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Abstract: Group A rotavirus (RVA) infection is the leading cause of hospitalization of children under
5 years old, presenting with symptoms of acute gastroenteritis. The aim of our study was to explore
the genetic diversity of RVA among patients admitted to Moscow Infectious Disease Clinical Hospital
No. 1 with symptoms of acute gastroenteritis. A total of 653 samples were collected from May 2019
through March 2020. Out of them, 135 (20.67%) fecal samples were found to be positive for rotavirus
antigen by ELISA. RT-PCR detected rotavirus RNA in 80 samples. Seven G-genotypes (G1, G2, G3,
G4, G8, G9, and G12) and three P-genotypes (P[8], P[4], and P[6]) formed 9 different combinations.
The most common combination was G9P[8]. However, for the first time in Moscow, the combination
G3P[8] took second place. Moreover, all detected viruses of this combination belonged to Equine-like
G3P[8] viruses that had never been detected in Russia before. The genotype G8P[8] and GIP[4]
rotaviruses were also detected in Moscow for the first time. Among the studied rotaviruses, there
were equal proportions of Wa and DS-1-like strains; previous studies showed that Wa-like strains
accounted for the largest proportion of rotaviruses in Russia.
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1. Introduction

Diarrheal diseases are one of the leading causes of morbidity and mortality among
children under 5 years old all over the world, especially in developing countries with poor
quality health care. Rotavirus infection is the most common cause of diarrheal diseases [1].
More than 200,000 children died from rotavirus in 2013 [2]. In 2019, a total of 780,497
cases of acute intestinal infections were recorded in the Russian Federation (compared to
816,012 cases in 2018), out of which only 37.1% were cases with an identified etiology; the
group A rotavirus (RVA) was the most common causative agent. The economic damage
from rotavirus infection amounted to more than USD 130 million in Russia in 2019 [3,4].

Following the introduction of rotavirus vaccines in many countries, there has been
a decrease in all-cause diarrhea and rotavirus-related hospital admissions [1]. The cri-
terion for successful vaccination is high coverage of the target population. The higher
the vaccination coverage is, the more significant reductions in rotavirus-related hospital
admissions will be [5]. Only one vaccine against rotavirus, RotaTeq, has been registered
in the Russian Federation. To date, immunization against rotavirus infection does not
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cover all the regions of the Russian Federation, and has had no significant impact on the
epidemiology of rotavirus countrywide. In some areas of Moscow, vaccination began in
2014, and was available in the entire city by 2018. Yet, vaccination coverage remains low;
only 25-27% of newborns were vaccinated in 2018-2019 [3,4].

Rotavirus A is a non-enveloped virus belonging to the family Reoviridae, which
contains a double-stranded RNA genome with 11 segments encoding six non-structural
(NSP1-6) and six structural (VP1-4, VP6-VP7) proteins [6]. The binary classification of
RVA is based on nucleotide sequence of the two genes which encoded structural proteins,
glycoprotein (G) VP7, and protease-sensitive protein (P) VP4, located on the outer capsid.
Currently, there are 36 G-genotypes and 51 P-genotypes recognized [7]. Worldwide, the
most common genotype combinations of human rotaviruses are G1P[8], G2P[4], G3P[8],
G4P[8], G9P[8], and G12P[8] [8]. In Russia, viruses related to five of these combinations pre-
vailed, excluding G12P[8]. During 20092014 in Moscow, the G4P[8] was the predominant
genotype, while GOP[8] was the most frequent genotype in 2018-2019 [9,10].

The Moscow agglomeration is the largest in Europe, as its population ranges from
17 to 25 million people [11]. The high population density, the constant influx of migrants
from other regions of Russia and from the post-Soviet countries as well as the impact of
global tourism create favorable conditions for reassortment of viral genes and changes
in circulating rotavirus genotypes. Such changes were also observed in some countries,
following the introduction of vaccination [12-14].

The aim of our study was to explore the diversity of rotavirus genotypes circulating
in Moscow in 2019-2020 and to monitor possible changes as a result of vaccination.

2. Results

From May 2019 to March 2020, a total of 653 samples were collected from patients
with AGE symptoms. Out of them, 135 (20.67%) fecal samples were positive for rotavirus
antigen by ELISA. RT-PCR detected rotavirus RNA in 80 samples. The age composition of
patients with acute gastroenteritis, positive by ELISA, and presenting a specific genotype
of group A rotavirus samples is shown in Figure 1.
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Figure 1. Distribution of acute gastroenteritis cases, rotavirus ELISA-positive samples and genotyped RVA among age groups.
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Nucleotide sequences of the VP7 and VP4 genes were identified for 78 out of 80 sam-
ples; only the VP7 sequence was identified for 2 samples. The obtained sequences were
deposited in the GenBank database under the numbers MT939912-MT940069 (Table S1).

The following genotypes of RVA were identified. Seven G-genotypes G1, G2, G3, G4,
G8, G9, and G12 were detected (Figure 2a). The genotypes G9 and G3 were detected in
43% and 27% of cases, respectively. Genotype G2 was detected in 15% of cases; genotype
G1 in 8%. Minor genotypes G4, G8, and G12 were detected in 4%, 2%, and 1% of cases,
respectively.
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Figure 2. Frequency of VP7 (a) and VP4 (b) genotypes in the samples.

Three P-genotypes were detected: P[8], P[4], and P[6] (Figure 2b). The P[8] prevailed,
accounting for 80% of all identified samples. Genotype P[4] was detected in 16% of cases; P[6]
was detected in 1% of cases. In two cases (3%), the P genotype could not be identified P[x].

Combinations of G/P genes were identified for 78 samples. In total, 9 different variants
of gene combinations were detected (Figure 3).

The dominant combinations G9P[8] and G3P[8] were detected in 40% and 28% of
cases, respectively. In 13% of cases, the G2P[4] combination was detected. The G1P[8]
combination was detected in 8% of cases. Minor combinations G9P[4], G4P[8], G8P[8],
G4P[6], and G12P[8] were detected in 4%, 3%, 2%, 1%, and 1% of cases, respectively.

Based on the obtained partial nucleotide sequences of the VP7 and VP4 genes as well
as on the sequences of these genes from the GenBank database, multiple alignments were
made and phylogenetic dendrograms were plotted separately for each gene (Figure 4 for
VP7 and Figure 5 for VP4).
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%. The smaller clade contained strains with 99-100% nucleotide identity

belonging to lineage 6 of genotype G9. The only strain of the genotype G12 formed a

100
separate group.
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1%
VP7. The G1 genotype included 6 strains with 98-100% nucleotide identity. They

belonged to the G1-2 lineage of G1-genotype. Twelve strains of the G2 genotype are divided
into two unequal clades. One strain belonged to the G2-4al lineage, eleven strains with
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nucleotide identity level reaching about 96-100% belonged to the G2-4a3 lineage. The
G3 genotype included 22 studied strains with 98-100% nucleotide identity. Three strains
belonged to the G4 genotype with 99% nucleotide identity. The two detected strains of
genotype G8 had more than 99% nucleotide identity. Most (28 out of 34) strains involving
the G9 genotype belonged to lineage 3 of this genotype. The nucleotide identity in this

Figure 3. Prevalence of G/P genotype combinations of group A rotavirus.
group was 96—

VP4. All 64 strains of P[8] genotype belonged to the P[8]-3 lineage. Within the clade

7-100% nucleotide identity. The second subclade contained 30

had 9

7

two practically equivalent subclades can be distinguished. A slightly larger part,

7

34 strains out of 64

P[8]

strains out of 64. The level of nucleotide identity in this group was 96-100%. Thirteen
strains belonging to genotype P[4] were distributed between two subclades. Two strains

belonged to the P[4]-4a lineage and 11 strains to the P[4]-4b lineage. A single strain of

genotype P[6] formed a separate group.
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Figure 4. Phylogenetic tree of human rotavirus A strains based on partial VP7 nucleotide sequences.
Bootstrap confidence limits are shown at each node; values less than 65 are not shown. Sequences

from this study are marked by e.
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3. Discussion

The largest number of ELISA-positive rotavirus samples were in the group of patients
from one to three years old, while in the group of children under 1 years old in several times
lower, 74 and 21 cases were found, respectively (Figure 1). This is consistent with previous
evidence showing that children hospitalized for rotavirus are older in countries with low
child mortality rates than in countries with high rates [15]. All 135 antigen-positive samples
were sent to the molecular diagnostics laboratory for genotyping. Group A rotavirus was
genotyped in 80 samples. Genotyping of only 80 out of 135 samples positive in ELISA
can be associated with both the low amount of viral RNA in the samples under study and
the low sensitivity of the RT-PCR used. As expected, the largest number of samples with
an identified rotavirus genotype was obtained from children aged 1 to 3 years. In total,
74 (92.5%) genotyped viruses were obtained from samples from children under 6 years old
(Table 1).

Table 1. Distribution of G/[P]-genotypes in various age groups.

G-Type [P]-Type <1 Year 1-2 Years 3-5 Years 6-18 Years >18 Years Total

Gl P[8] 1 3 2 6
P[4 9 1 10

@ (4]
P[X] 1 1 2
G3 P[8] 1 17 4 22
P[8 2 2

Ga (8]
P[6] 1
G8 P[8] 2 2
P[8 5 16 8 1 1 31

9 (8]
P[4] 1 1 1 3
G12 P[8] 1 1
Total 9 50 15 3 3 80

In addition, 3 genotyped viruses were obtained from samples in groups of patients
aged 6-18 and over 18 years. The viruses detected in these age groups were of two types G:
G2 and G9, and P: P[4] and P[8] (the P-type was not identified for one of the samples).

Although rotavirus affected mainly children under 5 years of age, adult cases are also
known. Three outbreaks of rotavirus infection among adults were reported in the United
States in 1998-2000. In these outbreaks, the detected viruses belonged to the G2 genotype;
the same genotype was detected in adult patients in Japan [16]. The outbreak among adults
in the United States in 2013 was caused by a virus with the genotype G12P[8] [17]. In the
study conducted in Sweden, the genotype G9[8] was found in most adult patients, similar
to G1P[8] (most common in children at the same period) and G2P[4] [18]. The detection of
certain genotypes of rotaviruses in adult patients, which often do not coincide with the
dominant genotypes in children, though detected during the same period and in the same
area, can be explained by virulent properties of these viruses. [16]. If this is the case, then
in the future we will see an increase in cases of rotavirus infection in adults associated with
the replacement of Wa-like viruses with DS-1-like ones.
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The VP7 gene (G-type) was sequenced in all the 80 studied rotaviruses. Seven different
genotypes were detected: G1, G2, G3, G4, G8, G9, and G12 (Figure 2a). The dominant
genotype G9 was detected in 43% of cases. The G9 genotype has been detected in Russia
since 2002. Since then, its proportion among other G-types has been increasing. From
2014 to 2016, in Nizhny Novgorod (European part of Russia) it was the main genotype,
accounting for 35.4-45.9% of cases [19]. In Moscow, until 2012-2013, when it was unexpect-
edly detected in 30% of cases, it had been relatively rare [10]. However, in 2018-2019, this
genotype was already dominant and accounted for 35.8% of cases [9]. In our study, most of
the G9 genotype strains belong to lineage 3 of this genotype, according to the classification
proposed by Phan [20]. This lineage included the studied strains with combinations of
genotypes G9P[8] and G9P[4]. The majority of G9 strains currently known worldwide
belong to this lineage. The strains in our study turned out to be similar to strains from
Russia, Pakistan, Iran, France, Turkey, and Tunisia (Figure 4). The possible transmission
of viruses of this genotype into the central part of Russia from Turkey was previously
discussed [18]. Six G9 strains obtained in this study belonged to the lineage 6 of this
genotype, all strains with the G9P[8] combination. Initially, this lineage included strains
isolated from humans and pigs from China and Japan [20,21]. In Russia, strains of this
lineage were previously detected in Siberia. Taking into account the geographic proximity
of China as well as a large flow of tourists from China to Moscow, we can make respective
assumptions regarding the origin of this lineage in Russia.

The second most frequent genotype G3 was detected in 27% of cases. In 20092014
in Moscow, this genotype was detected in fewer than 5% of cases [10]. The G3 sequences
obtained in this study are closely related to the strains from Thailand, Slovakia, the Do-
minican Republic, and Indonesia. Viruses from the Dominican Republic and Indonesia
are Equine-Like G3 strains; such strains have been found in humans since 2013 and were
supposedly transmitted by horses [22,23].

The frequency of the G2 genotype remained practically unchanged compared to the
previous season, 15% and 16.4%, respectively [9]. Earlier in Moscow, the proportion of
this genotype fluctuated around 3% [10]. Most of the studied strains, together with strains
from Russia, India, Japan, and Turkey, belonged to the G2-4a3 lineage that has spread
worldwide since 2000 [24,25]. One strain belonged to the G2-4al lineage, together with
strains from Russia, Italy, and the United States. This lineage had dominated in the world
until the mid-2000s [26].

The proportion of the G1 genotype in Moscow has remained approximately constant
since 2009, accounting for about 10%. The studied strains form a group with strains
previously isolated in Russia, as well as strains from India, Pakistan and Turkey. All
studied strains belong to the 1-2 lineage, like the vaccine strain in the Rotarix vaccine.
Earlier in Russia, strains related to the 1-1 lineage were also detected [27].

The frequency of G4 genotype has decreased against last year by 7 times, from 4% to
27%, respectively [9]. Earlier in Moscow, G4 was the dominant genotype and accounted for
about 40% of cases [10]. Also, this genotype had been dominant in other regions of Russia
until 2015-2016 [4,19,28].

Minor genotypes G8 and G12 were detected in 2% and 1% of cases, respectively. The
G8 genotype has not been previously detected in Moscow. Viruses with genotype G8 are
common in cattle and also cause disease in humans in Africa and Asia [29]. The studied
viruses of the G8 genotype were similar to strains from Thailand and Singapore. Viruses
belonging to the G12 genotype are rare in Russia [28].

The VP4 gene (P-type) was sequenced for 78 studied rotaviruses; in two cases the P-
type remained unknown. The main genotypes and their percentage have remained virtually
unchanged since last season [9]. The most common P-genotype was the P[8] genotype
in 64 out of 78 cases. Four lineages were described for the P[8] genotype previously; all
samples studied by us belonged to lineage P[8]-3 [30]. Earlier in Russia, replacement of
the circulating lineage 1 with lineage 3 was reported [31]. The phylogenetic analysis of
the studied sequences showed that they were divided into two clades, the bootstrap value
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was 91. The first clade included viruses with the following G-types: G1, G4, G9, and G12.
This clade also included viruses previously isolated in the European part of Russia and
strains from France and Canada. The second clade included all the studied viruses with
a combination of G3 and G8, and only six strains with the G9 genotype. This clade also
included mainly Asian viruses, except for the strain from Slovakia.

The P4 genotype was detected in 13 cases. Two of them belonged to the P[4]—4a
sublineages and 11 to the P[4]—4b sublineages. The increase in the 4b sublineage in the
2010s was recorded around the world [26]. The P6 genotype was detected in one case
and was closely related to the strains from Siberia and Pakistan. Viruses of this genotype
are common in sub-Saharan Africa, but are occasionally detected in other regions of the
world [32].

Compared to the 2018-2019 season, the dominant G/P genotype combination did not
change, it is G9P[8] accounting for 40% of all cases [8]. However, the second prevalent
combination was G3P[8] (28% of all cases); last year it was detected only in 4.9% of cases.
Moreover, all the studied G3P8 viruses turned out to be closely related to the Equine-
like G3 strains widespread in Southeast Asia and having a DS-1-like genotype [22,23].
Earlier in Russia (and in Moscow, in particular) only typical human Wa-like viruses with a
combination of G3P[8] were detected (Figure 6).

Accordingly, the second combination of last season G4P[8] (29.3%) was detected in
only 3% of cases during this season. Previously, viruses with this combination were the
most common in Moscow [10].

The proportion of G2P[4] and G1P[8] combinations remained practically unchanged
over the past season [8]. The virus with the G12P[8] combination was detected in a single
case last season; this year, it was also detected only once. Viruses with combinations of the
G4P[6], G8P[8], and G9P[4] genotypes were also detected, though they had never been
detected in Moscow before. Viruses with the G4P[6] combination are found both in humans
and pigs; they belong to the Wa-like genotype [33]. In Russia, this genotype combination
was detected previously in the Siberian region [28]. Viruses with the G8P[8] genotype
combination have been detected in people in Africa and Asia, where they cause disease
not only in children, but also in adults [29,34]. Viruses with the G9P[4] combination are
widespread in Asia and South America, though sometimes they are detected in Europe [35].
In Russia, viruses with combinations of G8P[8] and G9P[4] were detected by PCR in Nizhny
Novgorod, unfortunately they were not sequenced [25]. Viruses with G8P[8] and G9P[4]
combinations belonged to DS-1-like strains [34,35].

We saw that viruses related to Wa-like, which accounted for 83% of all cases during
the previous season, have been detected only in 50% of cases this year. The increase in
the number of circulating DS-1-like viruses has been reported in many countries, possibly
due to the introduction of vaccination [23,36,37]. It is not known whether the increase
in DS-1-like viruses in Moscow is related to vaccination against rotavirus, as RotaTeq
vaccine coverage remains below 30%. Alternatively, it may be associated with an increase
in the DS-1-like viruses in the countries frequently visited by Moscow citizens, and then
new variants of rotaviruses are brought to Russia. In general, it is necessary to monitor
circulating strains, given the high rate of spread of previously rare viruses [21].
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4. Materials and Methods
4.1. Samples

Fecal samples were collected from 653 patients aged from 1 month to 94 years; all
of them presented symptoms of acute gastroenteritis (AGE) when admitted to Moscow
Clinical Hospital No. 1 of Infectious Diseases. Samples were collected from May 2019 to
March 2020. The samples were tested for the presence of rotavirus antigen by ELISA in the
hospital laboratory, with a Rotavirus-antigen-ELISA-BEST kit (Vector-best, Novosibirsk,
Russia). Rotavirus antigen-positive samples were transferred on the same day to the
laboratory of molecular diagnostic of the The National Research Center for Epidemiology
and Microbiology named after Honorary Academician N. F. Gamaleya of the Ministry of
Health of the Russian Federation. During the study, 135 samples were sent to the laboratory
for genotyping.

4.2. PCR and Sequencing

Fecal samples were diluted 1:10 in phosphate-buffered saline (PBS); suspensions were
centrifuged at 15,000 x ¢ for 10 min. An RNA Extraction Kit (Vetbiochem, Moscow, Russia)
was used for RNA extraction from the supernatant in accordance with the manufacturer’s
instructions. The isolated RNA was used as a template in reverse transcription polymerase
chain reactions (RT-PCR) with primers for the VP7 and VP4 genes of rotavirus [38]. A
one-tube real-time RT-PCR kit (Alpha Ferment, Russia) was used to perform RT-PCR,
in accordance with the manufacturer’s instructions. The amplification products, 861bp
for VP7 and 876 bp for VP4, were detected in the 1% agarose gel; the resulting products
were gel purified by using a Monarch DNA Gel Extraction Kit (New England Biolabs,
Ipswich, MA, USA), following the manufacturer’s instruction. The Sanger reaction was
performed by using a Big Dye® Terminator v.3.1 Cycle Sequencing Kit (Applied Biosystems,
Waltham, MA, USA), according to the manufacturer instructions, with the same primers.
The nucleotide sequences of the genome fragments were assessed with an AB3130 genomic
automated analyzer (Applied Biosystems, USA).

4.3. Genome Alignment and Phylogenetic Analysis.

The obtained nucleotide sequences were analyzed by using Lasergene 11.1.0. (DNAS-
TAR, Madison, WI, USA). Multiple alignments were performed by using MUSCLE. Phylo-
genetic dendrograms were inferred by using the maximum likelihood method, GTR model
(MEGA 7.0.18). The topology of the trees was confirmed by 1000 bootstrap replication
steps [39]. The sequences were compared with those available in the GenBank database by
using the Standard Nucleotide BLAST software package (http://www.ncbinlm.nih.gov/
BLAST, accessed on 16 November 2020).

5. Conclusions

The paper presents a study of the diversity of genotypes of rotaviruses circulating in
Moscow in the 2019-2020 epidemic season. The most common genotype, similar to the
previous season, was G9P[8]. However, for the first time, the G3P[8] genotype took second
place. Moreover, all detected viruses of this genotype belonged to Equine-like G3P[8]
viruses that had never been detected in Russia before. The presence of rotaviruses with
the G8P[8] and G9P[4] genotypes in Moscow was detected for the first time. Among the
detected rotaviruses, there were equal proportions of Wa and DS-1 like strains, although
previously Wa-like strains accounted for most of the cases studied in Russia. Further
monitoring of circulating RVA strains is necessary due to the increasing pressure of vaccines
on the evolution of rotaviruses and the high mobility of the population and the associated
risk of the introduction of new genotypes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pathogens10060674/s1, Table S1: GenBank accession numbers assigned for rotavirus genotypes
sequenced in this study.
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