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Abstract: Melatonin, a multifunctional molecule that is present in all living organisms studied,
is synthesized in plant cells in several intercellular organelles including in the chloroplasts and
in mitochondria. In plants, melatonin has a relevant role as a modulatory agent which improves
their tolerance response to biotic and abiotic stress. The role of melatonin in stress conditions
on the primary metabolism of plant carbohydrates is reviewed in the present work. Thus, the
modulatory actions of melatonin on the various biosynthetic and degradation pathways involving
simple carbohydrates (mono- and disaccharides), polymers (starch), and derivatives (polyalcohols)
in plants are evaluated. The possible applications of the use of melatonin in crop improvement and
postharvest products are examined.
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1. Introduction

Plants obtain their energy and resources via an autotrophic means. All their organic
molecules are synthesized from inorganic elements such as CO2 and primarily from diverse
compounds including nitrogen, sulfur, and phosphorus, among others. In addition to
their rich secondary metabolism, plants produce a multitude of primary metabolites
including carbohydrates, lipids, and amino acids. The group of carbohydrates of plant
origin comprises a wide range of simple sugars such as mono- and disaccharides, sugar
alcohols, and polymers such as starch and cellulose [1,2].

Pathways of plant carbohydrate metabolism are well known. From the generated-
Calvin cycle triose-phosphate pool, the biosynthetic routes of fructose, glucose, and other
simple carbohydrates are well delineated. In plants, sucrose metabolism is crucial to feed
phloem transport from source parts to sink parts. Gluconeogenesis and pentose phosphate
shunt are the major pathways where simple carbohydrate biosynthesis is involved [3].
Other important compounds such as polymers (starch, cellulose, and derived) and sugar
alcohols/polyalcohols (glycerol, myo-inositol, sorbitol, manitol, etc.) are synthesized from
the formers. Carbohydrates, polyalcohols, and some amino acids (especially proline), in
addition to their nutritional function in cells, have an interesting role as osmoregulatory
compounds, especially in stressful situations [4,5].

The present paper highlights a literature summary of the effects of melatonin on
carbohydrates metabolism, focusing on diverse aspects such as carbohydrate content,
gene-related regulation, and the possible use of melatonin to improve crop production and
quality and postharvest preservation.

2. Biosynthesis of Melatonin in Plants

Melatonin (N-acetyl-5-methoxytryptamine) is a tryptophan-derived compound dis-
covered in plants in 1995 [6–8]. Melatonin is a highly studied biomolecule due to its known
role in mammals as a regulating hormone of sleep-wake cycles, and other functions in
endogenous rhythms, mood, metabolism, and immunological responses [9,10]. In addition,
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it has been investigated as to its therapeutic efficacy in Alzheimer’s disease, Parkinsonism,
cancer, diabetes, and SARS-CoV-2 [11–17].

Melatonin biosynthesis in plants originates with the amino acid tryptophan, which
is endogenously synthesized in plant cells in the chorismate pathway. Five enzymes are
involved in the conversion of tryptophan to melatonin; these are tryptophan decarboxylase
(TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), acetylsero-
tonin methyltransferase (ASMT), and caffeic-O-methyltransferase (COMT) [18,19]. These
enzymes catalyze the conversion of the indolic compounds tryptophan, tryptamine, sero-
tonin, 5-methoxytryptamine, and N-acetylserotonin to melatonin, as illustrated in the
biosynthetic pathway shown in Figure 1. However, this primary melatonin biosynthetic
pathway may present alternatives such as serotonin biosynthesis through 5-hydroxytrypto-
phan, although this possibility seems specific to animals since the responsible enzyme
(tryptophan hydroxylase) has not been detected in plants. In addition, a conversion of
N-acetylserotonin to serotonin by the enzyme N-acetylserotonin deacetylase has been
described [18,20]. With respect to the subcellular localization, several studies in arabidopsis
and rice plants indicated that the involved enzymes act in the cytoplasm (TDC, ASMT and
COMT), endoplasmic reticulum (T5H), and chloroplasts (SNAT) [21]. In addition, the par-
ticipation of mitochondria has been described, through arylalkylamine N-acetyltransferases
(AANAT) and hydroxyindole-O-methyltransferases (HIOMT), observing that, when the
melatonin pathway is artificially blocked in chloroplasts, melatonin biosynthesis shifts to
the mitochondria to maintain melatonin generation [21,22]. Generally, stressors induce
melatonin biosynthesis in plants through the upregulation of diverse biosynthesis isozyme
transcripts, increasing endogenous melatonin production [23].
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Figure 1. Biosynthesis of melatonin in plants.

3. Roles of Melatonin in Plants

Melatonin is a pleiotropic molecule in plants. Melatonin has many beneficial actions,
generally improving physiological responses such as seed germination and growth, photo-
synthesis (pigment content, photorespiration, stomatal conductance and water economy),
seed and fruit yield, osmoregulation, and the regulation of the different metabolic pathways
(carbohydrates, lipids, nitrogen compounds, sulphur, and phosphorus cycles) [24–34]. With
respect to secondary metabolism, melatonin induces the biosynthesis of simple phenols,
flavonoids, anthocyanins, carotenoids, and several terpenoids [35–38]. Melatonin promotes
rooting processes [39–43] and also delays leaf senescence [44–49]. In postharvest fruit,
it regulates ethylene and lycopene content, as well as general ripening metabolism and
induces parthenocarpy during fruiting [50–52]. It also preserves cut flowers [53,54]. In
pathogen infections, melatonin slows damage, stimulating systemic acquired resistance
(SAR) and contributes to crop health [55]. Due to this high number of actions, melatonin
has been referred to as a plant master regulator [56,57], mainly due to its role as a plant
hormone regulator, with a substantial influence on auxin, gibberellins, cytokinins, abscisic
acid, ethylene, jasmonic acid, salicylic acid, and brassinosteroids [58,59].

Melatonin displays a relevant role in the stress responses. Similar to what occurs in
animal cells, melatonin acts as an excellent scavenger of reactive oxygen species (ROS) and
reactive nitrogen species (RNS) in plants. This antioxidant capacity has been extensively
studied [60–62]. The data show that melatonin acts as a direct antioxidant, neutralizing
several ROS/RNS and other radical species harmful to the cell, and also acts as an activator
of the antioxidant response, upregulating various transcription factors that trigger the
activity of antioxidant enzymes such as superoxide dismutases, catalases, peroxidases,
and those involved in the ascorbate-glutathione cycle, among others [22,63]. Via these
means, melatonin acts as a master regulator of the responses of the redox, hormonal, and
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osmoregulatory systems [56,58,59,64]. In summary, as can be seen in Figure 2, through the
redox and hormonal network, melatonin regulates photosynthesis, primary and secondary
metabolism, and pathogenic response to increase abiotic/biotic tolerance and, as a result,
crop yield. One of the most interesting aspects is the ability of melatonin to regulate the
carbohydrate metabolism and its relationship with the osmoregulatory response, which is
a key in stressful situations of plants.
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4. Effect of Melatonin in Simple Carbohydrates, Starch, and Polyalcohols

The term phytomelatonin refers to melatonin of plant origin as opposed to the animal
hormone, but they have the identical chemical structure. The first studies on the role of
phytomelatonin in plants appeared at the end of the last century and the beginning of the
present one [65]. Table 1 summarizes the results of studies on melatonin and carbohydrates
in plants. Based on these data, the initial report related to melatonin and carbohydrates in
plants is an in vitro study in cherry rootstock. In this study, exogenous melatonin added to
the culture media induced plant growth and rooting in shoot tip explants; in addition, an
elevation in endogenous levels of total soluble sugars in 9-week-old plants, both in leaves
and roots, and in chlorophylls, carotenoids, and proline level were also observed. These
findings indicate an improvement in plant primary carbon metabolism, with a melatonin-
concentration dependent response [31]. Also in apple trees, melatonin treatment of leaves
produced an increase in the levels of monosaccharides, sucrose, starch, and sorbitol as well
as an improvement in the photosynthetic rate and a reduction in foliar senescence and
autophagy [32]. Other studies were focused on improving the plants’ tolerance to certain
stresses. Thus, melatonin treatments enhanced saline tolerance in soybean [33], tomato [66],
and bermudagrass plants [67] (see Table 1), accompanied by an activation of carbohydrate
metabolism and, in some cases, lipid and ASC-GSH metabolism as well [68]. There are many
studies on the promotional effect of fruit development after the application of melatonin
in leaves and/or roots. One of the first was carried out in tomato plants, where melatonin
applications induced photosynthetic processes with a higher yield in biomass and a greater
number of fruits which were of greater caliber and exhibited optimal ripening [69]. In pear
trees, 100 µM melatonin treatments induced higher total sugars and starch levels and better
fruit sizes which were of high quality [70]. In addition, postharvest melatonin treatments in
various fruits gave rise to higher quality fruits with an increased content of sugars, starch,
organic acids, and pigments, as had been demonstrated in tomato [71] and banana [72], and
other fruits such as peach, strawberry, pear, plum, and litchi [27,53]. In one comprehensive
study, melatonin treatments induce innate immunity in Arabidopsis with the accumulation
of various sugars and glycerol, as well as increasing disease resistance against Pseudomonas
syringe [73]. In general, plants treated with melatonin exhibit increases in the levels of simple
sugars, sucrose, starch, and some polyalcohols.
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Table 1. Examples of studies on carbohydrates and melatonin.

Plant Melatonin Treatment (µM) Compound Level vs. Un-Treated Response vs. Un-Treated Reference

Prunus avium x
Prunus cerasus

(in vitro)
0.05–10 ↑ total carbohydrates ↑ rooting

↑ plant biomass [31]

Malus hupehensis
tree 100 ↑ fructose, glucose, sucrose, starch

↑ sorbitol

↑ photosynthesis
↓ senescence
↓ autophagy

[32]

Tomato fruits 1–500 ↑ soluble sugars ↑ fruit ripening and quality [71]

Tomato plants

100 ↑ glucose, sucrose, inositol
↓ fructose, galactose

↑ photosynthesis
↑ plant biomass

↑ fruit number and size
[69]

20–50 ↑ soluble sugars
↑ ascorbate and GSH

↑ photosynthesis
↑ plant growth
↑ NaCl tolerance

[66]
[74]

Soybean 50 and 100

↑ carbohydrate metabolism, fatty acid biosynthesis, and
ascorbate metabolism

↑ light reactions, Calvin cycle, carbohydrate, amino acid, fatty
acid metabolism and Krebs cycle

↑ germination, biomass
↑ photosynthesis
↑ cell division

↑ NaCl tolerance

[33]

Bermudagrass
(Cynodon dactylon)

4–100
54 metabolites, including amino acids, organic acids, sugars,

and sugar alcohols
↑ photosyntesis, Calvin cycle and carbohydrate metabolism

↑ NaCl tolerance
↑ cold tolerance

↑ drought tolerance
[67]

100 ↑ arabinose, mannose, gluco-pyranose, maltose and turanose ↑ cold tolerance
↑ photosynthesis [75]

Maize

10–100 ↑ fructose, glucose, sucrose, starch and its biosynthesis genes ↑ photosynthesis
↑ leaf and root growth [76]

10–1000

↑ total soluble sugars
↑ nitrogen compounds

↑ expressions of genes involved
in C- and N- metabolisms

↑ photosynthesis
↑ plant growth [77]

Banana fruits 50–500 ↑ total soluble sugars
↑ starch

↑ fruit ripening and quality
↓ ethylene [72]
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Table 1. Cont.

Plant Melatonin Treatment (µM) Compound Level vs. Un-Treated Response vs. Un-Treated Reference

Vicia faba 50 ↑ soluble sugars
↑ ascorbate and GSH

↑ As tolerance
↑ photosynthesis
↑ plant growth

[68]

Brassica juncea 10–50 ↑ total soluble sugars
↑ reducing sugars

↑ photosynthesis
↑ plant growth

↑ mineral nutrition
[78]

Grape plants 50–200 ↑ fructose, sucrose, starch, reducing sugars
↑ sucrose biosynthesis genes

↑ photosynthesis
↑ plant growth

↑ mineral nutrition
[79]

Rice plants 20 ↑ fructose, sucrose, starch, reducing sugars
↑ sucrose biosynthesis genes

↑ As tolerance
↑ Krebs cycle [80]

Pear tree 100
↑ total soluble sugars

↑ sucrose, starch, reducing sugars, sorbitol
↑ sucrose synthase, invertases

↑ photosynthesis
↑ fruit size and quality [70]

Malus domestica
(plants) 1000 ↑ fructose, glucose, sucrose, sorbitol

↓ fructokinase gene
↑ melatonin-induced sugar accumulation

↑ growth inhibition [81]

Nicotiana tabacum
(in vitro) 0.2 ↑ starch

↑ PEPCK and α-amylase genes
↑ sugar starved

↑ gluconeogenesis [82]

Chinese hickory (plants) 100 ↑ total soluble sugars, starch
↑ proline

↑ drought tolerance
↑ photosynthesis, transpiration [83]

Arabidopsis thaliana
(Pseudomonas syringe

infected)
20 ↑ fructose, glucose, melibose, sucrose, maltose, galatose,

tagatofuranose and glycerol
↑ bacterial innate immunity

↑ disease resistance [73]

↑, Increased content or increased action; ↓, Decreased content or decreased action.
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5. Regulatory Action of Melatonin on Carbohydrate Metabolism

In general, melatonin improves photosynthetic and related parameters, such as photo-
synthetic rate, transpiration rate, stomatal conductance, leaf area, relative water content,
and levels of chlorophylls and carotenoids, and also delays leaf senescence. Melatonin
has a protective role against oxidative stress, reducing the levels of superoxide anion,
hydrogen peroxide, and malondialdehyde, and improving membrane stability indexes. It
also induces the expression of genes for antioxidant enzymes such as superoxide dismu-
tases, catalases, guiacol-, and ascorbate peroxidases, which in turn raises ascorbate and
glutathione levels. Also relevant is the melatonin-mediated improvement in the uptake
of mineral nutrients, which induces the expression of mineral transporters. Collectively,
the up- and downregulated genes following melatonin treatment functions to aid plants in
physiologically overcoming negative stress situations and to increase tolerance to multiple
abiotic stressors such as drought, waterlogging, salinity, heavy metals, extreme tempera-
tures, radiation, etc., including osmoregulatory responses [24,26,46,56,64,84–89].

In 2014, Guo and colleagues performed transcriptional studies and were the first to
detect changes in the expression of genes involved in carbohydrate metabolism due to
melatonin treatment [90,91]. In addition, in an excellent study on the effect of melatonin
in salinity tolerance of soybean plants, a detailed transcriptomic analysis on primary
metabolism was presented. Melatonin clearly over-expressed the transcripts of many
enzymes related to photosynthesis, starch, sucrose, glycolysis, fermentation, the Krebs
cycle, and other metabolic pathways [33]. Figure 3 diagrammatically summarizes some of
the genes up or downregulated by melatonin that are related to carbohydrate metabolism.
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In bermudagrass, melatonin-pre-treated plants exhibited significantly higher levels
of several metabolites than non-treated plants under abiotic stress conditions (salinity,
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drought, and cold). These primary metabolites included 10 amino acids, 18 carbohydrates
(allose, arabinose, cellobiose, fructose, galactose, gentiobiose, glucose, lactose, lactulose,
maltose, manobiose, manose, melibose, sucrose, tagatofuranose, talose, trehalose, and
turanose) and five polyalcohols (dulcitol, galactinol, glycerol, myo-inositol, and sorbitol),
involved in glycolysis, oxidative pentose phosphate pathway, and the Krebs cycle [67,75].
With respect to gene regulation, 2361 upregulated and 1572 downregulated transcripts
were differentially expressed in melatonin-treated plants versus control. Some examples
of carbohydrate-related transcripts regulated by melatonin are: glycosyl –transferases,
-hydrolases, -phosphatases, -epimerases, -invertases and -mutases, hexokinases, mannosi-
dases, α- and β-amylases, α- and β- glucan related-enzymes, and several dehydrogenases
(3-phosphoglycerate-, UDP-glucose-, alcohol- and aldehyde-), among others.

The regulation of carbohydrate metabolism by melatonin is accompanied by an acti-
vation of chloroplast metabolism and an improvement in the function of these organelles.
As seen in Figure 3, there are many factors upregulated by melatonin in the photosyn-
thetic light apparatus and in the Calvin cycle [33,67,75]. Melatonin also stimulates the
biosynthesis and mobilization of starch and of sucrose destined for the phloem. The role
of melatonin in sucrose metabolism has received significant attention. In maize plants,
low doses of melatonin (1–10 µM) induce sugar metabolism, photosynthesis, and sucrose
phloem loading. The authors demonstrated that high doses of melatonin inhibit seedling
growth by inducing the excessive accumulation of sucrose, hexose and starch, suppressing
photosynthesis and sucrose phloem loading [76]. The role of melatonin in improving
sucrose biosynthesis was also confirmed in pear, grape, and rice plants [70,79,80].

Intimately related to carbohydrates is the osmoregulatory response in plants sub-
jected to stress. Melatonin clearly mediates these responses by increasing the levels of
carbohydrates and polyalcohols, as already described. One of the key metabolites in the
osmoregulatory response is proline, an amino acid that accumulates in the presence of
various stressors, especially drought and salinity [92,93]. Melatonin raises proline levels
in stressed plants (Figure 3), which has been demonstrated in various species and situa-
tions [83,94,95]. Several reviews in this regard can be consulted since this aspect is outside
the present review on carbohydrates [26,64,84,85,96–98].

6. Conclusions

Numerous investigations have provided data on the regulatory role of melatonin in
multiple metabolic pathways in plants. In primary metabolism, its critical action on en-
zyme transcripts and regulatory factors in different organelles (chloroplasts, mitochondria,
endoplasmic reticulum) and subcellular sites (cytosol, cell wall) stands out. Metabolic
processes such as photosynthesis, the pentose phosphate shunt, gluconeogenesis, glycolysis
as well as the Krebs cycle and the biosynthesis of amino acids and fatty acids are clearly
under the influence of melatonin at several key steps. Carbohydrate metabolism is one of
the most studied, although much remains to be known. From the regulation of Rubisco
to the processes of glycolysis and fermentation, melatonin appears to play a decisive role
in the fate of carbohydrates synthesized in the chloroplast and cytosol. Thus, melatonin
regulates the production of triose phosphate in the Calvin cycle, its transformation into
hexoses and also the pool of starch in the chloroplastic stroma and that of sucrose in the
cytosol and cell walls. In general, melatonin activates the primary metabolism, both of
carbohydrates and of other primary components such as lipids and amino acids. The result
is an activation of the metabolic turnover such that it is adequate and conditioned to the
physiological situation of the moment. In summary, melatonin has multiple regulation
actions; for example, it influences photosynthesis, improving the efficiency of Rubisco and
other Calvin cycle-related enzymes, Photosystem I and II, chlorophyll and carotenoid con-
tent and stomatal complex, with the result of a higher net photosynthesis, and, in specific
carbohydrate metabolism, melatonin mobilizes some key pathways such as starch and
sucrose biosynthesis, through SPS, SuS, and invertases upregulation, mainly (see Figure 3),
increasing biosynthesis sugar rate to cope with stressful situations [99].
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In parallel, melatonin regulates many factors of the metabolism of plant hormones
that, together with the modulation of the redox network, make melatonin an essential
biostimulator or plant growth regulator, leading the plant through its functions to an
adaptation to environmental situations against adverse effects and increasing tolerance to
stressors [58].

Regarding melatonin’s possible applications in crop improvement and postharvest
actions, there are already many published examples (Table 1) [27,100,101]. The ability of
melatonin treatment to modify carbohydrate metabolism and increase the levels of sugars
in fruits and their organoleptic qualities are a result of its capacity to influence many stages
of secondary metabolism, especially in phenolic compounds and terpenes biosynthesis.
Highlights include its regulatory role on anthocyanins and other flavonoids, as well as
carotenoids and essential oils [35–38]. Additionally, melatonin treatment positively affects
crop yield; an increased production as a result of melatonin treatment has been observed
for rice, wheat, cucumber, tomato, rapeseed, and others [27,102–104]. Obviously, there are
many aspects to be investigated relative to the influence of melatonin on carbohydrate
metabolism, such as: the regulatory action of genes in the nucleus, chloroplasts and
mitochondria; its interactions with other plant hormones; its functions in different organs
(leaf, stem, root, flowers, fruits); its action on the accumulation and degradation of starch
in amyloplasts; its ability to influence the metabolism of sucrose in source and sink tissues,
thereby regulating phloem loading and unloading; and its action in the regulation of the
biosynthesis of polyalcohols and proline, which is key to understanding the osmoregulatory
response to stress. Finally, a complete understanding of its role in carbohydrates/fatty
acid/amino acid balance has yet to be realized.
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Abbreviations

accD acetyl-coenzyme A carboxylase-carboxyl transferase
ACLA,B cytrate synthase
ADH1,2 alcohol dehydrogenase
ADP-G ADP-glucose
ALDH3H,3F aldehyde dehydrogenase
ALDEP aldose epimerase
ALDO aldoketoreductase
ATPF1A ATP synthase alpha subunit
COX2 cytochrome c oxidase
CWI cell wall invertase
D1 (PSII) integral part of the reaction center of photosystem II
F fructose
F6P fructose-6-phosphate
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FRK2 fructokinase
FUM2 fumarate hydratase
G glucose
G1P glucose-1-phosphate
G6P glucose-6-phosphate
GAPC1 cytosolic glyceraldehyde-3-phosphate dehydrogenase
GAPCP2 chloroplastic glyceraldehyde-3-phosphate dehydrogenase
HxK hexokinase
IDH isocitrate dehydrogenase
INVINH invertase inhibitor
MDH malate dehydrogenase
NAPs senescence-induced genes
NINV neutral invertase
PaO pheophorbide a oxygenase
PEP phosphoenolpyruvate
PEPC phosphoenolpyruvate carboxylase
PEPCK phosphoenolpyruvate carboxykinase
PetF1 ferredoxin
PDC pyruvate decarboxylase
PDH pyruvate dehydrogenase
PFK phosphofructo kinase
PGK phosphoglycerate kinase
PGM phosphogluco mutase
PHO plastidial a-glucan phosphorylase
PK cytosolic
PKP2 plastidial pyruvate kinase
PNSL2 photosynthetic NADPH subunit of lumenal location
PSI Psa-A,F,G,H,K,O, Photosystem I subunits
PSII Psb-E,O,P,Q,Y,Z,28, Photosystem II subunits
PSY phytoene synthase
RbcS Rubisco small subunit
(RCCR1, SGR, NYC1,3) chlorophyll degradation-related genes
SAG12 senescence-related gene
SDH succinate dehydrogenase
SPS1/2/3 sucrose phosphate synthase irreversible
SUC sucrose
SUC6P sucrose-6-phosphate
SUS sucrose synthase reversible
TIM triose isomerase
UDP-G UDP-glucose
vAINV vacuolar acid invertase
VINV vacuolar invertase
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