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INTRODUCTION 
 
Kidney cancer is a common malignancy of the urinary 
system mostly originating from the renal tubular 
epithelium, and its incidence rate has increased worldwide 
in recent years. The number of newly diagnosed cases in 
the USA has grown up to 65,000 per year, leading to 
approximately 15,000 deaths annually according to the 
recent cancer statistic report [1]. Clear cell renal cell 
carcinoma (ccRCC), the most common histopathological 
type of sporadic kidney cancer (~80%), was demonstrated 
to be associated with worse survival outcomes compared 
with other subtypes of tumors, including papillary renal 
cell carcinoma, chromophobe renal cell carcinoma and  

 

collecting duct carcinoma [2]. Nearly 20% of ccRCC 
cases progressed to advanced stages at the onset of 
diagnosis, and the 5-year overall survival (OS) rate of 
metastatic cases decreased to approximately 10% [3]. 
With the development of surgical intervention, radio-
therapy and immunotherapies, combination strategies 
have been largely optimized for tumor management. 
However, the actual clinical efficiency remained 
marginally improved, and 30% of localized ccRCC 
patients inevitably suffered from recurrence and cancer-
related progression [4]. Though various signaling 
crosstalk pathways involved in carcinogenesis have been 
proposed as underlying treatment targets consisting of 
mammalian target of rapamycin (mTOR), vascular 
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ABSTRACT 
 
Single-cell RNA sequencing (scRNA-seq) was recently adopted for deciphering intratumoral heterogeneity across 
cell sub-populations, including clear cell renal cell carcinoma (ccRCC). Here, we characterized the single-cell 
expression profiling of 121 cell samples and found 44 metastasis-associated marker genes. Accordingly, we 
trained and validated 17 pivotal metastasis-associated genes (MAGs) in 626 patients incorporating internal and 
external cohorts to evaluate the model for predicting overall survival (OS) and progression-free survival (PFS). 
Correlation analysis revealed that the MAGs correlated significantly with several risk clinical characteristics. 
Moreover, we conducted Cox regression analysis integrating these independent clinical variables into a MAGs 
nomogram with superior accuracy in predicting progression events. We further revealed the differential 
landscape of somatic tumor mutation burden (TMB) between two nomogram-score groups and observed that 
TMB was also a prognostic biomarker; patients with high MAGs-nomogram scores suffered from a higher TMB, 
potentially leading to worse prognosis. Last, higher MAGs-nomogram scores correlated with the upregulation of 
oxidative phosphorylation, the Wnt signaling pathway, and MAPK signaling crosstalk in ccRCC. Overall, we 
constructed the robust MAGs through scRNA-seq and validated the model in a large patient population, which 
was valuable for prognostic stratification and providing potential targets against metastatic ccRCC. 

mailto:cl12063@rjh.com.cn
mailto:xdf12036@163.com


www.aging-us.com 10184 AGING 

endothelial growth factor (VEGF) or mitogen-activated 
protein kinase (MAPK), drug resistance and limited 
progression-free survival (PFS) still exist, especially for 
metastatic ccRCC [5–7]. Therefore, investigations on the 
molecular mechanisms underlying the metastasis or 
progression of ccRCC and new novel targets are urgently 
needed.  
 
Intensive studies have been conducted to identify 
numerous biomarkers associated with the survival of 
ccRCC for predicting prognosis, including mutated 
drivers, cancer-related noncoding RNA, risk methylated 
loci, and immune signatures in the tumor micro-
environment [8–10]. However, metastasis and tumor 
recurrence are relatively more essential determinants not 
only for the selection of treatment strategies but also for 
the overall prognosis of patients. Previous researchers 
have already attempted to investigate several pivotal 
biomarker associated with metastasis from bulk 
transcriptome profiles [11, 12]. The screening and 
identification of valuable metastasis-related genes could 
expand our comprehensive understanding of the 
differential genomic alterations between primary and 
metastatic ccRCC. Moreover, these hazard biomarkers 
could provide more options for the optimization of 
strategies or for the effective prediction of progressive 
events.  
 
Recent advances in single-cell RNA sequencing 
(scRNA-seq) have facilitated the transcriptional 
classification of cell types in many malignancies, 
including pancreatic ductal adenocarcinoma (PDAC), 
breast cancer and lung cancer [13, 14]. Furthermore, 
scRNA-seq has been expected to possess clinical utility 
in cases of refractory cancers and is a noninvasive 
method for monitoring circulating cancer cells, 
analyzing intratumor heterogeneity and estimating 
recurrent tumors with sensitivity [15]. Chong Li et al. 
successfully utilized single-cell exome sequencing and 
found that KCP, LOC440040, and LOC440563 
mutations are novel renal cancer stem cell drivers [16]. 
Accordingly, we investigated significant marker genes 
among subpopulations of primary and metastatic 
ccRCC cells from single-cell expression profiling [17].  
 
In this study, we derived and characterized the genomic 
features and marker genes between primary and 
metastatic tumors using scRNA-seq profiling from high-
quality tumor cells isolated from parental metastatic renal 
cell carcinoma (mRCC), patient-derived xenografts of 
metastatic renal cell carcinoma (PDX-mRCC) and 
patient-derived xenografts of primary renal cell carcinoma 
(PDX-pRCC). In addition, we further obtained the 
transcriptome data, somatic mutation variation data and 
clinical data of 628 patients from The Cancer Genome 
Atlas (TCGA) and the International Cancer Genome 

Consortium (ICGC) database. We conducted a large-
sample and multiomics analysis of metastasis-associated 
genes (MAGs) to validate the robustness of the signature 
in predicting the progression of ccRCC, which could shed 
light on further individualized treatment.  
 
RESULTS 
 
Single-cell RNA-seq profiling and screening of 
metastasis-associated marker genes  
 
We acquired 121 cell samples with superior quality 
isolated from three subpopulations consisting of patient-
derived mRCC, PDX-mRCC and PDX-pRCC (Table 1). 
We combined the sequencing data of 121 files into one 
matrix and transformed the gene symbols based on the 
human GTF file. The quality control chart is shown in 
Figure 1A, where the range of detected gene numbers 
and the sequencing count of each cell are illustrated. We 
accordingly excluded cells with a percentage of 
mitochondrial sequencing count > 5%. Additionally, we 
observed a significantly positive correlation between the 
detected gene numbers and the sequencing depth with 
Pearson's r = 0.53, as shown in Figure 1B. The variance 
analysis revealed the top 10 significantly differentially 
expressed genes across the cell samples, including 
TCN1, IL-6, RNU2-2P, IGKC and SNORA1B (Figure 
1C). Furthermore, we used the principal component 
analysis (PCA) method and screened the significantly 
correlated genes in each component. The top 30 
significantly correlated genes are shown via heatmap 
and dot plot in Supplementary Figure 1. In addition, we 
mapped the cells into two dimensions based on the 
PC_1 and PC_2 components, and the three correct 
independent cell subpopulations indicated the preferable 
clustering efficiency during the PCA procedure (Figure 
1D). The other components were calculated with an 
estimated P value, and we selected the significant 
components for subsequent analysis. Apart from 
utilizing the linear dimensionality reduction method, we 
also used the t-Distributed Stochastic Neighbor 
Embedding (t-SNE) algorithm, commonly adopted for 
the visualization of high dimensional data, to further 
precisely cluster the populations of cells, in which we 
successfully classified the samples into two subgroups 
consisting of primary and metastatic cells (Figure 1F, 
Supplementary Table 1). Accordingly, we performed 
differential analysis using the limma package and 
identified a total of 265 marker genes with | log fold 
change (FC) | > 0.5 and adjPval < 0.05 (Supplementary 
Table 2). We selected 44 genes with | logFC | > 1 as the 
hub MAGs. The top 20 differential genes between the 
two clusters in the heatmap plot are illustrated in Figure 
1G. Additionally, we annotated the evaluated cell type 
for each cell sample using the marker genes 
(Supplementary Table 3) and characterized the 
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Table 1. Tumor cells from the parental mRCC, PDX-mRCC and PDX-primary in GSE73121 were finally analyzed in this 
study after filtering out poor quality cells. 

Category  Cell count  Percentage (%) 
PDX-primary  48 39.67 
PDX-mRCC 37 30.58 
Patient-mRCC 36 29.75 
Total  121 100 

 

 
 

Figure 1. Characterization of single-cell RNA sequencing from 121 cells and screening of marker genes. (A, B) Quality control of 
scRNA-seq for three cell sub-populations. We filtered out the cells with poor quality and analyzed the positive associations between detected 
gene counts and sequencing depth. (C) we identified the gene symbols with significant difference across cells and drawn the characteristic 
variance diagram. (D, E) The principal component analysis (PCA), a linear dimensionality reduction method, was ultilized to identify the 
significantly available dimensions of data sets with estimated P value. Accordingly, we classified the cell groups into three categories. (F) Based on 
available significant components from PCA, we conducted another nonlinear dimensionality reduction, TSNE algorithm, to successfully divided 
the cells into two clusters, in accordance with actual cell types. (G) Differential analysis with logFC =0.5 and adjPval =0.05 was constructed 
between two clusters to identify significant marker genes and we exhibited the top 20 in heatmap package. (H) Cell annotations and trajectory 
analysis revealed the tendency curve from primary RCC to metastatic ones, indicating the genomic alternations between them.  
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integrative trajectory of the single-cell sequencing 
results. Though all the cells in the two clusters were 
annotated as epithelial cells, we observed a significant 
tendency curve from cluster 1 of the primary cells to 
cluster 0 of the metastatic cells, indicating the 
underlying transcriptional heterogeneity between two 
tumor subpopulations in ccRCC (Figure 1H).   
 
Validation of MAGs in internal and external ccRCC 
populations  
 
Before conducting the Cox analysis, we first adopted the 
merge function in R studio to integrate the expression 
profiles of the 44 differential hub MAGs with 
corresponding survival information in the total TCGA-
Kidney Renal Clear Cell Carcinoma (KIRC) data set. We 
used the least absolute shrinkage and selection operator 
(LASSO) method and identified 17 prognostic genes in 
the training cohort (Figure 2A and 2B). The complete 
clinical information of the ccRCC patients included in 
our study is shown in Table 2. Additionally, we 

illustrated the significant differential expression of 17 
prognostic genes in two clusters (Figure 2C and 
Supplementary Figure 2). The MAG signature was then 
established based on multivariate Cox regression, and the 
areas under the curve (AUCs) of the receiver operating 
characteristic (ROC) curves were 0.763 and 0.803 for 
predicting 3-year OS events in the training and testing 
cohorts, respectively (Figure 3A and 3C). In addition, 
Kaplan-Meier analysis indicated that patients with high 
MAG scores suffered significantly worse OS outcomes 
(P = 2.904e-08), which was validated consistently in the 
testing cohort with P = 1.031e-10. (Figure 3B and 3D). In 
addition, we also demonstrated our findings in an 
independent ICGC cohort and observed similar statistical 
results (Figure 3E and 3F, Supplementary Table 4). 
Overall, we further integrated the MAG signature with 
survival analysis in the total TCGA-KIRC cohort, and 
distribution plots suggested that high MAG risk scores 
correlated with more cases of death or recurrence/ 
progression (Figure 3G, 3H and 3I). The Cox regression 
results and Kaplan-Meier analysis of the 17 hub genes in

 

 
 

Figure 2. Identification of prognostic metastasis associated genes. (A, B) We conducted the LASSO method based on glmnet package 
and identified the 17 prognostic genes in TCGA training cohort, where the optimal cutoff value was -4 and the minimum account of genes 
was 17. (C) Meanwhile, we also illustrated the significantly differential expressions of 17 prognostic genes in two clusters via bubble plot. 
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Table 2. Clinical characteristics of total 628 ccRCC patients included in this study. 

Variables Total TCGA-KIRC Training group Testing group ICGC cohort 
(N = 537) (N = 265) (N = 265) (N = 91) 

Age (Mean ± SD) 60.59 ± 12.14 60.21 ± 12.18 59.92 ± 12.04 60.47 ± 9.97 
Follow-up (y) 3.12 ± 2.23 3.17 ± 2.26 3.06 ± 2.21 4.14 ± 1.73 
Status     
Alive 367 (68.34) 175(66.04) 189(71.32) 61 (67.03) 
Dead 170 (31.66) 90(33.96) 76(28.68) 30 (32.97) 
Gender     
Male 346 (64.43) 172(64.91) 172(64.91) 52 (57.14) 
Female 191 (35.57) 93(35.09) 93(35.09) 39 (42.86) 
AJCC-T     
T1 275 (51.21) 144(54.34) 127(47.92) 54 (59.34) 
T2 69 (12.85) 30(11.32) 39(14.72) 13 (14.28) 
T3 182 (33.89) 83(31.32) 96(36.23) 22 (24.18) 
T4 11 (2.05) 8(3.02) 3(1.13) 2 (2.20) 
AJCC-N     
N0 240 (44.69) 116(43.77) 123(46.41) 79 (86.81) 
N1 17 (3.17) 4(1.51) 12(4.53) 2 (2.20) 
Unknow 280 (52.14) 145(54.72) 130(49.06) 10 (10.99) 
AJCC-M     
M0 426 (79.33) 207(78.11) 213(80.38) 81 (89.01) 
M1 79 (14.71) 42(15.85) 36(13.58) 9 (9.89) 
Unknow 32 (5.96) 16(6.04) 16(6.04) 1 (1.10) 
Pathological stage     
I 269 (50.09) 142(53.58) 123(46.42) - 
II 57 (10.61) 27(10.19) 30(11.32) - 
III 125 (23.28) 51(19.25) 72(27.17) - 
IV 83 (15.46) 44(16.60) 38(14.34) - 
Unknow 3 (0.56) 1(0.38) 2(0.75) - 
Grade     
G1 14 (2.61) 4(1.51) 10(3.77) - 
G2 230 (42.83) 122(46.04) 105(39.62) - 
G3 207 (38.54) 102(38.49) 104(39.25) - 
G4 78(14.53) 34(12.83) 41(15.47) - 
Unknow 8(1.49) 3(1.13) 5(1.89) -- 
MAGs levels     
High 265(49.35) 132(49.81) 132(49.81) 45(49.45) 
Low 265(49.35) 133(50.19) 133(50.19) 46(50.55) 
Unknown 7(1.30) - - - 

Data are shown as n (%). 
Abbreviations: TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consortium; AJCC, American Joint 
Committee on Cancer. 
 

the TCGA-KIRC cohort are shown in Table 3 and 
Supplementary Figure 3. 
 
Correlation analysis of MAGs with clinical 
characteristics 
 
Given the clinical significance of MAGs in ccRCC, we 
sought to investigate the potential relationships among 
the MAGs with other clinical features. The Kruskal-

Wallis test revealed that increasing MAG scores 
correlated with higher T stages (P = 7.586e-09), higher 
positive rates of lymph nodes (P = 0.005), advanced 
metastatic stages (P = 1.572e-06), poor pathological 
stages (P = 1.699e-08) and progressive tumor grades (P 
= 1.643e-11). Moreover, the MAG signature possessed 
superior significance in predicting 5-year PFS with an 
AUC of 0.752 in the total TCGA-KIRC cohort (Figure 
4F), and patients with high MAG scores were proven to
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have greater hazards regarding tumor recurrence or 
progression with a log-rank test P = 0 (Figure 4G). 
Furthermore, we validated the underlying relationships 
in another ICGC data set, in which we found that MAG 
scores remained significantly associated with T stage  
(P = 4.364e-04) and metastatic status (P = 3.436e-05).  
 
Construction of the MAG nomogram for predicting 
progression  
 
We then integrated the MAG signature with other 
independent clinical variables to construct a 
comprehensive model for monitoring progression in 

ccRCC. We excluded the N stage factor for more than 
half of the missing cases and disregarded the variables 
with no statistical significance in the multivariate Cox 
regression model. We finally selected four independent 
risk features into our model consisting of age, tumor 
grade, pathological stage and MAG signature (Figure 
5A). Utilizing the generalized linear model (GLM) 
regression algorithm, the MAG nomogram incorporating 
these four features was developed and is shown in Figure 
5B. We classified the TCGA-KIRC cohort into high and 
low groups according to the median of the MAG 
nomogram scores. A calibration curve was drawn to 
depict the fitted model in terms of the agreement between 

 

 
 

Figure 3. Internal and external validation of MAGs to determine its clinical predictive value. (A, C) The AUCs of ROC curves were 
0.763 and 0.803 in predicting 3-year OS events in training and testing cohorts, respectively. (B, D) Besides, Kaplan-Meier analysis indicated 
that patients with high MAGs-score suffered significantly worse OS outcomes (P = 2.904e-08), which was validated consistently in testing 
cohort with P = 1.031e-10. (E, F) In addition, we also proved our findings in an independent ICGC cohort and observed the similar statistical 
results. (G–I) We further integrated MAGs signature with survival analysis in the total TCGA-KIRC cohort and distribution plots suggested that 
high MAGs risk scores correlated with more dead and recurrence/progression cases.  
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Table 3. Identification of 17 prognostic MAGs related with survival and progression in total TCGA-KIRC cohort. 

Gene symbol Description 
OS (P value) PFS (P value) 

Univariate 
Cox 

Multivariate 
Cox 

Univariate 
Cox 

Multivariate 
Cox 

ALDH1A1 aldehyde dehydrogenase 1 family member A1 0.000 0.012 0.001 0.028 
BHLHE41 basic helix-loop-helix family member e41 0.092 0.005 0.085 0.004 
BNIP3 BCL2 interacting protein 3 0.000 0.000 0.002 0.001 
CACYBP calcyclin binding protein 0.001 0.069 0.874 0.009 
CCL20 C-C motif chemokine ligand 20 0.035 0.013 0.077 0.075 
CXCL1 C-X-C motif chemokine ligand 1 0.000 0.005 0.000 0.045 

HMGN3 high mobility group nucleosomal binding 
domain 3 0.004 0.012 0.000 0.001 

MT-ND3 mitochondrially encoded NADH 
dehydrogenase 3 

0.015 0.007 0.082 0.007 

MT-ND4 mitochondrially encoded NADH 
dehydrogenase 4 0.004 0.001 0.006 0.000 

MT-RNR2 mitochondrially encoded 16S RNA 0.053 0.003 0.831 0.001 
MT2A metallothionein 2A 0.000 0.012 0.000 0.003 
NDUFA5 NADH:ubiquinone oxidoreductase subunit A5 0.002 0.010 0.026 0.023 

NNMT nicotinamide N-methyltransferase 0.007 0.020 0.001 0.120 

PDK4 pyruvate dehydrogenase kinase 4 0.000 0.000 0.000 0.020 
SYTL2 synaptotagmin like 2 0.062 0.001 0.023 0.063 
TSC22D1 TSC22 domain family member 1 0.000 0.043 0.000 0.067 
WSB1 WD repeat and SOCS box containing 1 0.000 0.000 0.008 0.017 
 

the predicted 1-year or 3-year progression/recurrence 
events and the actual observed outcomes (Figure 5C). 
The AUCs of the MAG nomogram in predicting 1-year 
and 3-year progression outcomes reached up to 0.848 and 
0.837, respectively (Figure 5D). Survival analysis also 
suggested that the MAG nomogram was a significant 
predictor of ccRCC PFS with P = 0 (Figure 5E). 
 
Differential somatic mutation burden landscape 
between two nomogram-score levels 
 
We defined and calculated the TMB variable in the 
TCGA-KIRC cohort, matched with corresponding MAG 
nomogram scores (Supplementary Table 5). The 
mutational landscape indicated that mutation events 
occurred more frequently in the high nomogram-score 
group than in the low group. In addition, we calculated the 
differential mutation rate of mutants distributed in more 
than 5% of the samples, and the chi-square test revealed 
that SETD2, BAP1 and MTOR especially harbored more 
mutants in the high-risk group than in the low-risk group 
(Figure 6A). Additionally, the Wilcoxon rank-sum test 
suggested that the MAG nomogram risk scores were 
significantly higher in the high TMB group than in the 
low TMB group (P = 2.875e-05). Moreover, we further 
analyzed the survival significance of TMB in ccRCC and 

found that higher TMB levels were associated with an 
increased risk of progression events with P = 0.01 (Figure 
6C) and worse OS outcomes with P = 0.035 (Figure 6D). 
We accordingly speculated that ccRCC patients with high 
MAG nomogram scores suffered from higher TMB levels 
which was also proven to be a risk factor in ccRCC.  
 
GSEA  
 
The transcriptome data of 517 ccRCC patients were 
selected for the gene set enrichment analysis (GSEA) 
procedure using the MAG nomogram scores as the 
reference phenotype. We observed that oxidative 
phosphorylation, the Wnt signaling pathway, the MAPK 
signaling pathway and renal cell carcinoma crosstalk 
were upregulated in the high-risk group. However, the 
P53 signaling pathway, systemic lupus erythematosus 
and fructose metabolism crosstalk were downregulated 
in the low-risk group (Figure 7). All of these aberrant 
pathways were enriched for hallmarks of malignant 
tumors with a false discovery rate (FDR) of < 0.05.  
 
DISCUSSION  
 
Malignant progression and a high rate of tumor 
recurrence have made ccRCC the most lethal type of 



www.aging-us.com 10190 AGING 

kidney cancer in the urinary system [18]. Previous 
studies mainly focused on the screening of biomarkers 
differentially expressed between tumor and nontumor 
tissues [19, 20]. However, there is a possibility of 
missing significant genes when dealing with the bulk 
transcriptome profiling of cell populations [21, 22]. 
Moreover, elucidating the underlying mechanisms 
associated with the metastasis and recurrence of ccRCC 
is relatively more meaningful. In our study, we analyzed 
the raw scRNA data of 121 cells with superior quality to 
depict the genomic features between primary and 

metastatic ccRCC, during which we identified and 
confirmed the 17 pivotal MAGs. Furthermore, we 
utilized internal and independent external cohorts to 
validate our robust MAG signature. Accordingly, an 
integrative MAG nomogram model was constructed 
incorporating four variables to predict cancer-specific 
tumor progression with high efficiency. Multiomics 
analysis indicated that high MAG nomogram risk scores 
correlated with a high TMB, which was demonstrated 
as a risk factor for prognosis. In another aspect, these 
findings suggested that the scRNA-seq method

 

 
 

Figure 4. Correlation analysis between MAGs with other clinical variables and predictive efficiency of MAGs in PFS. (A–E) 
Kruskal-Wallis test revealed that increasing MAGs-score correlated with higher T stages (P = 7.586e-09), higher positive rate of lymph nodes 
(P = 0.005), advanced metastatic stages (P = 1.572e-06), poor pathological stages (P = 1.699e-08) and progressive tumor grades (P = 1.643e-
11). (F, G) Moreover, the MAGs signature possessed superior significance in 5-year PFS prediction with AUC = 0.752 in total TCGA-KIRC cohort 
and patients with high MAGs-score suffered more hazards in tumor recurrence or progression with log-rank test of P = 0. (H, I) Correlation 
analysis of MAGs with T, M stages in ICGC validation cohort. 
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combined with validations in cohort populations was 
proven to be a powerful and sensitive strategy to derive 
significant gene signatures with potential clinical value 
in ccRCC. 
 
The scRNA-seq profiling of cells was performed with 
strict quality control, and we filtered out cells with high 

proportions of mitochondrial DNA sequencing (> 5%), 
which was a confounding factor for the statistical 
results. The subsequent PCA analysis, a method of 
linear dimensionality reduction, exhibited good 
discrimination across the three subpopulations of 
ccRCC cells, indicating the accuracy and reliability of 
the included data. To thoroughly characterize the high

 

 
 

Figure 5. Construction and assessment of MAGs-nomogram for predicting progression. (A) Univariate- and multivariate Cox 
regression analysis for screening appropriate and significant features into final nomogram model. (B) Ultilizing the glm regression algorithm, 
the MAGs-nomogram incorporating these four variables was developed and the TCGA-KIRC cohort was classified into high and low groups 
according to the median of MAGs-nomogram scores. (C) Calibration curve was drawn to depict the well curve fitting between predicted 1-
year or 3-year progression events and actual observed outcomes. (D, E) Meanwhile, the AUCs of MAGs-nomogram in predicting 1-year and 3-
year progression outcomes were up to 0.848 and 0.837, respectively. Survival analysis also suggested that the MAGs-nomogram was 
determined to be a significant predictor in PFS of ccRCC with P = 0.  



www.aging-us.com 10192 AGING 

dimensional variables, we finally utilized the t-SNE 
algorithm to conduct nonlinear dimensionality reduction, 
and we successfully classified the cells into two categories 
consisting of primary and metastatic subgroups, in 
accordance with the actual cell type. The PDX model was 
constructed to maintain similar pathology and genetic 
heterogeneity, and there were no significant differences 
between patient-derived mRCC and PDX-mRCC cell 
subsets in our cluster analysis. Based on these results, the 
marker genes were screened between two clusters, and we 
finally selected the top 44 as the significant signature (hub 
genes), which was closely associated with metastasis and 

thus might determine the overall prognosis of ccRCC. 
Furthermore, we conducted the single-cell trajectory 
analysis based on RNA-seq using the molecule 
packaging, which arranges the cells ranked in a simulated 
chronological order, and illustrated their developmental 
trajectories, including cell differentiation and other 
biological processes. In our study, we utilized marker 
genes with unsupervised learning to mimic the trajectory 
map. Though the annotations of two clusters were all 
epithelial cells, the significant curve tendency revealed 
differential genomic alterations from primary tumors to 
metastatic tumors. 

 

 
 

Figure 6. Differential landscape of somatic mutation burden between high and low MAGs-nomogram levels. (A) The 
mutational landscape reflected that mutated events occurred more frequently in high Nomogram-score group than that in low group. 
Besides, the Chi-square test revealed that VHL, PBRM1, SETD2 and BAP1 especially harbored more mutants compared with that in low risk 
group. (B) Wilcoxon rank-sum test suggested that the MAGs-nomogram risk scores were significantly higher in high TMB group than that in 
low TMB group (P = 2.875e-05). (C, D) Additionally, we found that higher TMB levels were associated with more risks of progression events 
with P = 0.01 and worse OS outcomes with P = 0.035.  
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Some of the 17 identified MAGs have already been 
reported to play essential roles in tumor progression 
across malignancies. Bigot P et al. performed genome-
wide association studies and identified the RCC risk 
allele at 12p12.1, a hazard variant in an enhancer that 
upregulates the expression of BHLHE41, in turn 
inducing IL-11 to promote tumor growth [23]. BNIP3 
acts as a proapoptotic factor, and the identified FoxO-
BNIP3 axis plays a unique role in the regulation of 
mTORC1 and cell survival under energy stress [24]. 
CCL20 and CXCL1 are chemokines mediated by cancer 
cells or other immune cells in the tumor micro-
environment and are associated with the differentiation 
and progression of ccRCC [25–27]. Moreover, we also 
detected a list of genes involved in the energy 
metabolism pathway consisting of MT-ND3, MT-ND4, 
MT-RNR2 and MT2A. Previous studies have highlighted 
the essential roles of these genes in cancer metabolic 
regulation [28–30]. We observed that the four genes were 
all upregulated in the metastatic cell cluster and that high 
expression levels of all these genes correlated with higher 
probabilities of tumor progression, providing another 
direction for our subsequent research.  
 
For population validation, we utilized another ICGC 
cohort as the external data set to further test our MAG 
signature and found the clinical value of MAGs in 

predicting OS or PFS. The subsequent multivariate Cox 
regression analysis excluded the three variables of TNM 
stages due to incomplete data, conflicting or non-
significant results. Given the close correlations of 
MAGs with metastasis, we still considered whether the 
factor of M stage could be further integrated into the 
final nomogram model, and large samples for training 
are warranted in the future. In addition, we observed the 
mutation features in two MAG nomogram risk groups 
and found that SETD2, BAP1 and MTOR revealed 
more mutated frequencies in the high PFS-risk group. 
We accordingly speculated that the four tumor-driver 
mutants might promote the progression of ccRCC and 
that a high TMB was also proven to be a potential risk 
factor associated with MAGs. TMB or mutational 
signatures revealed the process of mutation accumula-
tion in tumors and were demonstrated to be effective 
predictors of the response to immunotherapy. Whether 
the MAGs possess potential predictive value for drug 
therapy remains unclear and would be interesting and 
valuable to investigate. Additionally, to further prove 
the validity of the MAGs, we conducted the functional 
enrichment analysis in several common biological 
pathways, including oxidative phosphorylation, the Wnt 
signaling pathway, and the MAPK signaling pathway, 
which are vital signaling crosstalk pathways in ccRCC 
[31–33].  

 

 
 

Figure 7. GSEA results revealed the significantly enriched biological processes between two nomogram-score levels. 
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Of note, one of the strengths of our work was the 
combination of scRNA-seq and validation in cohorts, in 
which we further conducted analyses on the internal and 
external data set to demonstrate the robustness of the 
MAG signature that we identified. Compared with 
traditional bulk transcriptome sequencing analysis in 
ccRCC [34, 35], scRNA-seq could possess the 
superiority to find the potential hub markers which 
might be covered in bulk sequencing. In addition, we 
integrated multiomics, large-sample analysis to 
characterize the MAGs involved in the evolution of 
pRCC to mRCC. Nevertheless, there are still several 
weaknesses for further optimization. First, the cells or 
tumor tissues were mostly derived from American or 
European populations, and whether the identified 
MAGs were appropriate for those of Asian ethnicity 
remain indefinite; thus, we should validate our findings 
in cohorts from local hospitals. Though the signature or 
nomogram was validated well in large ccRCC 
populations, supplemental basic experiments are still 
warranted to uncover the specific mechanisms of MAGs 
in the promotion of tumor development.  

In conclusion, this study is the first to screen marker genes 
based on scRNA-seq that were validated in a large set of 
ccRCC samples. We not only depicted the genomic 
features and heterogeneity between pRCC and mRCC but 
also found several MAGs, providing a plausible signature 
for predicting prognosis and underlying evidence for drug 
discovery against metastasis. 

MATERIALS AND METHODS

Acquisition of cell samples and ccRCC population 
cohorts  

We obtained the raw data of 121 cell samples with 
single-cell transcriptome profiling from GSE73121 via 
the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). The ccRCC tumor 
cells from parental mRCC, PDX-mRCC and PDX-
pRCC were finally analyzed in our study after filtering 
out poor-quality cells. We then merged the 
transcriptome data into one matrix and conducted the 
normalization process using the limma package. We 
downloaded the expression profiles of 537 ccRCC 
samples from the TCGA database (https://portal.gdc. 
cancer.gov/) and of 91 patients from the ICGC database 
(https://icgc.org/). The normalization of transcriptome 
count was conducted by the edgeR package (Version 
3.26.8). In addition, we also obtained somatic mutation 
data processed by VarScan software from the “Masked 
Somatic Mutation” category in TCGA. We utilized the 
Maftools package (Version 2.0.16) to visualize the 
genomic alterations for files in Mutation Annotation 
Format (MAF) [36]. Moreover, we collected data on the 

complete clinical characteristics of 628 ccRCC samples 
from two independent cohorts, including age, sex, TNM 
stage, tumor grade, pathological stage, follow-up time 
and vital status.  

Processing of single-cell RNA-seq data 

We extracted the transcriptome sequencing data of 121 
tumor cells isolated from patient-derived mRCC, PDX-
mRCC, and paired PDX-pRCC using GRCh38 as the 
reference genome. We utilized the Seurat package to 
generate the object and filtered out cells with poor 
quality [37]. The reading depth of scRNA-seq was 10x 
genomics based on Illumina HiSeq 2500. Then, we 
conducted standard data preprocessing, where we 
calculated the percentage of the gene numbers, cell 
counts and mitochondria sequencing count. We 
excluded genes with less than only 3 cells detected and 
disregarded cells with less than 200 detected gene 
numbers. The proportion of mitochondria was restricted 
to less than 5%. Afterwards, we identified the gene 
symbols with significant differences across cells and 
constructed a characteristic variance diagram. In 
addition, we conducted PCA with linear dimensionality 
reduction and identified the significantly available 
dimensions of data sets with an estimated P value [38]. 
Importantly, we further utilized the t-SNE algorithm to 
conduct the cluster classification analysis across cell 
samples and screened the marker genes between 
clusters with logFC =0.5 and adjPval =0.05 as the cutoff 
criteria [39]. The heatmap of the top significant marker 
genes was illustrated via ggplot2 package (Version 
2.2.1) [40]. Finally, we used the marker genes to 
annotate the cluster and cell categories based on the 
SingleR package (Version 0.99.13), and pseudotime 
analysis of cells was performed via the monocle 
package (Version 2.12.0), which has been commonly 
adopted for differential expression analysis, clustering, 
visualization, and other useful tasks on single-cell 
expression data [41, 42].  

Identification of MAGs in ccRCC population cohorts 

Given the already detected marker genes from the 
scRNA-seq, we further investigated the significant 
signature associated with survival across the ccRCC 
samples. First, we randomly classified the whole 
TCGA-KIRC cohort into two populations as the 
training and testing groups. Then, we extracted the 
transcriptome profiles of the hub marker genes from 
265 patients with matched prognostic data in the TCGA 
training data set. A LASSO regression model using 
glmnet package was performed to identify the 
prognostic hub genes from the identified markers genes 
across scRNA-seq. Afterwards, we illustrated the 
differential distributions of the hub signatures in two 

https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://icgc.org/


www.aging-us.com 10195 AGING 

clusters across cell samples using bubble plots and 
scatter diagrams. Furthermore, the MAG signature was 
calculated as: MAGs = Ʃ(βi * Expi), where βi, the 
coefficients, represented the weight of each included 
gene. In the training data set, we used the ROC curve to 
assess the predictive value of MAGs in predicting OS, 
and the difference in survival outcomes was evaluated 
via Kaplan-Meier analysis with the log-rank test. 
Accordingly, we further validated our MAG signature 
in an internal testing data set and an external ICGC 
cohort. In the whole TCGA-KIRC cohort, we 
characterized the distributions of death or 
progression/recurrence endpoint events according to the 
MAG scores. Moreover, we conducted a correlation 
analysis between the MAGs and clinical variables 
consisting of TNM stages, pathological stages and 
tumor grades. We further analyzed the predictive 
efficiency of the MAGs in predicting ccRCC 
progression and conducted survival analysis in the total 
TCGA-KIRC cohort. Finally, the potential association 
of the MAGs with TNM stages was validated in the 
ICGC cohort.  
 
Development of an individualized prediction model 
for monitoring progression 
 
We merged the MAG signature with other clinical 
features in the whole TCGA-KIRC cohort. Univariate 
and multivariate Cox regression methods were 
conducted to evaluate the significant clinical variables. 
After excluding the meaningless variables, we 
established the integrative MAG nomogram model 
using a GLM. The ROC plot with the AUC and 
calibration curve were derived to assess the actual 
predictive significance of the nomogram based on the 
rms and pROC packages. Additionally, the survival 
difference between high- and low-nomogram levels was 
estimated via Kaplan-Meier analysis.  
 
Profiles of TMB and correlation analysis 
 
The TMB in ccRCC was defined as: TMB = (total count 
of variants) / (the whole length of exons). We wrote a 
Perl script to extract all mutation data from 337 patients 
in the TCGA-KIRC cohort consisting of deletions, 
insertions, and substitutions across bases and divided 
the data into two groups according to the MAG 
nomogram risk scores. The Maftools package was used 
to illustrate the respective mutation profiling of the two 
nomogram risk levels by waterfall plot. Afterwards, the 
differential mutation frequencies of mutants detected 
more than 5% were compared using the chi-square test 
between the two nomogram groups. Moreover, TMB 
was derived for each patient, and the underlying 
relationship with MAGs was calculated with Pearson 
correlation analysis with estimated P values. Of note, 

we also analyzed the survival significance of TMB with 
OS and PFS in ccRCC.  
 
Functional pathway analysis between the two MAG 
nomogram groups 
 
Since we have already classified the TCGA-KIRC 
cohort into two groups with high and low MAGs-
nomogram score levels, we further conducted GSEA 
using the nomogram score as the phenotype. With the 
GSEA software via the Java platform, we derived the 
“c2.cp.kegg.v6.2.symbols.gmt gene sets” from the 
MSigDB database (http://software.broadinstitute.org/ 
gsea/msigdb) as the reference set. The enriched 
signaling pathways with FDR < 0.05 were defined as 
statistically significant.  
 
Statistical analysis 
 
LASSO regression, Cox regression analysis and Kaplan-
Meier curves with the log-rank test were conducted by the 
glmnet and survival packages. The GLM was established 
with the rms package. Student’s t test was used for 
continuous variables, while categorical variables were 
compared with the chi-square (χ2) test. The Wilcoxon 
rank-sum test was utilized to compare ranked data with 
two categories, and the Kruskal-Wallis test was utilized 
for comparisons among three or more groups. All 
statistical analyses were conducted in R studio (Version 
3.5.3), and we regarded P < 0.05 as statistically 
significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. The top 4 components from PCA procedure were shown and we exhibited the correlated genes in 
each component. (A) Cluster analysis across each component.The colors ranging from purple to golden yellow represent the expression 
levels of correlated genes from low to high. (B) Correlation analysis of top relative genes in each component. 
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Supplementary Figure 2. The differential expression levels of 17 hub metastasis-associated genes in two clusters from the 
scRNA-seq. 
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Supplementary Figure 3. Survival analysis of the 17 hub metastasis-associated genes in total TCGA-KIRC cohort, where we 
observed that most of them correlate with PFS in ccRCC.  
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1–5. 
 
Supplementary Table 1. Cluster classification of 121 samples from the TSNE algorithm. 

Supplementary Table 2. Identification of marker genes between primary and metastasis tumors from the cluster 
analysis. 

Supplementary Table 3. Annotation of cell types for the 121 cell samples. 

Supplementary Table 4. Calculation of MAGs risk scores for ICGC patients. 

Supplementary Table 5. Integration of tumor progression risk scores with corresponding tumor mutation burden 
(TMB) in TCGA-KIRC cohort. 


