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Abstract
Nitrification is a fundamental process in terrestrial nitrogen cycling. However, detailed information on how climate change
affects the structure of nitrifier communities is lacking, specifically from experiments in which multiple climate change
factors are manipulated simultaneously. Consequently, our ability to predict how soil nitrogen (N) cycling will change in a
future climate is limited. We conducted a field experiment in a managed grassland and simultaneously tested the effects of
elevated atmospheric CO2, temperature, and drought on the abundance of active ammonia-oxidizing bacteria (AOB) and
archaea (AOA), comammox (CMX) Nitrospira, and nitrite-oxidizing bacteria (NOB), and on gross mineralization and
nitrification rates. We found that N transformation processes, as well as gene and transcript abundances, and nitrifier
community composition were remarkably resistant to individual and interactive effects of elevated CO2 and temperature.
During drought however, process rates were increased or at least maintained. At the same time, the abundance of active
AOB increased probably due to higher NH4

+ availability. Both, AOA and comammox Nitrospira decreased in response to
drought and the active community composition of AOA and NOB was also significantly affected. In summary, our findings
suggest that warming and elevated CO2 have only minor effects on nitrifier communities and soil biogeochemical variables
in managed grasslands, whereas drought favors AOB and increases nitrification rates. This highlights the overriding
importance of drought as a global change driver impacting on soil microbial community structure and its consequences for N
cycling.

Introduction

Nitrogen (N) cycling is a fundamental process in terrestrial
ecosystems, critical for the functioning of all living

organisms. Soil ecosystems are currently undergoing sub-
stantial changes, as a consequence of anthropogenic activ-
ities [1, 2]. Microorganisms catalyze most soil N
transformation processes, and thus play a central role in
mediating N exchange between the atmosphere, plants, and
soils [3]. Thus, understanding the nature and the intensity of
the responses of soil microorganisms to climate change is of
utmost importance to predict the future terrestrial N cycle,
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including its repercussion on plant productivity and climate-
carbon feedbacks [3, 4]. Yet, our understanding of the
relative role of specific microbial taxa in mediating N
transformations in terrestrial environments in response to
climate change is still incomplete. In spite of current climate
projections [5] the interactive effects of elevated tempera-
ture, elevated atmospheric CO2, and changes in precipita-
tion patterns have rarely been assessed together with regards
to microbially mediated soil N transformations [6, 7].

Nitrification represents a key process in the terrestrial N
cycle. It has long been considered to be a two-step process
initiated with the oxidation of ammonia to NO2

− by
ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing
archaea (AOA), followed by NO2

− oxidation to NO3
− by

nitrite-oxidizing bacteria (NOB) [8]. Based on metagenomic
surveys, marker gene assays and functional gene studies
targeting the amoA gene, (gene that codes for the alpha
subunit of ammonia monooxygenase) several studies
demonstrated the influence of different environmental fac-
tors on the abundance and composition of nitrifying com-
munities, most notably substrate concentration, soil water
content and soil pH [9–11]. Furthermore, all known
ammonia-oxidizers contribute to nitric (NO) and nitrous
(N2O) oxide emissions, but the yield by which they do
differs strongly between groups, with AOB showing the
highest N2O yield per mol of oxidized ammonia when
compared with other groups [12]. Several studies have
reported a numeric dominance of AOB over AOA in agri-
cultural and grassland soils to which fertilizers are applied
on a regular basis, leading to the idea that AOB are
responsible for the ammonia-oxidation step in these envir-
onments [13, 14]. In contrast, AOA were thought to be the
main ammonia-oxidizing taxa in N poor environments, as
well as in acidic soils [15]. Notably, all known AOB have a
relatively low substrate affinity, whereas AOA encompass
members with a broad range of substrate affinities [12].
NOB span six genera, out of which Nitrospira is the most
phylogenetically diverse and widespread across different
habitat types including terrestrial ecosystems [16].
Recently, it was discovered that some members of this
genus (Comammox Nitrospira; CMX) can catalyze both
steps of nitrification [17, 18]. Although our knowledge on
the distribution and diversity of comammox Nitrospira is
still comparatively limited, several studies have reported
their presence and activity in terrestrial environments
[19, 20]. Furthermore, it has been demonstrated that the
only cultured comammox species N. inopinata, has a high
substrate affinity [12]. Thus, a joint assessment of the
relative contribution of the aforementioned microbial
groups to nitrification is needed, as well as of their specific
responses to climate change.

Current global change in temperate ecosystems is char-
acterized, amongst other changes, by rising air and soil

temperature, elevated CO2 concentrations, and changes in
water availability, such as increased frequencies of drought
events. Elevated atmospheric CO2 concentrations affect soil
microorganisms by promoting plant growth and photo-
synthetic activity [21]. This can result in increased plant
belowground C allocation and rhizodeposition [22, 23],
which stimulates heterotrophic microbial activity and mobi-
lizes N. However, higher plant growth can indirectly affect
soil microorganisms by gradually depleting the soil N pool
available for microbial uptake [24, 25], potentially causing
microorganisms to become N limited. Previous studies
revealed a decrease in the relative abundance of AOA and
AOB in response to elevated CO2 [26, 27]. In contrast to
elevated CO2, elevated temperature directly accelerates
microbial processes and turnover rates [28], alters water and
nutrient availability, extends the plant growing season [29]
and may favor the growth of slow growing bacteria [30].
Concomitantly, studies have reported significant changes in
amoA gene abundance and expression of AOA and AOB in
response to temperature [27, 31]. The growth, activity, and
community structure of AOA, but not of AOB have been
shown to change in response to elevated temperature in soil
mesocosms [31]. On the other hand, a comprehensive study
across 23 different soil types has highlighted temperature as
the most important factor affecting AOB community struc-
ture [32]. Finally, extreme events such as droughts can cause
soil microorganisms to decrease their activity levels, to
accumulate osmoprotectants/compatible solutes, and often to
switch to dormancy [33]. A study in mountain grasslands
showed that drought had distinct effects on the relative
abundance of ammonia-oxidizing microorganisms, with
reduced AOA amoA abundance with drought and no
observed changes in AOB amoA abundance [11].

Multifactorial studies that particularly target nitrifier
communities are scarce, and most studies are rather focused
on the response of broad ecosystem N processes to global
change [34–36].

Therefore, the goal of this study was to understand how
elevated atmospheric CO2 (eCO2), elevated temperature
(eT) and drought (D), alone or in combination, affect the
relative abundance and diversity of nitrifier communities
and their activity (i.e., gross nitrification rates) in a managed
submontane grassland. We expected to observe: (i) a shift in
active nitrifier community structure towards high affinity
nitrifiers (AOA and CMX) as a consequence of lower NH4

+

availability at eCO2; (ii) an overall increase in nitrification
rates and amoA expression levels of AOA, AOB, and
potentially CMX in response to eT; and (iii) a reduction of
the abundance and activity of all nitrifying groups by
drought. Our study also intended to explore whether the
combined effect of eCO2 and eT—with or without drought
—would have additive or nonadditive effects on the
diversity and abundance of nitrifiers.
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Methods

Site description and experimental design

The experimental site is located at the agricultural research
institute HBLFA Raumberg‐Gumpenstein in Styria, Austria
(47°29′38″N, 14°06′03″E) and is part of a long-term climate
change experiment (ClimGrass). With a mean annual tem-
perature of 8.2 °C and a mean annual precipitation of 1056
mm, this area is representative of a large part of alpine
grasslands. The grassland under study was established in
2007 and is dominated by the grasses Arrhenatherum ela-
tius and Festuca pratensis together with legume species
such as Lotus corniculatus and Trifolium pratense. It also
includes a few subdominant non‐leguminous forbs such as
Taraxacum officinale and Plantago lanceolata. The soil
type is a Cambisol (WRB classification) with loamy sand
texture and a pH of 5.

The experimental design was originally based on a
response surface regression approach that aimed to study
the nature and intensity of the grassland’s responses to
manipulations of elevated atmospheric temperature and
CO2, and drought [37]. The experimental site comprised a
total of 54 plots showing individual and combined
effects of three levels of temperature (+1.5 °C, + 3 °C),
atmospheric CO2 concentrations (ambient, +150 ppm,
+300 ppm) and drought (Fig. S1). A detailed explanation
regarding the reasons behind the choice of treatments and
corresponding number of replicates can be found in [37].
Each treatment had a different number of replicates, which
reflected a balance between statistical power and budget
constraints [37].

For this specific experiment, we selected only a set of
soil samples from 26 plots (4 × 4 m each) during peak
growing season in July 2017 (Table 1; Fig. S1). Treatments
included soil plots on which temperature (eT; +3 °C) and
CO2 (eCO2; +300 ppm CO2) were manipulated individually
or in combination, as well as plots on which drought (D)
was simulated through the use of automatic rainout shelters
installed 8 weeks before sampling (Table 1; Fig. S1).
Manipulations in atmospheric CO2 concentrations were
done through a miniFACE—free air CO2 enrichment sys-
tem, whereas atmospheric temperature was manipulated
through the use of infrared heaters. Since 2014, infrared
heaters were continuously on except when snow cover
exceeded a depth of 10 cm. The soil temperatures measured
by soil probes in selected plots between June and July
2017 showed an average of +1.86 °C for plots affected by
elevated temperature, compared with the controls (data not
shown). CO2 fumigation was only applied during the
growing season (April to November). Site management
included mowing (three times a year) and mineral fertili-
zation (90 kg N ha−1 a−1 as NH4NO3, 65 kg P ha−1 a−1 as

Ca(H2PO4)
2 and 170 kg K ha−1 a−1 as K2O), which corre-

sponds approximately to the amount of NPK removed by
biomass harvest, in order to replicate local farming
practices.

Sample collection and soil physicochemical analyses

Immediately after removal of aboveground biomass several
(4–11) soil cores were taken per plot to a depth of 10 cm
using a stainless-steel soil corer with 2 cm inner diameter.
Stones and roots were picked, washed, dried and weighed,
and soils were sieved through a 2 mm sieve directly after
collection. Fresh soil subsamples for molecular analyses
were immediately frozen in liquid N. The remaining fresh
soil was transported to the laboratory and incubated shortly
(2–3 days) at the respective in situ temperatures measured at
the time of collection (17 °C for ambient temperature plots
and 20 °C for elevated temperature plots) until analysis.

Gravimetric soil water content was determined by oven
drying (105 °C for 24 h) 5 g of fresh, sieved soil. Dissolved
soil organic C (DOC), nitrogen (DON) and total dissolved
N (TDN) were measured in 1M KCl extracts (using a soil
to solution ratio of 1:7.5 w–v) after filtering through ash-
free cellulose filters (Whatman, GE Healthcare Life Sci-
ences) on a TOC/TN analyzer (TOC-VCPH/TNM-1, Shi-
madzu, Austria). In parallel, soils were chloroform
fumigated for 48 h in order to estimate microbial biomass
nitrogen (MBN) [38]. After fumigation, soils were also
extracted with 1M KCl, and MBN was calculated as the
difference in TDN between fumigated and non-fumigated

Table 1 Soil plots sampled in this study.

Treatments used for statistical analyses

Treatment Description Individual and
combined effects
of temperature
and CO2

Individual and
combined effects
of future climate
and drought

[Amb] Ambient conditions
(n= 8)

× ×

[eT] +3 °C above ambient
(n= 3)

×

[eCO2] +300 ppm CO2 above
ambient (n= 3)

×

[eT] × [eCO2] +3 °C and +300 ppm
CO2 above ambient
(n= 4)

× ×

[Amb] × [D] Ambient conditions+
rainout shelter (n= 4)

×

[eTeCO2] × [D] +3 °C and +300 ppm
CO2 above ambient+
rainout shelter (n= 4)

×

Biological replicates are shown in parenthesis. Specific soil plots were
selected in order to test for either the individual and combined effects
of elevated temperature and CO2 or the individual and combined
effects of future climate and drought. This separation was done in
order to have a full factorial design for each set. The spatial
arrangement of all the plots is shown in Fig. S1.
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soils. Ammonium (NH4
+) and nitrate (NO3

−) concentra-
tions were determined photometrically in the 1M KCl
extracts of non-fumigated soils [39]. Soil pH was deter-
mined in a 1:5 mix of dry soil and 0.01M CaCl2 solution
with a pH meter (Sentron Europe BV).

Isotope pool dilutions

Gross rates of N mineralization, and nitrification were
determined and calculated from fresh, sieved soil samples
using 15N pool dilution assays [40].

Two to three grams of duplicate soil samples were incu-
bated with 15NH4Cl and K

15NO3 (98 at%) tracer solutions for
4 and 24 h at the corresponding in situ field temperatures. We
aimed to increase the 15N enrichment of the target pool to ~20
at%15N and added 100 µl of tracer solution per gram of fresh
soil, after a previous photometrical determination of back-
ground NH4

+ and NO3
−pool sizes. The addition of liquid the

tracer increased the soil water in ambient and drought plots by
1.79 and 4.56-fold respectively. Incubations were stopped
after 4 and 24 h by the addition of 1M KCl (1:7.5 w–v),
extraction by horizontal shaking on an orbital shaker for 30
min (150 rpm) and filtration through ash-free cellulose filters.
Mineralization extracts were prepared using a microdiffusion
method [41] followed by the measurement of 15/14N isotope
ratios and concentrations of NH4

+ in the acid traps by ele-
mental analyzer-isotope ratio mass spectrometry (EA-IRMS;
EA1110 coupled via ConFlo III interface to a DeltaPLUS

IRMS, Thermo Fisher, Bremen, DE [42]. Concentrations and
15/14N isotope ratios of NO3

− in 1M KCl extracts were
determined by converting NO3

− to NO2
− with vanadium (III)

chloride (VCl3) and further reduction of NO2
− to N2O by

sodium azide (NaN3) [42]. Concentrations and
14/15N isotope

ratios of the resulting N2O were determined by purge-and-trap
isotope ratio mass spectrometry (PT-IRMS), using a Gas-
bench II headspace analyzer (Thermo Fisher, Bremen, DE)
with a cryo-focusing unit, coupled to a Finnigan Delta V
Advantage IRMS (Thermo Fisher, Bremen, DE).

TNA extraction, RNA purification, and cDNA
synthesis

Total nucleic acids (TNA) were extracted from 0.4 g frozen
soil by bead-beating in the presence of a cetyl trimethy-
lammonium bromide buffer and phenol, according to a
previously published extraction protocol [43] and eluted in
250 µl of Low-Tris-EDTA buffer. Following extraction,
samples were purified using the OneStepTM PCR Inhibitor
Removal Kit (Zymo, Irvine, CA, USA) and TNA was
quantified using the Quant-iTTM PicoGreen® Kit (Thermo
Fisher Scientific), according to the manufacturers’ instruc-
tions. DNA was digested in 1–3 µg of TNA extract with
Turbo DNase (Thermo Fisher Scientific), and RNA was

purified using the GeneJET RNA Cleanup and Concentra-
tion Micro Kit (Thermo Fisher Scientific) and eluted in
25 µl of RNase Storage Solution (Thermo Fisher Scientific).
The RNA yield was quantified using the Quant-iTTM

RiboGreen® assay (Thermo Fisher Scientific). Successful
DNA digestion was confirmed by negative results on a gel
electrophoresis after a DNA-targeted SSU rRNA gene PCR
assay on the purified RNA extracts using the primer pair
515F-mod/806R-mod [44, 45]. Afterwards, cDNA was
synthesized from 400 ng of RNA extract using random
hexamer primers and SuperScriptTM IV reverse transcriptase
(Thermo Fisher Scientific) following the manufacturer´s
instructions and eluted in 54 µl of nuclease-free water.

amoA/nxrB gene and transcript amplification and
sequencing

The diversity of the ammonia-oxidizing microbial com-
munity, as well as the NOB community was assessed via
amplification and sequencing of the ammonia mono-
oxygenase enzyme subunit A (amoA) gene, and the nitrite
oxidoreductase subunit beta (nxrB) gene respectively, with
functional group specific primers modified to include a
linker sequence (‘head’) for barcoding PCRs at the 5′ end,
as described previously [46]. Detailed amplification condi-
tions can be found in the Supplementary Material and
Methods file. Library preparation and sequencing services
were provided by Microsynth (Balgach, Switzerland). The
library was prepared by adapter ligation and PCR using the
TruSeq Nano DNA Library Prep Kit according to the
TruSeq nano protocol (Illumina, FC-121–4003), but
excluding the fragmentation step. Sequencing was per-
formed on a MiSeq platform, v3, 2 × 300 bp (Illumina).
Paired MiSeq reads were processed according to [46].
AOB, and AOA amoA gene OTUs were clustered at 95%
and 96% sequence identity, respectively [47, 48]. A
sequence identity cutoff of 95% was used for NOB nxrB
OTUs and for CMX clade B amoA OTUs. Taxonomic
classification of AOA, AOB-related (Nitrosomonas), and
NOB OTUs was performed using the evolutionary place-
ment algorithm implemented in RAxML to place OTUs into
a reference tree using a set of classified full-length
nucleotide sequences [49, 50]. Uncultured Nitrosospira
(AOB) amoA OTUs were classified by local nucleotide
BLAST (version 2.8.1+) searches against a Nitrosospira
reference database [51] since phylogenetic trees among
reference Nitrosospira showed no stable tree topology for
mapping reads. Represented sequences for all CMX clade B
amoA were aligned against a reference pmoA and amoA
database [52] using the SINA aligner [53] and a maximum
likelihood phylogenetic tree was calculated based on this
alignment using W-IQ-Tree [54] with 1000 bootstrap
iterations and ModelFinder to determine the best fitting base
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substitution model [55]. The resulting tree was visualized
with iTOL [56].

All sequence alignments were performed with Mafft [57]
and manually inspected. OTUs with no similarity to the
functional group of interest were considered unspecific co-
amplification and excluded from further analysis (Table S1).

AmoA gene and transcript quantification by qPCR

Gene and transcript copy numbers of amoA genes of beta-
proteobacterial AOB, AOA, and CMX clade B were
determined by qPCR. Gene and transcript copy numbers of
Nitrospira nxrB were not assessed in this study due to the
highly variable gene copy number per genome, which
would hamper precise quantifications. In addition, the pri-
mer pair used for amplicon sequencing co-amplifies several
nonspecific amplicons, which would also make quantifica-
tions inaccurate [58].

Assays with different sample dilutions (5× to 10,000×),
resulting in template amounts ranging from 0.004 to 24 ng,
were performed to minimize possible PCR inhibition caused
by excess template or co-extracted inhibitory substances. For
all samples, the highest dilutions that yielded consistent
results were used to calculate gene and transcript copy
numbers. All assays were performed in triplicate for each
dilution. Detailed amplification conditions can be found in the
Supplementary Material and Methods file. For each assay,
standard series were generated by tenfold serial dilutions
(108–101 gene copies μl−1) from purified M13-PCR products
obtained from environmental samples (CMX clade B amoA)
or pure cultures of Nitrosomonas europaea and Nitro-
soscosmicus hydrocola, as described previously [52, 59]. The
average amplification efficiency for the comammox clade B
amoA, archaeal amoA, and betaproteobacterial amoA assays
was 90.6%, 93.6% and 89,2% respectively.

Statistical analyses

All statistical analyses were performed in R (version 3.5.1).
Statistical analyses were performed with two separate linear
models using the Anova() function of the package “car”
following a full factorial design that allowed to test for
interactions between all factors under analysis. This
approach was chosen because the drought treatment was
imposed on a reduced set of treatments (Table 1; Fig. S1)
that did not include soil plots where eT and eCO2 were
manipulated individually. Therefore, the first model (eT vs.
eCO2 dataset) included [eCO2], [eT] and their interactions.
The second model (drought dataset) included drought,
[eT × eCO2] and their interactions. Both models were used
to assess if individual global change effects were modified
when variables were combined (interactive effects) in order
to reveal potential additive, synergistic or antagonistic

effects (Tables 2 and 3, Fig. 1, Table S2). Model assump-
tions of normality and homoscedasticity were checked on
the model residuals [60] and variables were transformed
when needed to meet model assumptions. Nonparametric
tests were conducted in case assumptions were not met after
data transformation. Multiple comparisons were performed
on the interactive effects using the Least Square Means
within the R package “lsmeans” (Table S3). In order to
account for the potential effect of different treatment
replicates, we used a type II ANOVA, except whenever an
interaction effect was observed and a type III ANOVA was
used instead [61]. Sequencing data were analyzed with the
“phyloseq” package [62]. The Shannon diversity index was
calculated after removing OTUs not observed more than
three times in at least 10% of the samples. Specific
sequencing barcodes per sample, and the number of reads
that passed the filtering criteria can be found in the Sup-
plementary Datafile 1. We used a permutational analysis of
variance (PERMANOVA) with 9999 permutations on a
dissimilarity matrix (Morisita–Horn on top of a Hellinger
transformed OTU table) to assess the effect of the variables
under study on functional gene diversity using the function
adonis() in the “vegan” package with a two-factorial design
[63] (Table S4). Similarly to the ANOVA analyses, we
developed two models, the first model (eT vs. eCO2 data-
set) included [eCO2], [eT], and their interactions, the sec-
ond model (drought dataset) included drought, [eT × eCO2]
and their interactions. This test is sensitive to dispersions
among groups, which might be more pronounced
in situations where there is a different number of replicates
per treatment and thus confound significant PERMANOVA
results. Therefore, we confirmed a priori that groups did
not differ significantly in their dispersion by performing an
analysis of multivariate homogeneity (PERMDIST) using
the function betadisper() of the package ‘vegan’, with the
bias.adjust=T argument, to account for differences in
sample size [64, 65]. All raw sequencing data were
deposited into the NCBI SRA under BioProject ID
PRJNA612521. All the remaining data are available as
Supplementary Material.

Results

Soil biogeochemical variables and processes are
sensitive to drought but not to other global change
factors

Manipulation of CO2 concentration and temperature had
little or no effect on soil N and C pools, and N processes in
the studied grassland (Table 3). No significant statistical
effect was found for [eCO2], neither alone nor in combi-
nation with [eT], for soil N, SWC, pH and gross N process

3042 J. Séneca et al.



rates. In contrast, only microbial MBN and DOC increased
significantly in response to [eT] alone (Table 3).

Drought had a significant effect on most of the measured
variables and processes. SWC decreased from 33% in the
ambient plots to around 6% in the drought plots (Tables 2
and 3, F= 1164.6, p= 2.25 × 10−16). In addition, drought
caused a loss of 24.6 % (in ambient conditions) and 50% (in
future climate scenarios) of aboveground plant biomass,
which corresponded to a reduction in plant N uptake of
15.8% and 46.6% respectively (data not shown). Further-
more, MBN was significantly higher in both the drought
plots (F= 11.31, p= 0.003) and in [eT × eCO2] plots (F=
6.11, p= 0.025), with no significant interaction term
(Table 3).

There was a significant increase of DIN (F= 15.24, p=
0.001), DON (F= 10.96, p= 0.004), TDN (F= 26.35, p=
0.0001), and DOC (F= 24.44, p= 0.0001) in the drought
plots relative to ambient plots, but no significant effect of

[eT × eCO2] conditions. The response of inorganic N forms
to drought was mainly driven by increases in NH4

+ contents
under drought (Table 3; F= 93.35, p= 4.23 × 10−8), since
NO3

− levels remained unchanged. Moreover, N miner-
alization rates increased significantly in response to indivi-
dual and combined effects of drought and [eT × eCO2]
(Table 3). Concomitantly, nitrification rates were sig-
nificantly higher in the drought plots (Tables 2 and 3).
These results should however be interpreted with caution
due to the potential short-term rewetting effect introduced
by the application of a liquid tracer during the isotope pool
dilution experiments [66].

AOB are the most abundant ammonia-oxidizer
group and did not decrease with drought

Betaproteobacterial AOB amoA gene copy numbers ranged
between 1.43 × 109 and 3.79 × 109 copies g−1 DW,

Table 2 Average values for soil
parameters, organic and
inorganic pools and process
rates (means ± SE).

Mean values per treatment

[Ambient] [eT] [eCO2] [eT] ×
[eCO2]
[eT ×
eCO2]

[Ambient] ×
[D]

[eT ×
eCO2] × [D]

Mean ± SE Mean ± SE Mean ± SE Mean ± SE Mean ± SE Mean ± SE

(n= 8) (n= 3) (n= 3) (n= 4) (n= 4) (n= 4)

Soil parameters

SWC 0.34 0.01 0.32 0.01 0.34 0.00 0.33 0.01 0.08 0.01 0.06 0.01

pH 4.95 0.03 5.02 0.05 4.99 0.03 4.97 0.03 4.96 0.04 5.01 0.02

Soil N 0.31 0.01 0.27 0.02 0.26 0.02 0.29 0.02 0.32 0.01 0.33 0.03

MBN 79.31 5.89 93.39 14.16 63.65 9.89 93.34 6.59 99.44 7.09 120.26 6.03

Extractable organic and inorganic pools

NO3
− 2.97 0.64 5.18 2.30 4.19 1.47 5.95 2.46 5.98 1.72 5.26 1.09

NH4
+ 1.11 0.20 0.87 0.12 0.95 0.13 0.89 0.11 12.23 4.54 13.13 2.99

DIN 4.09 0.76 6.04 2.25 5.13 1.45 6.84 2.51 18.21 6.15 18.39 3.56

DON 14.54 2.21 8.51 1.90 12.37 0.67 12.65 1.83 19.34 1.18 23.78 3.45

TDN 18.63 2.78 8.51 1.91 12.37 0.68 19.49 1.07 37.55 7.08 42.16 4.48

DOC 87.28 8.65 93.79 3.26 79.99 0.88 94.07 7.93 165.68 45.37 215.09 59.17

Gross process rates

NH4
+

mineralizationa
2.72 0.38 1.75 0.76 2.62 0.35 2.97 0.49 4.03 0.30 6.97 0.81

NH4
+

immobilizationab
2.08 0.49 1.14 0.51 1.82 0.23 3.44 1.05 5.18 1.73 10.59 3.89

Nitrification 1.77 0.42 2.24 0.80 2.73 0.20 2.38 0.73 3.89 0.17 4.56 0.62

The number of biological replicates is shown in parenthesis. Soil water content (SWC) is expressed in % of
fresh soil; MBN microbial biomass N and TDN total dissolved nitrogen are expressed in µg N g−1 DW; DIN
dissolved inorganic nitrogen and DON dissolved organic nitrogen are expressed in µg N g−1 DW.
Ammonium (NH4

+) and nitrate (NO3
−) are expressed in µg N g−1 DW. DOC dissolved organic carbon is

expressed in µg C g−1 DW. All process rates are expressed in µg N g−1 DW d−1.
an= 3 for treatment [Ambient] × [D].
bn= 3 for treatment [eT × eCO2].
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indicating that they were the most abundant of all ammonia-
oxidizing microorganisms in these montane-grassland plots
(Fig. 1). Archaeal amoA gene copy numbers ranged
between 1.21 × 108 and 2.70 × 108 copies g−1 DW, and
CMX clade B amoA gene copy numbers ranged from
9.10 × 107 to 2.50 × 108 copies g−1 DW. We observed no
significant effect of individual and combined [eT] and
[eCO2] effects on amoA gene abundance (Fig. 1a). We
found an interactive effect of [eTeCO2] and [D] in both
CMX and AOB (Fig. 1b), although post-hoc analyses
revealed significant differences between individual treat-
ments for AOB only (Table S3).

Betaproteobacterial AOB amoA transcript copy numbers
ranged between 1.14 × 107 and 3.62 × 107 copies g−1 DW,
whereas AOA and CMX clade B had similar amoA tran-
script copies g−1 DW (0.27–0.99 × 107 and 0.23–1.46 × 107,
respectively) (Fig. 1). We observed no significant individual
[eT] and [eCO2] effects on amoA transcription (Fig. 1a;
Table S2). There was an interactive effect in CMX amoA
transcription (Fig. 1a), although not supported by the post-
hoc analysis (Table S3). On the other hand, both AOA and
CMX clade B amoA transcript copy numbers decreased
significantly in response to drought (Fig. 1b). Notably,

AOB amoA transcription was not affected by drought, but a
significant decrease in AOB amoA transcript copy numbers
was observed in plots affected by [eT × eCO2].

AOA and NOB community structure is significantly
affected by drought

The richness of nitrifying communities in all treatments was
relatively low. We recovered 12 CMX amoA OTUs, 23
AOA amoA OTUs, and 15 AOB amoA OTUs which were
robustly assigned to the corresponding phylogenetic clades
after excluding unspecific OTUs (Figs. S2, S3). Unspecific
OTUs comprised 0.01%, 0.05%, and 0.3% of all reads for
AOA, CMX, and AOB, respectively, (Table S1) and are
therefore unlikely to interfere with the qPCR quantifica-
tions. In addition to excluding nonspecific AOA OTUs, the
coverage of the qPCR primers was checked in silico due to
the use of different AOA primer pairs for archaeal amoA
quantification and sequencing. This resulted on the exclu-
sion of three more AOA OTUs, which comprised 32% of all
reads (Table S1). Notably, CMX clade A amoA amplifica-
tion was not detectable in all samples. Furthermore, 40 nxrB
OTUs also displayed a robust taxonomic classification

Table 3 Individual and combined effects of eT, eCO2, and drought in soil parameters, organic and inorganic pools and process rates.

Treatment effects

eT vs. eCO2 dataset Drought dataset

[eT] [eCO2] [eT] × [eCO2] [eTeCO2] [D] [eT × eCO2] × [D]

F p F p F p F p F p F p

Soil parameters

SWC 3.140 0.09 0.72 0.40 1.180 0.29 1.740 0.21 1164.59 2.24× 10−16 0.621 0.42

pH 0.557 0.47 0.01 0.93 1.280 0.27 0.890 0.36 0.28 0.60 0.320 0.57

Soil N 0.128 0.73 1.39 0.26 3.140 0.09 0.262 0.62 1.08 0.31 0.422 0.52

MBN 5.620 0.03 0.99 0.33 0.769 0.40 6.110 0.02 11.30 3.00× 10−3 0.240 0.63

Extractable organic and inorganic pools

NO3
− 1.570 0.23 0.40 0.53 0.010 0.89 0.990 0.33 1.03 0.32 1.720 0.20

NH4
+ 0.510 0.48 0.05 0.82 0.080 0.77 0.030 0.86 93.35 4.23× 10−8 0.670 0.42

DIN 1.230 0.28 0.31 0.58 0.005 0.94 0.700 0.41 15.24 1.00× 10−3 0.100 0.75

DON 3.120 0.09 0.54 0.47 2.260 0.15 0.007 0.93 10.96 4.00× 10−3 1.070 0.31

TDN 0.140 0.71 1.40 0.25 1.250 0.28 0.770 0.39 26.35 1.00× 10−4 0.037 0.84

DOC 5.330 0.02 0.01 0.89 NA NA 1.680 0.21 24.44 1.00× 10−4 0.000 0.99

Gross process rates

NH4
+ mineralization 0.560 0.46 0.84 0.37 1.550 0.23 8.180 0.01 22.81 2.00× 10−4 5.830 0.03

NH4
+ immobilization 0.020 0.88 1.19 0.29 3.110 0.10 2.210 0.16 5.60 0.03 0.068 0.79

Nitrification 0.030 0.85 0.95 0.34 0.430 0.51 1.320 0.26 15.26 1.40× 10−3 0.002 0.96

Statistical effects were assessed by a 2-way ANOVA type II or a 2-way ANOVA type III whenever a significant interaction term was found. Least
square means (lsmeans) multiple comparison tests were ran on interactive effects. Significant effects from the ANOVA are shown in bold. NA
depict variables for which nonparametric tests were used and therefore an interactive effect could not be calculated.

SWC soil water content,MBN microbial biomass nitrogen, DIN dissolved inorganic nitrogen, DON dissolved organic nitrogen, TDN total dissolved
nitrogen, DOC dissolved organic nitrogen.
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within the reference tree after excluding nonspecific OTUs
(Table S1, Fig. S4).

The most abundant AOA amoA gene and transcript OTU
was affiliated with genus Nitrosotalea and comprised
12–65% of the reads per treatment. The remaining OTUs
were affiliated with members of the family Nitroso-
sphaeraceae, which comprises the genera Nitrososcosmicus
and Nitrososphaera. Within the Nitrososphaeraceae, we
observed a sister group to the genus Nitrososphaera, com-
prising ten OTUs and 13–37% of the reads per treatment
(Fig. S2a). Statistical analyses showed that the AOA amoA
gene community structure was significantly affected by [eT]
alone (PERMANOVA, F= 8.50; p= 0.02; Table S4;
Fig. S5a), and plots on which temperature was manipulated
individually showed a higher Shannon index (ANOVA, F
= 5.18; p= 0.03; Fig. 2a). In addition, variance partitioning

revealed a significant difference in AOA amoA gene and
transcript community structure in response to drought
(PERMANOVA, F= 36.48, p ≤ 0.001; and F= 3.91, p=
0.04, respectively) (Fig. 3b; Table S4; Fig. S5b). Changes in
community structure resulted in a significantly higher
Shannon diversity index of AOA amoA gene (ANOVA,
F= 10.908, p= 0.004) in the drought plots (Fig. 2b). The
changes in AOA community composition at both transcript
and gene levels reflected a clear decrease in the relative
abundance of Nitrosotalea-affiliated OTUs in response to
individual manipulations of drought (Fig. 3a; Fig. S5b) and
[eT] (Fig. 3a; Fig. S5a).

Regarding CMX clade B amoA gene and transcript
diversity, a clear dominance of one single OTU, which
comprised an average of 87.3% and 87.5% of gene and
transcript reads per treatment, respectively, (Fig. 3; Fig. S5),

Fig. 1 qPCR quantifications of amoA gene and transcript copy
numbers per gram of dry soil from the ammonia-oxidizing
microbial groups. a Quantifications from plots affected by elevated
temperature (eT) and atmospheric CO2 concentrations (eCO2). The
dashed lines represent plots affected by elevated atmospheric CO2

conditions (eCO2). The colors represent plots affected by either ambient
temperature (aT) or elevated temperature (eT). b Quantifications from

plots affected by future climate (eT x eCO2) and drought (D). The
dashed lines separate plots affected by drought (D). The colors repre-
sent the drought treatment. The caption on the upper right corner of
each subplot represents the ANOVA results. *p value <0.05; **p value
<0.01. Whenever the ANOVA results showed a significant interaction
term, lsmeans multiple comparison tests were ran. For details on the
ANOVA and post-hoc tests, see Tables S2 and S3.
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was observed. There were no significant effects of any
tested variable on CMX clade B community composition
and diversity indexes.

The betaproteobacterial AOB amoA diversity was
dominated by OTUs affiliated with the genus Nitrosospira,
and the abundance of Nitrosomonas-related amoA OTUs
was very low (average of 0.24% and 0.73% of amoA gene
and transcript reads per treatment, respectively). At the
transcript level, the most abundant OTU was most similar to
an uncultured Nitrosospira clade D19 OTU (100% iden-
tity), which comprised an average of 53% of the reads per
treatment (Fig. 3), dropping to 24.4% at the gene level
(Fig. S4). On the other hand, the most abundant OTU at the
gene level was most similar to an uncultured Nitrosospira
clade D12 OTU (100% identity), with an average of 56.7%

of the reads per treatment (Fig. S4). The most abundant
transcript OTU was 87.6% identical to the most abundant
gene OTU. Variance partitioning showed a significant
interaction effect of [eT × eCO2] × [D] on the diversity and
relative abundance of AOB amoA transcripts (PERMA-
NOVA, F= 5.34, p= 0.02; Table S4). Notably, this treat-
ment showed the lowest Shannon diversity index across all
treatments (Shannon= 0.95 ± 0.05; Fig. 2b). At the AOB
amoA gene level, a significant increase in the Shannon
index was observed in ambient plots versus [eT × eCO2]
plots, only under drought conditions (Fig. 2b; Tables S2
and S4).

Nitrospira nxrB OTUs were affiliated with lineage 1, 2,
5, and 6, with a clear dominance of lineage 2, which
comprised an average of 88.9% and 79.9% of gene and

Fig. 2 Shannon diversity index based on amoA/nxrB gene and
transcript sequences from all microbial groups. a Quantifications
from plots affected by elevated temperature (eT) and atmospheric CO2

concentrations (eCO2). The dashed lines represent plots affected by
elevated atmospheric CO2 conditions (eCO2). The colors represent
plots affected by either ambient temperature (aT) or elevated
temperature (eT). b Quantifications from plots affected by future

climate (eT x eCO2) and drought (D). The dashed lines separate plots
affected by drought (D). The colors represent the drought treatment.
The caption on the upper right corner of each subplot represents the
ANOVA results. *p value <0.05; **p value <0.01. Whenever the
ANOVA results showed a significant interaction term, lsmeans mul-
tiple comparison tests were ran. For details on the ANOVA and post-
hoc tests, see Tables S2 and S3.
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transcripts, respectively (Fig. 3; Fig. S5). The closest cul-
turable representative of the most abundant OTU was
Nitrospira japonica (99.92% identity), and most of the
OTUs clustered together with environmental sequences
from Austrian and Namibian soil clusters (Fig. S4).
Amplicon sequencing showed that NOB were the most
diverse group of nitrifiers, showing the highest Shannon
index values of all microbial groups. (Fig. 2). Variance
partitioning showed that [eT] alone caused significant dif-
ferences in nxrB gene community structure

(PERMANOVA, F= 4.06, p= 0.02; Table S4; Fig. S5a),
although there were no significant differences in alpha
diversity. Drought caused significant differences in both
nxrB gene and transcript community composition (PER-
MANOVA, F= 5.34, p= 0.02, PERMANOVA, F= 6.53,
p < 0.01; Table S4). These changes were coupled with
significantly lower levels of alpha diversity under drought at
the transcript level (ANOVA, F= 5.75, p= 0.03; Fig. 2b),
although the same trend was not observed at the gene level.
Contrastingly, nxrB gene community structure was
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Nitrosospira D12

Nitrosospira D16

Nitrosospira D19

Nitrosospira D8

Other

Austrian grassland soil cluster
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Lineage V

Other

Nitrosocosmicus
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Nitrosotalea

Other

Lineage I

AOA

CMX

AOB

NOB

Fig. 3 Relative abundance (%) of all nitrifying groups obtained by
amoA and nxrB transcript sequences. a Data for plots affected by
single and interactive effects of elevated temperature (eT) and atmo-
spheric CO2 (eCO2) concentrations. b Plots affected by single and
interactive effects of future climate conditions (eT x eCO2) and

drought (D). The color code represents different genera/OTU/clades/
lineages. “Amb” stands for “ambient conditions”. Multiple horizontal
lines within the same color represent individual OTUs within a group.
Taxa that comprised <0.1% of all reads per treatment are grouped as
“Other”.
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significantly affected by [eT × eCO2] (PERMANOVA, F=
5.52, p= 0.02; Table S4), which was reflected in sig-
nificantly lower Shannon index values (ANOVA, F= 9.12,
p= 0.008; Fig. 2b).

Discussion

Ammonia-oxidation, usually regarded as the rate-limiting
step of nitrification [67], is mediated by specific groups of
bacteria and archaea. Therefore, climate change induced
alterations in nitrifier community structure could affect soil
nitrification to a higher degree than other N cycling pro-
cesses, such as protein decomposition [11, 68] which are
carried out by broader sets of microorganisms. In addition,
since the discovery of complete nitrifiers, there is a need for
the reassessment of the relative role of each microbial group
in ammonia oxidation under climate change. Here we report
an in-depth assessment on the effect of multiple climate
change drivers on soil nitrification, including (i) the quan-
tification of functional genes and transcripts by quantitative
PCR, (ii) a census of the nitrifying microorganisms by
sequencing at the functional gene and transcript levels, and
(iii) an estimation of gross ammonification and
nitrification rates.

In contrast to our first hypothesis we found that the
nitrification process was relatively resistant to increases in
atmospheric CO2 with no significant changes in gross
nitrification and in nitrifier functional gene abundance and
expression. Effects of increased atmospheric CO2 on soil
microbial processes are primarily determined by changes in
plant belowground carbon inputs and in plant nutrient
uptake [69], where rhizodeposition can promote hetero-
trophic microbial activity, but greater plant N uptake may
cause substrate (NH4

+) limitation for nitrifiers. At our site,
no increase in above and belowground net primary pro-
ductivity was found in response to elevated CO2 or tem-
perature (Canarini et al., in preparation). Likewise, eCO2

did not affect gross N mineralization and NH4
+ levels,

highlighting that substrate availability for nitrifiers did not
change in response to eCO2. In addition, other studies also
reported very few effects of elevated atmospheric CO2

concentration on belowground N processes in heathlands
and temperate grasslands [70–72] showing that soil para-
meters such as pH and inorganic N concentrations likely
play a more significant role than increased atmospheric CO2

on overall nitrification.
Elevated temperature alone also did not significantly

affect most of the soil processes and variables studied. More
importantly, in contrast to our second hypothesis, elevated
temperature did not affect the abundance, composition, and
activity of soil nitrifier communities, indicating a high tol-
erance of the nitrification process to temperature in this

ecosystem. Also, our results are in line with meta-analyses
that observed that the effect of temperature on N cycling
processes is less pronounced in grasslands, in comparison
with other ecosystem types [36, 73]. In addition, other stu-
dies in grassland systems also reported no significant effects
of elevated temperature on nitrification [72, 74]. Our results
indicate that increased temperature might have altered abiotic
and biotic soil parameters that may be masking individual
temperature effects. Specifically, the soil water content at our
field site was found to decrease throughout summer (Simon
et al., under review) which can constrain substrate avail-
ability and/or accessibility to nitrifiers and mask potential
stimulatory effect of warming on the nitrification process.
Also, plant production of biological nitrification inhibitors
(BNIs) could explain these results. However, BNIs were not
assessed in this study, and their importance has mostly been
reported in N-limited ecosystems [75, 76].

We further hypothesized that drought would reduce the
abundance and activity of all nitrifying groups but found
that responses to drought were group specific. The amoA
expression levels of AOA and CMX clade B significantly
decreased, whereas AOB either maintained (eT × eCO2

plots) or increased (under ambient temperature and CO2)
their amoA transcription levels under drought. Drought can
directly affect microbial growth by reducing the soil water
potential and forcing microorganisms to invest into
osmoregulation rather than growth and replication [33]. It
can also have indirect effects on microbial communities by
reducing plant belowground C allocation [77, 78], and by
changing the availability and mobility of nutrients through a
reduced soil pore connectivity and reduced plant uptake
[79]. Studies have shown that plants can alter their root
exudate abundance and composition during drought periods
[80] as an attempt to better cope with the osmotic stress and/
or to recruit particular fungi to the vicinity of the roots
[81, 82]. Within root exudates, plants can also actively
secrete BNIs, but given that fertilized grasslands are often
not N limited, and our results point to higher NH4

+ levels
under drought, there is little evidence to support a relevant
role for BNIs in these systems [76, 83]. Also, at the same
study site, a decrease in plant biomass has been observed
under drought, as well as a reduction in total plant N uptake.
As a consequence of the plant response to drought, organic
and inorganic dissolved N forms accumulated in the soil
(Table 2) as reported in other studies [33]. The same pattern
was observed with regards to microbial biomass N. Pre-
vious studies reported an increase in microbial biomass with
drought, and have indicated that major pools of C- and N-
based microbial metabolites are dynamic in response to
drought [84, 85]. The accumulation of organic and inor-
ganic N forms might have created optimal conditions for the
proliferation of AOM with low ammonia (NH3) affinities
and high Vmax, such as AOB, as opposed to AOA and CMX
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[12]. AOA have been reported to be more sensitive to
perturbations and variations in NH4

+ concentrations when
compared with AOB [11, 86]. Also, the nitrification activity
of both AOA and CMX saturates faster due to lower
maximum rates of NH3 oxidation, compared with AOB
[12]. However, no pure culture representative exists for
CMX clade B yet, and the kinetic parameters of Nitrospira
inopinata—the only CMX Nitrospira clade A isolate so far
—might not be representative of all CMX members [12].
AOB, and particularly members of the genus Nitrosospira,
are ubiquitous in grasslands and tolerate high concentrations
of NH4

+ [87]. In addition, genes involved in the protection
of bacterial cells from hypoosmotic stress have been found
in N. multiformis, showing that these organisms are well
adapted to changes in soil water potential. However,
osmoprotectants have also been detected in genomes of
cultivated AOA [88–91], indicating that these organisms
can also adapt to osmotic stress. Nevertheless, a dominance
of AOB in managed grasslands has been reported due to
frequent fertilization events [13, 14], and AOB are known
to outcompete AOA in substrate-rich environments [9].

Along with an overall decrease in archaeal amoA gene
and transcript copy number in response to drought, we
found a reduction in the relative abundance of AOA OTUs
affiliated to Nitrosotalea. This could be explained by the
accumulation of organic compounds under drought, some
of which were shown to inhibit Nitrosotalea activity and
growth in pure cultures [92] compared with other AOA
such as N. viennensis and N. gargensis [88, 93]. Further-
more, inhibition by organic compounds has been shown to
be stronger in AOA than in AOB, although it varies
between AOA strains [94, 95].

Even though we lack quantitative data on nxrB gene and
transcript abundance due to still unresolved methodological
challenges, we observed that the existing Nitrospira-like
NOB community structure differed significantly in the
drought plots compared with the non-drought plots, which
was reflected on a decrease in the Shannon diversity index
at the transcript level. Nitrospira were shown to have a high
affinity for nitrite, and often dominate NOB communities in
N-limited soils [96]. Given that NO2

− often does not
accumulate in soils, Nitrospira are considered to be the
main nitrite-oxidizing genus in these ecosystems [97, 98].
Regardless of the decrease in diversity under drought,
Nitrospira sublineage II remained the most abundant sub-
lineage. Pure culture studies have reported a high metabolic
flexibility of members of this sublineage, and it is possible
that some microorganisms affiliated with sublineage II are
better able to cope with the higher osmotic stress and levels
of inorganic N imposed by drought [99, 100]. In addition,
another study has reported higher rates of autotrophic
growth of a Nitrospira sublineage II phylotype upon the
addition of NH4

+ [101].

Emission of the greenhouse gas N2O has been shown to
increase up to eightfold following the end of a drought
period in grassland ecosystems, and a single short rain event
can increase the annual net N2O flux between 2 and 50%
[102]. Therefore, our findings may also have broader
implications since a drought-induced alteration in nitrifier
community structure in favor of AOB over AOA and CMX
might lead to higher N2O emissions upon rewetting. In soil,
N2O is produced by denitrifying and ammonia-oxidizing
microorganisms [103]. Within the latter group, AOB pro-
duce relatively high yields of N2O via hydroxylamine oxi-
dation under oxic conditions [104], while AOA and CMX
produce much lower yields of N2O during aerobic ammo-
nium oxidation [105, 106]. Changes in redox potential
could affect nitrification processes, specifically at the
interface between aerobic and (partially) anaerobic soil
portions. However, the soils in this study did not reach
anaerobic conditions (maximum 34% soil water content),
therefore making it unlikely that redox changes would have
played a significant role.

Finally, we found few to no significant interactive effects
between the different climate change drivers. Global
reviews have shown that the interaction of different climate
change factors can lead to nonadditive effects [6], although
a more recent meta-analysis showed that antagonistic and
synergistic effects are quite rare [7]. A recent study in a
grassland system assessed the effect of elevated temperature
and elevated CO2 and found that while combinatory effects
were antagonistic, they were mostly nonsignificant [72].
Regarding nitrifier community composition, only active
AOB were significantly affected by the interactive effect of
future climate conditions and drought [eTeCO2 × [D]).
Under these conditions, the AOB diversity and abundance
were lowest, as assessed by amoA amplicon sequencing and
gene and transcript copy number quantification, which
agrees with our last hypothesis.

In conclusion, in our study we demonstrated that nitri-
fying communities in grassland soils were remarkably
unresponsive to elevated CO2 and elevated temperature,
alone or in combination, resulting in unaltered nitrification
rates. We also showed that drought significantly changed
the structure of the existing nitrifying communities, possi-
bly through a strong reduction of plant biomass and N
uptake. We hypothesize that the specific conditions created
by drought (such as the accumulation of NH4

+ and organic
N, and, reduced pore connectivity) resulted in favorable
niches for AOB, that showed higher or unaltered levels of
amoA transcription and drove the observed peak in nitrifi-
cation rates at the expense of ammonium-oxidizing archaea
and comammox Nitrospira. Nevertheless, caution should
be taken when interpreting nitrification rates due to
the potential short-term rewetting effect introduced by the
application of the liquid tracer (see Methods section). Future

Composition and activity of nitrifier communities in soil are unresponsive to elevated temperature and. . . 3049



climate conditions further interacted with drought and
caused an antagonistic effect on the diversity and abun-
dance of this group, without reducing gross nitrification
rates. Given that a shift in nitrifier community structure
towards AOB could potentially result in higher N2O emis-
sion rates at the end of the drought period, special emphasis
should be put into understanding the sensitivity of different
nitrifiers to individual and combined global change vari-
ables in terrestrial ecosystems.
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