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Abstract
Brettanomyces bruxellensis is a common and significant wine spoilage microorganism. B. bruxellensis strains generally detain
the molecular basis to produce compounds that are detrimental for the organoleptic quality of the wine, including some classes of
volatile phenols that derive from the sequential bioconversion of specific hydroxycinnamic acids such as ferulate and p-
coumarate. Although B. bruxellensis can be detected at any stage of the winemaking process, it is typically isolated at the end
of the alcoholic fermentation (AF), before the staring of the spontaneous malolactic fermentation (MLF) or during barrel aging.
For this reason, the endemic diffusion of B. bruxellensis leads to consistent economic losses in the wine industry. Considering the
interest in reducing sulfur dioxide use during winemaking, in recent years, biological alternatives, such as the use of tailored
selected yeast and bacterial strains inoculated to promote AF and MLF, are actively sought as biocontrol agents to avoid the
BBretta^ character in wines. Here, we review the importance of dedicated characterization and selection of starter cultures for AF
andMLF in wine, in order to reduce or prevent both growth of B. bruxellensis and its production of volatile phenols in the matrix.
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Introduction

The success of winemaking in terms of safety and quality
considerably depends on the metabolism of microorganisms
present on the grapes and during the fermentation process
(Grangeteau et al. 2017, Liu et al. 2017). Several microbial
species can cause depreciation of wine since they produce
detrimental compounds that negatively affect wine aroma
and flavors (Suárez et al. 2007). Among the spoilage

microorganisms, the yeast Brettanomyces bruxellensis is gen-
erally considered one of the most relevant in term of depreci-
ation potential. This species, because of its ability to survive
during the winemaking process, within several years, has be-
come a major oenological concern worldwide (Di Toro et al.
2015, Steensels et al. 2015, Capozzi et al. 2016). This species
can persist through the harsh conditions, such as ethanol con-
centrations associated to the alcoholic fermentation (AF) and
increasing additions of sulfur dioxide (SO2). Brettanomyces
strains are well suited to surviving on all surfaces, in and
around the winery: winery walls, presses, and fermentation
tanks as well as within the barrels used for aging (Fugelsang
1997). Furthermore, the biofilms formed by B. bruxellensis
causes important problems, asmicrobial cells in biofilms often
showed an increased resistance to stressing conditions, includ-
ing chemical cleaning agents and sanitisers (Oelofse et al.
2008).

Brettanomyces bruxellensis is able to live in environments
uninhabited by other microorganisms, due to the Bdesolation^
of these media, because the simultaneous presence of different
stressors, e.g., high ethanol content, low pH, and starvation
(Smith and Divol 2016). The genome sequencing has revealed
genes allowing for the utilization of a varied range of
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substrates (Curtin and Pretorius 2014, Crauwels et al. 2015).
In grape must, Saccharomyces cerevisiae is strongly adapted
and easily dominates B. bruxellensis . In contrast,
B. bruxellensis is well adapted to the physico-chemical con-
ditions characterizing wines after the AF (Nardi et al. 2010).
The mechanisms regarding either the growth in wine of
B. bruxellensis or how it can outcompete all other yeasts after
AF are nowadays not fully understood.

The risk of microbial spoilage can be minimize by the
application of good cellar hygienic practices such as the re-
duction of the latent phase between the end of AF, the good
performed malolactic fermentation (MLF), and the early wine
stabilization. For years, SO2 has been employed as chemical
preservative by winemakers for its antioxidant and
microbiostatic properties (Divol et al. 2012, Zuehlke et al.
2013), and it is the most commonly added preservative to
grape must and wine to limit the development of
B. bruxellensis and other unwanted microorganisms (Couto
et al. 2005, Oelofse et al. 2008). The response of
B. bruxellensis to SO2 has been extensively studied (Longin
et al. 2016) and various surviving strategies have been report-
ed including sulfur reduction, acetaldehyde production, active
sulfur efflux, and ability of this yeast to enter in a viable but
not culturable (VBNC) state (Serpaggi et al. 2012; Divol et al.
2012; Capozzi et al. 2016). During the VBNC state, the yeast
cells are able to remain viable while temporarily losing their
ability to proliferate on culture media (Capozzi et al. 2016).
Moreover, different strains display a range of sensitivity to
SO2 (Louw et al. 2016), also in terms of SO2-induced
VBNC state (Capozzi et al. 2016). In addition, investigations
from Curtin et al. (2011) showed that B. bruxellensis isolates
exhibit strain-dependent tolerance to sulphite. Considering
human consumption, it is important to underline how these
preservative molecules are usually linked to adverse effects in
wine consumers, including allergic reactions, asthma and
headaches (Guerrero and Cantos-Villar 2015). Several
physico-chemical approaches have been tested to avoid unde-
sired proliferation in wine contaminated by B. bruxellensis,
providing an overview of these applications and underlining
the main pros and cons about their use in oenology (Table 1).

Biological alternatives are increasingly explored, including
the use of starter cultures tailored to control spoilage microor-
ganisms (García-Moruno and Muñoz 2012, Oro et al. 2014).
Since the first developments of starter cultures technology in
the wine sector, a particular attention has been deserved on the
exploitation of intraspecific biodiversity within species re-
sponsible for AF (S. cerevisiae) and for MLF (Oenococcus
oeni and Lactobacillus plantarum) (Berbegal et al. 2016).
Moreover, in the last decade, several studies suggested the
oenological application of strains/species belonging to the het-
erogeneous class of non-Saccharomyces yeasts (de Benedictis
et al. 2011; Tristezza et al. 2016b; Berbegal et al. 2017b;
Petruzzi et al. 2017). These species offer new opportunities

to develop biotechnological solutions to cope with specific
problems, hence improving the quality and safety of wines
(Petruzzi et al. 2017). The aim of this review is to draw up a
record of the current knowledge on the use of tailored starter
cultures against B. bruxellensis yeast and their application in
winemaking conditions.

Chemistry and B. bruxellensis development
in wine: the production of off-flavors

The undesirable compounds most commonly associated with
B. bruxellensis in wine contaminations are 4-vinylphenol, 4-
vinylguaiacol, 4-ethylphenol (4-EP), and 4-ethylguaiacol (4-
EG) (Chatonnet et al. 1995, Harris et al. 2008). The produc-
tion of high concentrations of 4-EP are associated with un-
pleasant aromas described as Bstable,^ Bhorse sweat,^ or
Bleather^ (Chatonnet et al. 1995, Steensels et al. 2015). In last
years, the formation of these compounds has been deeply
studied and several reviews that highlight this topic have been
published (Suárez et al. 2007, Wedral et al. 2010).

The origin of volatile phenols involves the sequential ac-
tion of two enzymes on a hydroxycinnamic acid (ferulic, p-
coumaric, or caffeic acid) substrate. In the first step, the
hydroxycinnamate decarboxylase t ransforms the
hydroxycinnamic acids into vinylphenols (Edlin et al. 1998),
and then, the vinylphenol reductase reduced them to ethyl
derivatives (Dias et al. 2003) (Fig. 1).

Recent studies have demonstrated that B. bruxellensis is
not the only microorganism that can produce 4-EP and 4-EG
and that the capacity to produce these compounds is a strain-
specific feature (Conterno et al. 2010). Several other microor-
ganisms, including some lactic acid bacteria (LAB) and non-
Saccharomyces yeasts, are able to produce volatile phenols
(Chatonnet et al. 1995, Fras et al. 2014). What differentiates
B. bruxellensis from the other microorganisms is its capacity
to synthetize the highest amounts of these ethylphenols (Dias
et al. 2003, Malfeito-Ferreira 2011). Different concentrations
of 4-EP and 4-EG appear in wine depending on the variety of
grape used, vinicultural conditions, and winemaking practices
(Wedral et al. 2010). 4-EG are associated with descriptive
expressions such as Bbacon^ or Bsmoked^ (Suárez et al.
2007). Another ethylphenol produced by B. bruxellensis is
the 4-ethylcatechol (4-EC), which has the caffeic acid as pre-
cursor and it is denoted by its medicinal aroma. 4-EC has,
usually, a lower detection threshold than other ethyl phenols
(Loureiro and Malfeito-Ferreira 2006). B. bruxellensis can
metabolize only the free-form of p-coumaric, caffeic, and
ferulic acids. Therefore, the conversion of coutaric acid by
the cinnamyl esterase enzyme to p-coumaric acid by other
microorganisms can contribute to the increased production
of ethyl phenols by B. bruxellensis (Schopp et al. 2013).
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Controlling volatile phenol formation

Preventing the increase of the concentrations
of precursors of volatile phenols

Ferulic, p-coumaric, and caffeic acids are naturally present in
grape must and are typically found as esters of tartaric acid
(fetaric, coutaric, and caftaric acids, respectively). During
winemaking, these tartaric acid esters can be hydrolyzed,
forming free hydroxycinnamic acids (Nagel and Wulf 1979).
B. bruxellensis can metabolize only the free-form of these
hydroxycinnamic acids. Therefore, the conversion of, for ex-
ample, coutaric acid by the cinnamyl esterase enzyme to p-
coumaric acid by other microorganisms as LAB can contrib-
ute to the increased production of ethylphenols by
B. bruxellensis by increasing the concentration of ethylphenol
precursors (Schopp et al. 2013) (Fig. 2).

A possible strategy to reduce the precursors of ethylphenols is
the use of S. cerevisiae strains with hydroxycinnamate decarbox-
ylase (HCDC+) activity and able to carry out the AF (Suárez-
Lepe and Morata 2012). The vinilphenols formed are able to
spontaneously react with grape anthocyanins producing
vinylphenolic pyranoanthocyanins. These molecules are stable
pigments under oenological conditions, which can reduce the
concentration of ethylphenol precursors (Romero and Bakker
2000; Bakker and Timberlake 1997). Morata et al. (2013)
fermented grape musts using HCDC+ yeast strains, previously
treated with cinnamylesterases in order to quickly release the
grape hydroxycinnamic acids. The treated musts showed lower

contents of 4-EP than those fermented by employing HCDC
strains. The reduction in the ethylphenol content was due to the
transformation of hydroxycinnamic acids in stable vinylphenolic
pyranoanthocyanins pigments (Morata et al. 2013).

Studies from Hernández et al. (2007) and Cabrita et al.
(2008) demonstarted that an increase in free hydroxycinnamic
acids concentrations in wine at the end of the MLF was re-
corded. Nevertheless, Burns and Osborne (2013) observed an
increase in p-coumaric and caffeic acids after MLF, and in this
case, the fermentation was carried out by a commercial
O. oeni strain. Chescheir et al. (2015) examined 10 commer-
cial O. oeni strains for their ability to degrade tartaric acids—
hydroxycinnamic acids—in Pinot noir wine. All strains com-
pletedMLF but one strain was able to degrade the caftaric and
coutaric acids, thus increasing the amounts of caffeic and p-
coumaric acids (Chescheir et al. 2015). The augmented free
hydroxycinnamic acid content in wines significantly increased
the production of 4-EP and 4-EG during growth of an inocu-
lated B. bruxellensis strain. These studies confirm the impor-
tance of the inoculation of appropriately selected strains of
S. cerevisiae and LAB to carry out the AF and MLF in order
to control the volatile phenol precursors.

Performing spontaneous MLF increases the spoilage po-
tential of B. bruxellensis in wine. Indeed, indigenous wine
LAB associated with MLF may be able to degrade tartaric
acid–hydroxycinnamic acids. Therefore, the selection
criteria for commercial malolactic starters include the inability
to degrade tartaric acid—hydroxycinnamic acids—in order to
ensure satisfactory organoleptic properties of the final wine.

Table 1 Possible treatments for the control of B. bruxellensis in wine

Treatment Benefits Disadvantages Reference

Heat Destroys microorganisms Only used in barrels Fabrizio et al. 2015

Filtration Reduces the number of cells by physical separation Loss of color and aroma Duarte et al. 2017

Protein clarification Reduces the number of cells by flocculation Loss of color and aroma Murat and Dumeau 2003

SO2 Inhibits cell proliferation. Prevents the ethylphenols
formation and oxidation

Microbial resistance. Adverse
effects in human health

Guerrero and Cantos-Villar 2015

Chitosan Inhibits cell proliferation. Prevents the ethylphenols
formation

Loss of color. Only from
fungal origin is permitted

Portugal et al. 2014

Dimethyl dicarbonate Inhibits cell proliferation. Prevents the ethylphenols
formation

High costs. Dosing machine
is needed

Renouf et al. 2008

High pressure Eliminates cells High costs. Pressure and
time dependent

van Wyk and Silva 2017

Pulsed electric fields Eliminates cells High costs. Puertolas et al. 2009

Fig. 1 Formation of ethylphenols
from their hydroxycinnamic
precursors
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Additional research to identify the genes encoding theO. oeni
tartaric acid—hydroxycinnamic acid esterase—would enable
a more efficient selection of wine LAB strains usable as com-
mercial cultures.

Preventing the volatile phenol formation by lactic
acid bacteria

Even though B. bruxellensis is not the only microorganism able
to produce significant amounts of ethylphenols (Chatonnet et al.
1992), other microbes are capable to synthetize volatile phenols.
Some LAB, such as Pediococcus and Lactobacillus are also able
to produce volatile phenols from free hydroxycinnamic acid as p-
coumaric, caffeic, and ferulic acids (Couto et al. 2006, Fras et al.
2014). For instance, Lactobacillus brevis and Pediococcus
pentosaceus are able to produce significant amounts of 4-VP,
but only traces of ethylphenols. L. plantarum is the only bacteria
able to produce significant amounts of 4-EP (Chatonnet et al.
1995). Madsen et al. (2016) investigated the effect of two com-
mercial O. oeni strains, with or without cinnamoyl esterase ac-
tivity, on the contents of the hydroxycinnamic acids (p-coumaric
and ferulic acid) in wine. Moreover, the authors studied the for-
mation of volatile phenols 4-ethylphenol and 4-ethylguaiacol
during a period of 6 months in Cabernet Sauvignon wines inoc-
ulated with two different B. bruxellensis strains. The authors
suggested that the level of volatile phenols in wine was mainly
associated with B. bruxellensis strain rather than the cinnamoyl
esterase activity of O. oeni (Madsen et al. 2016).

Couto et al. (2006) studied the ability of 35 different strains
of LAB to produce volatile phenols in culture medium. Results
showed that 37% of the strains were capable of producing vol-
atile phenols from p-coumaric acid, and that 9% could produce
4-EP. Chatonnet et al. (1997) studied the influence of polyphe-
nolic compounds on the production of volatile phenols by LAB
and found that tannins affect either the L. plantarum growth or
the phenolic compound production, although synthesis of vol-
atile phenols by B. bruxellensis was unaffected.

In order to avoid the formation of volatile phenols by LAB,
a preventive approach is to carry out a safe and controlled
MLF, by using commercial starters unable to form these un-
desirable compounds. However, the induction of MLF by
commercial starters is not always successful because wine is
a very harsh environment (Ruiz et al. 2010). The employment

of autochthonous starter cultures that are well adapted to the
conditions of a specific wine-producing area has been sug-
gested (Ruiz et al. 2010). This feature may represent a con-
crete opportunity, if we consider that a huge number of studies
have been performed on the characterization of autochthonous
O. oeni and L. plantarum associated to spontaneous MLF in
regional wines (Garofalo et al. 2015, Sun et al. 2016, Berbegal
et al. 2016, Berbegal et al. 2017a, Brizuela et al. 2017).

Inhibiting Brettanomyces bruxellensis growth using
non-Saccharomyces yeasts

The world wine market has an increase interest in new yeast
strains with novel properties (Mylona et al. 2016, Petruzzi
et al. 2017). Numerous studies on the influence of non-
Saccharomyces yeast in winemaking have highlighted the oe-
nological and technological relevance of these yeast species
(Comitini et al. 2011, Tristezza et al. 2016b). Recently, some
commercial yeast manufacturers have already included non-
Saccharomyces yeast starters in their oenological products
(Petruzzi et al. 2017). Strains of non-Saccharomyces yeasts
have also shown potential for producing killer toxins with a
broader spectrum of activity, inhibiting species within the
non-Saccharomyces and the Saccharomyces genera (Petruzzi
et al. 2017). Killer yeast strains have the characteristic of se-
creting toxins of proteinaceous nature that are lethal to sensi-
tive yeast cells. The killer phenomenon in yeasts was first
discovered in S. cerevisiae (Bevan and Makower 1963) and,
then, reported to be present in many other yeast genera or
species (Marquina et al. 2002, Liu et al. 2017).

Since the first record of a killer toxin inhibiting an apiculate
yeast (Ciani and Fatichenti 2001), several studies focusing on
yeast killer toxins have been conducted with the aim to contrast
spoilage wine yeasts such as B. bruxellensis. Mehlomakulu
et al. (2014) identified from the wine yeast Candida pyralidae
two killer toxins, CpKT1 and CpKT2, that showed to possess a
specific killer activity against several B. bruxellensis strains. A
similar action was described for the killer toxins isolated from
T. delbrueckii (Villalba et al. 2016), Ustilago maydis (Santos
et al. 2011), Klyveromyces wickerhami and Pichia anomala
(Comitini et al. 2004), and Pichia membranifaciens (Belda
et al. 2017) (Table 2). These killer toxins were both active at
oenological conditions, confirming their potential use as a bio-
control tool in winemaking process. Under winemaking condi-
tions, the killer toxin Kwkt was efficient and comparable to the
use of SO2 in inhibiting B. bruxellensis (Comitini and Ciani
2011). Killer toxins Kwkt and Pikt maintain their killer activity
for 10 days in wine (Comitini et al. 2004). The killer toxins
active against B. bruxellensis were stable at acidic pH ranges
and at temperatures between 20 and 25 °C, which were com-
patible with winemaking conditions. Besides, these killer toxins
were applied in trial fermentations without affecting the popu-
lation of S. cerevisiae (Santos et al. 2009, Comitini and Ciani

Ferulic acid

p-coumaric acid

Caffeic acid

Fetaric acid

p-coutaric acid

Caftaric acid

cinnamyl

esterase

cinnamyl

esterase

cinnamyl

esterase

Fig. 2 Formation of free hydroxycinnamic acids from their esters of
tartaric acid precursors
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2011, Santos et al. 2011). In addition, themetabolic by-products
ethyl acetate and 4-ethylphenol were not detected and volatile
acidity was reduced, confirming the antimicrobial efficiency of
these killer toxins (Comitini and Ciani 2011, Santos et al. 2011).

Other biological methods to control B. bruxellensis using
non-Saccharomyces-specific strains have been recently inves-
tigated. For example, Oro et al. (2014) showed that
Metschnikowia pulcherrima secretes pulcherriminic acid,
which is an inhibitory to the growth of B. bruxellensis.
Moreover, cell-to-cell contact and quorum sensing have been
investigated as mechanisms involved in non-Saccharomyces-
mixed fermentation. In this regard, quorum sensing was re-
cently examined in H. uvarum, Torulaspora pretoriensis,
Zygosaccharomyces bailii, Candida zemplinina, and
B. bruxellensis. Results indicated species-specific kinetics
for the production of 2-phenylethanol, tryptophol, and tyrosol,
considered the main molecules involved in the quorum sens-
ing mechanism (Zupan et al. 2013, Avbelj et al. 2016).

Inhibiting Brettanomyces bruxellensis growth using
malolactic starters

Using selected yeasts and an appropriate yeast nutrition,
winemakers safeguard a rapid, effective, and complete AF,
which prevents the development of spoilage microorganisms
(Abrahamse and Bartowsky 2012). However, one of the crit-
ical points during the winemaking process in which undesired
microorganisms such as B. bruxellensis can develop is the
period ranging from the end of AF to the start of MLF. At this
stage, there are still some nutrients available to the spoilage
microorganisms and, at the same time, microbial competitors
are missing, considering that the indigenous LAB consortium
is not yet established. Early inoculation with LAB after AF
has been suggested as a useful way to control the proliferation
of B. bruxellensis. Investigations from Gerbaux et al. (2009)
showed that MLF began much sooner in Pinot Noir wines
inoculated with two different wine bacteria, which contributed
to a shorter duration for the winemaking process and signifi-
cantly reduced the concentrations of volatile phenols
(Gerbaux et al. 2009). Moreover, the inoculation of selected

wine bacteria at the beginning of the AF is a solution to short-
en the time-lapse between AF and MLF and thereby prevent
the development of B. bruxellensis. Yeast and bacteria co-
inoculation permits a reduction in overall vinification time
and this is generally advantageous to the winery from an eco-
nomical perspective (Abrahamse and Bartowsky 2012, Cañas
et al. 2015). The wine is microbiologically stable, reducing the
contamination by spoilage microorganisms, and this permits
an earlier addition and reduced amounts of SO2 (Renouf and
Murat 2008, Gerbaux et al. 2009). In this case, the importance
to assess a microbial-compatibility before their utilization in
industrial vinification is crucial (Alexandre et al. 2004,
Tristezza et al. 2016a).

Recent studies have been performed by co-inoculating yeasts
with commercial LAB strains in red grape must (Abrahamse and
Bartowsky 2012, Muñoz et al. 2014, Tristezza et al. 2016a).
Muñoz et al. (2014) investigated the inoculation of one commer-
cial O. oeni strain with two S. cerevisiae strains following three
different inoculation strategies: simultaneous, 3 days after the
yeast inoculation or whenAFwas close to its end. Early bacterial
inoculations with each of the two yeast strains allowed for the
rapid development of the bacterial populations and the MLF
duration was reduced to 6 days. Abrahamse and Bartowsky
(2012) and Tristezza et al. (2016a) evaluated the interactions
between commercial yeast and O. oeni strains. Their results in-
dicated that simultaneous yeast and bacteria inoculation at the
beginning of AF reduced the duration of the process and simul-
taneously lowered volatile acidity. Similar results were obtained
when experiments were carried out with autochthonous O. oeni
strains co-inoculated with S. cerevisiae (Izquierdo Cañas et al.
2012, Cañas et al. 2015

Conclusion

The use of starter cultures for the control of fermentative pro-
cesses and production of wine with standardized quality is
well recognized. Nevertheless, here, we highlighted a further
role of selected cultures on (i) the control of development of
the spoilage yeast B. bruxellensis and (ii) to prevent volatile

Table 2 Killer toxins secreted by non-Saccharomyces yeast against B. bruxellensis that have potential application in wine industry

Yeast/filamentous fungus specie Killer toxin Mode of action Reference

Kluyveromyces wickerhamii Kwkt – (Comitini and Ciani 2011)

Pichia anomala Pikt – (Comitini et al. 2004)

Pichia membranifaciens PMTK2 Cell cycle arrest/apoptosis (Belda et al. 2017)

Candida pyralidae CpKT1 Cell Wall and membrane disruption (Mehlomakulu et al. 2014)

Candida pyralidae CpKT2 – (Mehlomakulu et al. 2014)

Ustilago maydis KP6 K+ depletion (Santos et al. 2011)

Torulospora delbrueckii TdKT Cell wall disruption and apoptotic death processes (Villalba et al. 2016)
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phenol formation. Handling the winemaking process by pro-
moting AF and MLF through selected starter cultures inocu-
lation is a crucial point to avoid the development of spoilage
microorganisms. Inoculation with selected LAB to induce and
accelerate MLF has been reported to be an effective biotech-
nological tool able to prevent B. bruxellensis contamination.
However, an important stage in the malolactic bacteria selec-
tion must consider their capacity to inhibit the production of
free hydroxycinnamic acids without producing volatile phe-
nols. Besides, appropriate inoculation strategies such as co-
inoculation and early or sequential inoculation right after AF
could be an effective approaches to prevent the development
of B. bruxellensis.

Furthermore, investigations on non-Saccharomyces yeasts
possibly denoted by killer yeast activity will supply interesting
alternative tools for controlling B. bruxellensis. However, kill-
er toxins from non-Saccharomyces have not yet characterized
as well as those of S. cerevisiae, and further investigation
should be performed in order to identify their genetic origin,
mode of action, and how to employ them at commercial and
industrial scale.
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