpass the MIC (%T>MIC>85%) 
were often used as pharmacodynamic (PD) indices7–10). The steady-state trough 
concentrations (Css,min) of LNZ in the range of 2–10 mg/L were also associated 
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with clinical response and adverse effects. Furthermore, 
the occurrence of thrombocytopenia increased by 50% if 
the Css,min was greater than 10 mg/L.11 However, previous 
studies had revealed low target achievement and high 
inter-individual variability at standard dose (600 mg per 
12 hours [q12h]), with 30.7–50% of critically ill patients 
exposed at subtherapeutic levels (Css,min < 2 mg/L).12,13

For dose optimization, the population pharmacokinetic 
(PK) approach was used to simulate the dosing regimens 
in Caucasian patients with acute respiratory distress syn
drome (ARDS),14 renal impairment,15 augmented renal 
clearance (ARC),16 or continuous renal replacement ther
apy (CRRT).17 Based on a population PK model of LNZ in 
healthy Chinese volunteers, Yang et al simulated various 
dosing regimens for a variety of MICs.18 Because the 
MICs tested in China were approximately 1 mg/L, without 
taking into account the renal functions, the standard LNZ 
dosing regimen (600 mg q12h) achieved adequate expo
sure for most gram-positive bacterial infections in China. 
Nevertheless, with complex and severe pathophysiological 
conditions, critically ill patients are more likely to alter PK 
and PD variables.18 Previous studies using a population 
PK model were mainly conducted mostly on critically ill 
Caucasian patients. Further, improved knowledge of the 
PK/PD of LNZ dose adjustment for creatinine clearance 
(CrCL) can help to improve efficacious intervention of 
infections.19 However, there is a lack of evaluation of 
PK/PD of LNZ dose adjustment for CrCL in highly het
erogeneous critically ill patients, especially in Chinese 
patients. In order to investigate the PK/PD of LNZ dose 
adjustment for various renal functions, and to clarify the 
appropriate dosing strategy for LNZ in critically ill 
patients, in particular Chinese patients with renal dysfunc
tion, this multicenter, prospective, open-label, observa
tional study was performed in adult intensive care units 
(ICUs) of four tertiary hospitals in China.

Materials and Methods
Study Design and Patients
This multicenter, prospective, open-label, observational 
study was conducted in ICUs of Guangdong Provincial 
People’s Hospital, Nanfang Hospital, Guangzhou First 
People’s Hospital, and Guangzhou 999 Brain Hospital 
(Guangdong, China). Moreover, the inclusion criteria 
were as follows: patients aged >18 years of age and 
patients who received LNZ intravenously (often 600 mg 
q12h). In contrast, the exclusion criteria were as follows: 

incomplete information and oral administration. Patients 
enrolled before October 30, 2018, were included in the 
model establishment group, and those enrolled afterward 
were included in the external validation group. The study 
protocol was planned in accordance with the SPIRIT 
guideline.20 All experiments were conducted in compli
ance with the approved protocols, guidelines, and regula
tions, and all patients (or suitable surrogates for patients 
unable to consent) provided written informed consent. 
This study was approved by the Ethics Committee of 
Guangdong Provincial People’s Hospital, Nanfang 
Hospital, Guangzhou First People’s Hospital, and 
Guangzhou 999 Brain Hospital (Guangdong, China) 
(GDREC2018269H(R1)) and was carried out in compli
ance with the Declaration of Helsinki.

The demographic data, including age, weight, height, 
and gender, were collected. Renal and hepatic functions, 
including levels of alanine aminotransferase, aspartate 
aminotransferase, total bilirubin, direct bilirubin and 
serum creatinine (sCr) were evaluated. CrCL was calcu
lated using the Cockcroft-Gault formula.21 Other potential 
covariates (COV) included CRRT status, baseline sequen
tial organ failure assessment (SOFA) scores, and acute 
physiology and chronic health evaluation (APACHE) II 
scores. The components of the SOFA and APACHE II 
scores were collected from historical medical records.

Sample Collection
Venous blood samples were collected in EDTA-K2 tubes at 
the end of the infusion (2.5 h after the start of infusion) 
and before the next dose in patients administered at least 
one dose. Moreover, plasma samples were separated by 
centrifuging the blood samples at 2000 g at room tempera
ture for 10 min and stored at −80°C prior to analysis.

Analytical Procedures
All plasma samples were quantified at the Department of 
Medical Sciences at Guangdong Provincial People’s 
Hospital using a validated high-performance liquid chro
matography-tandem mass spectrometry (LC-MS/MS) 
method. The method was fully validated in compliance 
with the guidelines of the US Food and Drug 
Administration for bioanalysis.22 As the protein binding 
of LNZ is <15% in critically ill patients,1 the total LNZ 
concentration was measured. The analytical procedure 
was briefly described as follows. The analyte and iso
tope-labeled internal standard (IS) were isolated on the 
Ultimate XB C18 3 μm (2.1 × 50 mm) with a flow rate of 
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0.3 mL/min. The mobile phase consisted of water, con
taining 0.5% formic acid (v/v) (A) and acetonitrile (B) 
(30:70, v/v) with a total run time of 2 min. A positive 
ion mode multiple-reaction monitoring detection mode 
by electrospray ionization (ESI) ion mode was used with 
the transitions of m/z 338.1→296.1 and m/z 
341.2→297.2 for LNZ and linezolid-d3 (IS), respec
tively. A volume of 50 μL plasma sample was mixed 
with 20 μL IS working solution, and then protein was 
precipitated by adding 200 μL acetonitrile. Next, the 
sample was centrifuged at 12,000 rpm for 15 min. The 
final supernatant was injected and analyzed in the LC- 
MS/MS system. The linear range of the method was 
0.05–20 mg/L. The inter-day and intra-day precisions 
were 1.7–5.8%, and the relative error (accuracy) was – 
3.3% to –1.3%. Moreover, the matrix effect and recovery 
were 88.4–92.5% and 89.5–91.4%, respectively.

PK Modeling
As a base model, one- or two-compartment model with 
first-order elimination was investigated. Further, potential 
covariates, including demographic characteristics, and 
renal and liver functions were evaluated. Covariate models 
were chosen based on the type of variables used. Discrete 
covariates (such as gender) were modeled as follows.

Pij ¼ Ptv;j 1þ θjCOVgender
� �

eηi 

For continuous covariates (such as age and CrCL), an 
exponential model with average covariate values and an 
adjusting factor was chosen:

Pij ¼ Ptv;j
COV

COVave

� �θj

eηi 

In the equations described above, Pij is the individual 
value. Ptv,j is the population typical value, COV is the 
value of the covariate, θj is an impact factor. COVgender 

is a binary variable (1 for male and 0 for female patients), 
and COVave is the average continuous covariate. Moreover, 
inter-individual variability was expressed as ηi, which is 
normally distributed with mean 0 and variance ω2. 
Residual variability (RV) was also modeled using additive, 
proportional and mixture of additive and proportional error 
model.

The first-order conditional estimate with interaction 
(FOCE-I) method was used during model building. The 
change in the objective function value (OFV) was asymp
totically distributed as χ2. The covariate evaluation was 
followed by a forward stepwise univariate of at least 3.84 

reduction in the OFV (α=0.05, 1 degree of freedom) and 
a backward elimination analysis of the covariates (α= 
0.001) with an OFV increase of at least 10.82.

The adequacy of the final model was assessed using 
goodness-of-fit (GOF) plots, normalized prediction distri
bution error (NPDE), visual predictive checks (VPC) and 
external validation. One thousand times of bootstrap for 
the 95% confidence intervals (CIs) of the parameters were 
conducted on Perl-speaks-NONMEM version 4.8.0 
(Uppsala University, Sweden). The GOF plots, VPC plot 
and NPDE statistics were conducted using R and the add- 
on package NPDE version 2.0.23 The mean prediction 
error (MPE), relative prediction error (RPE) and the root 
mean square error (RMSE) were determined as follows to 
assess the accuracy and precision of the final model:

MPE ¼ ∑
PREDi � Obsi

N 

RPE ¼
PREDi � Obsi

Obsi
� 100%

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
ðPREDi � ObsiÞ

2

N

s

Simulations and Target Attainment
The PK profiles of different infusion dosing regimens were 
obtained using Monte Carlo simulations by NONMEM: 
daily dose of 1200, 1800, and 2400 mg administered every 
12 h, 8 h, and 6 h as a 1-h intravenous infusion and 24-h 
continuous infusion, respectively, ie, 600 mg q12h, 
400 mg q8h and 300 mg q6h for a daily dose of 
1200 mg; 900 mg q12h, 600 mg q8h and 450 mg q6h 
for a daily dose of 1800 mg; 1200 mg q12h, 800 mg q8h, 
and 600 mg q6h for a daily dose of 2400 mg; and 
1200 mg, 1800 mg and 2400 mg 24-h infusion. The 
stratified three renal function levels (n=10,000 each 
level) of the virtual patients were simulated as follows: 
(1) patients with impaired renal function (CrCL value of 
40 mL/min), in addition to the aforementioned dose regi
mens, 400 mg q12h was also simulated in this group; (2) 
patients with a normal renal function (CrCL value of 
80 mL/min); and (3) virtual patients with ARC, 
a threefold CL value compared with that in the normal 
patients was set. AUC24 was calculated by dividing the 
daily dose by the individual CL. After continuous infusion, 
Css was used for steady-state concentration. The therapeu
tic targets were defined as simultaneously meeting two 
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PK/PD indices (AUC24/MIC ≥80 and %T>MIC >85%) and 
one toxicity index (Css,min or Css<10 mg/L), for the MICs 
ranged from 0.25 to 4 mg/L. The therapeutic target 
expressed as the percentage of the therapeutic target attain
ment (PTTA). A priori, a dosing regimen was considered 
to be effective if the PTTA was higher than 90%, whereas 
a PTTA between 70% and 90% was considered to indicate 
a moderate probability of success.

Statistical Analysis
All baseline data (demographic and characteristics) were 
summarized with median and range and compared using 
R version 3.5 (Team R, 2018). Population PK analyses 
were performed using NONMEM (version 7.3, ICON plc, 
NY, USA) to introduce the first-order conditional estima
tion method with interaction. A Fortran compiler was 
used, and the runs were executed on Pirana (version 
2.9.0).24

Results
Patient Characteristics
Of the 160 patients who met the inclusion criteria, seven 
were excluded for incomplete information and one for oral 

administration (Figure 1). The patients had normal to 
severely impaired renal function (CrCL, 7.5–222.4 mL/ 
min); of these, five had ARC. Further, 83 male and 34 
female patients (117 in total) with a median age of 62 
years, and BMI 21.2 kg/m2 were included for establishing 
the population PK model (Table 1), with total 241 observa
tions. With a high inter-subject variability of Css,min values, 
the maximum was >330-fold higher than the minimum 
(range, 0.1–33.6 mg/L). Only 46.2% of the patients achieved 
the optimal Css,min range (2–10 mg/L). In total, 32 (27.4%) 
Css,min values were lower than the common MIC (2 mg/L), 
whereas 31 (26.5%) Css,min values were higher than the 
reported upper alarm concentration (10 mg/L).

Another 35 patients with 72 observations were used for 
external validation with demographic characteristics similar 
to those in the model building group (Table 1). Likewise, 
>31% of the patients did not meet the target Css,min range.

Population PK Model
LNZ plasma concentrations were adequately fitted using 
a single-compartment model with a combined error model 
with proportional error of 36.2% and an additive residual error 
of 0.055 mg/L. The population PK parameter estimates with 

Figure 1 Flowchart of the study.
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Table 1 Demographic Characteristics of the Critically Ill Patients

Descriptive Data Model Establishment n or Median 
(Range)

Model Validation n or Median 
(Range)

P value

Demographic variables
Male 117 (34/83) 35 (9/26) 0.783

Age (years) 62 (19–90) 55 (28–85) 0.343
Weight (kg) 63.0 (43.8–115.0) 65.8 (40.0–91.0) 0.386

Height (cm) 168 (150–183) 169 (150–179) 0.257

BMI (kg/m2) 21.2 (19.5–35.5) 23.0 (17.7–31.5) 0.344

Coexisting illness/comorbidities
Diabetes mellitus 29 (25%) 7 (20%) 0.596

Hypertension 46 (39%) 17 (49%) 0.359

Hyperlipidemia 3 (3%) 0 (0%) 0.234
Acute renal failure 7 (6%) 4 (11%) 0.424

Chronic renal failure 3 (3%) 2 (6%) 0.221

Charlson Comorbidity Index 2 (0–10) 2 (0–9) 0.638

Main reason for linezolid treatment
Pneumonia 89 (76%) 23 (66%) 0.511
Skin and soft tissue infections 3 (3%) 1 (3%) 0.832

Bone and joint infections 1 (1%) 0 (0%) 0.799

Intra-abdominal infections 7 (6%) 3 (9%) 0.653
CNS infection 5 (4%) 1 (3%) 0.233

Bloodstream infections 2 (2%) 5 (14%) 0.093

Microbiological isolate
S. aureus 5 (4%) 5 (14%) 0.102

Enterococcus spp. 3 (3%) 1 (3%) 0.846
Streptococcus spp. 2 (2%) 2 (6%) 0.231

MRSA 23 (20%) 9 (26%) 0.098

Other gram-positive bacteria 3 (3%) 3 (9%) 0.155
Unknown 18 (15%) 8 (23%) 0.632

Additional antibiotics
Glycopeptides 20 (17%) 12 (34%) 0.315

Penicillins 21 (18%) 11 (31%) 0.122

Cephalosporins 32 (27%) 8 (23%) 0.511
Carbapenem 58 (50%) 18 (51%) 0.648

Macrolides 1 (1%) 1 (3%) 0.833

Fluoroquinolones 18 (15%) 5 (14%) 0.230
Aminoglycosides 2 (2%) 2 (6%) 0.387

Others 10 (9%) 2 (6%) 0.465

Linezolid therapy
Dose of linezolid 600 mg q12h 600 mg q12h

Duration of linezolid treatment a (days) 8 (1–27) 9 (1–27) 0.943
Plasma Cmax of linezolid (mg/L) 16.3 (1.4–104.0) 17.7 (5.56–36.8) 0.843

Plasma Cmin of linezolid (mg/L) 5.05 (0.1–33.6) 6.44 (0.1–29.6) 0.954

Others
Serum creatine concentration (sCr, 

μmol/L)

125.9 (24.9–520.6) 117.1 (21.8–619.1) 0.427

Creatinine clearance (CrCL, mL/min) 47.4 (8.75–222.4) 48.8 (7.5–196.0) 0.539

Alanine aminotransferase, (ALT, U/L) 24 (2–953) 27 (5–3314) 0.075

Aspartate aminotransferase, (AST, U/L) 36 (3.8–4134) 48 (11–1849) 0.406

(Continued)
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95% CI based on bootstraps are shown in Table 2. The 
estimates of elimination clearance (CL) and volume of dis
tribution (V) were 5.60 L/h (95% CI, 4.50–6.41 L/h) and 43.4 
L (95% CI, 38.4–49.1 L), respectively, with inter-subject 
variability of 63.9% for CL and 17.6% for V. Only CrCL 
had a major impact on the clearance with an adjusting factor 
(θCrCL-CL) of 0.386. Other potential covariates such as age, 
weight, liver function, and CRRT were not found to have 
a significant influence on PK parameters. The modeling build
ing process was listed in a supplementary material (Table S1).

Model Evaluation
The GOF plots showed an adequate fitness for the LNZ 
observations of the final model (Figure 2). With 1000 
simulations, the distribution of NPDE, with a mean of 
0.0484 and a variance of 0.923, showed a normal dis
tribution, which indicated a good prediction of the final 
model (Figure 3A and B). The P values of the t-test, 
Fisher’s variance test, Shapiro–Wilks test of normality, 

were 0.435, 0.406 and 0.0296, respectively. The global 
adjusted P value was 0.0888. No obvious patterns were 
seen in the distribution of prediction errors (Figure 3C 
and D). In the VPC plot, most observation median lines 
fell inside the 90% PI of the predictions (Supplementary 
Figure S1), which revealed adequate and precise predic
tion of the final population model. These results of the 
internal evaluation indicated good accuracy and reliabil
ity of the final PK model.

The bias (MPE) was 0.866 mg/L, median RPE was 
4.6% (−45.1%, 95.2%, IQR) and the RMSE was 9.93 mg/ 
L based on external validation. For the target range of 
2–10 mg/L, the prediction was found to be consistent 
with the observed concentrations without any significant 
bias.

Simulations
The main PTTA values of comparable and recommended 
dosing regimens for a series of MICs are shown in 

Table 1 (Continued). 

Descriptive Data Model Establishment n or Median 
(Range)

Model Validation n or Median 
(Range)

P value

Total bilirubin, (TBIL, μmol/L) 19.5 (2.7–336) 19.2 (2.7–500.3) 0.844

Direct Bilirubin, (DBIL, μmol/L) 5.7 (0.8–187) 6.3 (0.8–253.2) 0.745
APACHE II baseline 21 (10–40) 26 (16–35) 0.098

SOFA baseline 10 (2–18) 8 (2–20) 0.639

CRRT mode (Yes/No) during therapy 42/75 11/24 0.655

Abbreviations: BMI, body mass index; CNS, central nervous system; MRSA, methicillin-resistant Staphylococcus aureus; Cmax, the peak concentration post dose; Cmin, the 
trough concentration; APACHE II, acute physiology and chronic health evaluation; SOFA, sequential organ failure assessment; CRRT, continuous renal replacement therapy.

Table 2 Population Pharmacokinetic Parameter Estimates of Linezolid in the Critically Ill Patients

Parameters Estimates %RSE Median by 1000 Bootstraps 95% CI by 1000 Bootstraps

CL, L/h 5.60 7.1 5.61 4.50–6.41

V, L 43.4 5.9 43.7 38.4–49.1

θCrCL-CL
a, b 0.386 20.3 0.378 0.26–0.61

CLINTER VAR, % 63.9 8.9 63.9 48.6–69.1

VINTER VAR, % 17.6 44.5 19.1 11.1–25.6

Additive error, mg/L 0.055 56.1 0.041 0.01–1.27

Proportional error, % 36.2 8.8 36.0 20.6–42.8

Notes: aCL=F ¼ 5:60� CrCL
61

� �θCrCL� CL , CrCL is the creatinine clearance (mL/min). θCrCL-CL is the adjusting factor of the CrCL on the CL. bCockcroft and Gault formula for 

CrCL. CrCL ¼ 140� AGEð Þ�WT
0:815�sCr ðμMÞ �0:85 for females½ �, AGE is the age of the patient in years; WT is the body weight in kg; sCr (μM) is the serum creatinine concentration in μM. 

Abbreviations: CI, confidence interval; CL, clearance of the central compartment; CLINTER VAR, the inter-individual variability of CL; V, the distribution volume of the 
central compartment; VINTER VAR, the inter-individual variability of V.
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Figure 4. The full table of PTTA values for each dose 
regimen, including the percentages of the dose regimens 
that failed to meet the target indices, are listed as 
a supplementary material in Table S2. In patients with 
severe renal dysfunction with CrCL as low as 40 mL/ 
min, 600 mg q12h was sufficient to achieve all target PD 
indices (PTTA 96%) for MIC ≤2 mg/L (Figure 4A). 
A decrease in daily dose (400 mg q12h) or each dose 
(400mg q8h or 300mg q6h) seemed unnecessary for 
PTTAs to be lower or closer to the normal dose. 
Moreover, a 24-h continuous infusion for half of the 
occurrence of Css >10 mg/L (56%) was not recommended. 

No dose regimens were recommended for MIC higher than 
2 mg/L due to higher incidence of Css >10 mg/L with an 
increase in daily dose or each dose (Table S2).

In patients with normal renal function, with CrCL of 
80–120 mL/min, a daily dose of 1200 mg could provide 
sufficient exposure to MIC ≤1 mg/L. The standard dosage 
(600 mg q12h) and 900 mg q12h showed the PTTAs ≥95% 
(Figure 4B). Dosage of 24-h continuous infusion was not 
recommended for the increased occurrence of high Css (Table 
S2). For MIC=2 mg/L, 900 mg q12h still obtained adequate 
exposure with less risk of adverse effects (PTTA 95%). Both 
600 mg q8h and 1200 mg q12h resulted in only moderate 

Figure 2 Diagnostic plots for the final PK model. 
Notes: (A) Observed versus population prediction (PRED). (B) Observed versus individual predicted concentrations (IPRED). (C) Conditional weight residual error 
(CWRES) versus population predicted concentration (PRED). (D) CWRES versus time after the last dose.
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probabilities of success. Continuous infusion of 1200 mg or 
1800 mg per day was not recommended for a relatively high 
risk of adverse effects. When MIC increased up to 3 mg/L, 
1200 mg q12h was the only recommendation (Figure 4B). 
Optimal dose regimens for MIC above 3 mg/L were not found.

For the patients with ARC, a daily dose of 1200 mg 
was clearly insufficient for MIC ≥0.5 mg/L, regardless of 
the dose frequency (Figure 4C). A daily dose up to 
2400 mg (600 mg q6h or 2400 mg 24-h infusion) could 
achieve a PTTA ≥ 86% for MIC ≤ 1 mg/L, of which a 24-h 

Figure 3 Normalized prediction distribution error (NPDE) metrics for the final PK model. 
Notes: (A) Quantile-quantile plot of NPDE. (B) Distribution of NPDE. (C) NPDE versus time. (D) NPDE versus predicted concentrations. The observed concentrations 
were shown as filled circles, and solid lines represented the 5th, 50th and 95th percentiles of observed data. Red or blue shaded areas represent the 95% prediction interval.
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Figure 4 Probability of therapeutic target attainment (PTTA) with the four-dose regimens in the simulated patients with creatinine clearance (CrCL). 
Notes: (A) CrCL of 40 mL/min. (B) CrCL of 80 mL/min. (C) CrCL of threefold of linezolid CL in the patients with normal renal function. PTTA was defined as the area 
under curve from 0 to 24h at steady-state divided by the minimum inhibitory concentration (AUC24/MIC) >80, the percentage of time that plasma concentrations exceed 
the MIC (%T>MIC >85%) and trough steady-state concentrations (Css,min) of linezolid (LNZ) <10 mg/L.
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continuous infusion showed a PTTA value of 100% with 
a more stable PK profile (Table S2). However, for higher 
MIC, no successful dose regimens were obtained based on 
simulations.

Overall, optimal dosage for MICs ≤2 mg/L for patients 
with normal or impaired renal function could be found. 
For patients with ARC, dose regimens could only be 
recommended for MIC ≤ 1 mg/L. However, rare dose 
regimens for MIC>2 mg/L, were optimal regardless of 
renal function.

Discussion
The present study showed that the standard dosing of LNZ 
(600 mg q12h) was not optimal for all critically ill Chinese 
patients. Dose adjustment should be done based on renal func
tion and MIC values. The high variability and outside-the- 
target ranges of LNZ levels in the current study were consistent 
with those in other studies in Caucasian patients.8,25–27 

Moreover, therapeutic drug monitoring and optimal dosing 
based on modeling and simulation were essential for the clin
ical use of LNZ.25,26 The %T>MIC exceeded 85% and AUC24 

/MIC values >80 were often used as PD indices to evaluate 
various dose strategies.27 But overexposure to LNZ could also 
increase the risk of adverse effect. Lower CrCL (<30 mL/min) 
leading to higher Css,min was a significant predictor of 
thrombocytopenia.28 Therefore, as a difference from the pre
vious studies, we considered both PD and toxicity levels for 
dosing recommendations: %T>MIC =85% and AUC24/MIC 
=80 were adopted as the lower limit indices of the exposure, 
and Css,min =10 mg/L as the upper limit index to control 
overexposure.

In the previous studies, a series of covariates, including 
body weight, CrCL, fibrinogen, antithrombin concentration, 
lactate concentration, SOFA score, and ARDS, were found to 
significantly influence the clearance and distribution volume of 
LNZ in patients.13,14,29,30 In the present study, only CrCL was 
identified as the covariate on the LNZ clearance in the final 
model. Although body weight was not included directly in the 
final model as the published ones,13,14 it was included in the 
calculation of CrCL. CrCL was a comprehensive index con
taining several variables (weight, gender, age, and sCr). The 
influence of CrCL on CL was also found in the previous 
studies,29,30 the parameter estimates were similar, which 
demonstrated that no obvious ethnic differences were found 
in critically ill patients. But we provided more detailed recom
mended dose regimens including the ARC patients who were 
not included previously. In GOF plots (Figure 2A), part of 
PRED values were obviously smaller than the observed ones, 

most of which were the peak concentrations collected at the 
end of infusion. It was common that the PRED values showed 
a relatively poor fitness of the peak concentrations. Large inter- 
individual variability of the peak concentrations without ade
quate explanation by known factors might be the main reason 
to this phenomenon. However, acceptable CWRES were 
shown through the PRED values (Figure 2C). Moreover, 
with inter-individual variability included, there was an 
improvement in the predicted values (IPRED) for these 
concentrations.

Other covariates were not identified as significant covari
ates in our study for the elimination of LNZ was through the 
kidney. In addition to the physiological and biochemical indi
cators, the effect of CRRT on the pharmacokinetics of LNZ 
was investigated. Although it was reported that the clearance 
by CRRT (CLCRRT) out of the total clearance was 
18.7–48.9%,31 CRRT was still not supported as covariate in 
our final model. It may be attributed to the limited influence of 
CRRT on CL and the large variability of CLCRRT.

For the patients with renal insufficiency, for MIC≤2 mg/L, 
standard dosing could get adequate drug exposure. There was 
no need for a decreased regimen (600 mg q24h) as previously 
published.15 Previous studies concluded that the standard dose 
offered a reasonably high probability of treatment success in 
patients with MIC ≤1 mg/L.16,32 It was identical in our study 
with the exception of patients with ARC. The patients with 
ARC were common in the ICU and continuous infusion was 
essential for the treatment success. For these patients, a dose of 
2400 mg 24-h continuous infusion was preferred to ensure the 
drug effect. A 24-h continuous infusion of a daily dose of 
1800 mg LNZ was recommended in the previous study.16 

However, there was only a moderate treatment success 
(PTTA 74%) for MIC of 1 mg/L in our study. Compared 
with an intermittent infusion, continuous infusion was only 
appropriate for patients with ARC or obese patients. 
Continuous infusion of a daily dose of 1200 mg could not 
help to reach the best target attainment for patients with normal 
or impaired renal function. Therefore, it only increased the risk 
of adverse effects.

In patients with normal renal function, the standard 
dose regimen and 900 mg q12h were both recommended 
for MIC≤1 mg/L, but 900 mg q12h could provide a higher 
probability of treatment success without compromising the 
safety up to MIC of 2 mg/L, which was similar to the 
previously proposed daily dose of 1800 mg (800 mg q12h 
or 600 mg q8h).15,32 However, for MICs >2 mg/L, the 
findings of this PK/PD analysis indicated that optimal dose 
regimens were hardly obtained for either renal impaired 
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patients or ARC patients. The same has been reported 
previously the same.25 However, for the patients with 
normal renal function, 1200 mg q12h could be tried for 
its moderate treatment success (PTTA 78%), though a 24-h 
continuous infusion (1200 mg/day) was not recommended 
for patients with normal CrCL because ~23% of the simu
lated Css,min was higher than 10 mg/L.

An increase in the volume of distribution and metabo
lism interference (eg, drug–drug interactions such as 
P-glycoprotein [P-gp] inhibitors or inducers) are responsi
ble for high inter-individual variability of LNZ plasma 
concentrations.18,30,33,34 In critically ill obese patients 
affected by ventilator-associated pneumonia, LNZ CL 
may overcome the limits of standard administration.25 

However, in the present study, no P-gp inducer was co- 
administered with LNZ.

Moreover, there were some limitations or drawbacks to this 
study. The limited number of participants could not represent 
all relevant patient groups clearly, which, in conjunction with 
the high observed variability, resulted in certain statistical 
limitations. Therefore, all relevant cofactors probably could 
not be identified. In this study, CrCL was calculated using the 
Cockcroft-Gault equation, which may have introduced some 
errors in the final values especially for critically ill patients. It 
may affect the use of the results from this study when CrCL is 
calculated using other methods.

Conclusions
Standard dosing of LNZ (600 mg q12h) is often potentially 
insufficient in critically ill patients. In this study, CrCL was 
found to have significant influence on the clearance of LNZ in 
the single-compartment model. Based on the simulation of the 
final model, the standard dosing regimen was found to be 
adequate in patients with bacterial MICs ≤2 mg/L and CrCL 
≤40 mL/min. In addition to standard dosing, 900 mg q12h was 
an alternative for patients with normal renal function. For 
patients with ARC, a 24-h continuous infusion (2400 mg/ 
day) might help achieve sufficient efficacy for MICs ≤1 mg/ 
L. For a higher MIC (>2 mg/L), there was almost no optimal 
dose strategy.
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