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Transcriptional regulation requires the binding of transcription factors (TFs) to short sequence-specific DNAmotifs, usually

located at the gene regulatory regions. Interestingly, based on a vast amount of data accumulated from genomic assays, it

has been shown that only a small fraction of all potential binding sites containing the consensus motif of a given TF actually

bind the protein. Recent in vitro binding assays, which exclude the effects of the cellular environment, also demonstrate

selective TF binding. An intriguing conjecture is that the surroundings of cognate binding sites have unique characteristics

that distinguish them from other sequences containing a similar motif that are not bound by the TF. To test this hypothesis,

we conducted a comprehensive analysis of the sequence and DNA shape features surrounding the core-binding sites of 239

and 56 TFs extracted from in vitro HT-SELEX binding assays and in vivo ChIP-seq data, respectively. Comparing the nucle-

otide content of the regions around the TF-bound sites to the counterpart unbound regions containing the same consensus

motifs revealed significant differences that extend far beyond the core-binding site. Specifically, the environment of the

bound motifs demonstrated unique sequence compositions, DNA shape features, and overall high similarity to the core-

binding motif. Notably, the regions around the binding sites of TFs that belong to the same TF families exhibited similar

features, with high agreement between the in vitro and in vivo data sets. We propose that these unique features assist in

guiding TFs to their cognate binding sites.

[Supplemental material is available for this article.]

Transcriptional regulation is highly dependent on the binding of
transcription factors (TFs) to short DNA binding motifs (Matys
et al. 2003; Bryne et al. 2008).Whereas such short sequencemotifs
can appear a myriad of times in the genome, only a small fraction
is bound by the corresponding TF (Ren et al. 2000; Iyer et al. 2001;
Harbison et al. 2004).Moreover, recent ENCODE data suggest that,
on average, 99.8% of putative binding motifs in the genome are
not bound by the respective TF (Wang et al. 2012). It is therefore
clear that the presence of a binding motif per se is not sufficient
for TF binding.

An important question that arises from these findings is what
distinguishes a region containing themotif that is bound by the TF
from a region containing a similarmotif that is not bound in a spe-
cific cell type at a given time point. Over the past few decades,
many studies have addressed this question (for review, see Slattery
et al. 2014). One widely accepted approach suggests that an inter-
play exists between TF binding and chromatin accessibility (Thur-
man et al. 2012; Barozzi et al. 2014). Specifically, it has been
suggested that many TFs preferentially bind in regions of open
chromatin (Song et al. 2011), by actively opening condensed chro-
matin, joining chromatin modifying factors, or binding to consti-
tutively opened chromatin. Combinatorial interactions of TFs are
also believed to facilitate binding (Lelli et al. 2012). According to
this view, the recognition of functional binding sites by a TF is dic-

tated not only by the core-bindingmotif but also by a combination
of adjacent motifs (Slattery et al. 2011; Martinez and Rao 2012;
Yanez-Cuna et al. 2012; Kazemian et al. 2013; Crocker et al. 2015).

Clearly, chromatin accessibility and combinatorial binding
play an important role in directing TFs to functional regions in
vivo. However, selective binding ofmotifs by TFs has also been ob-
served in a variety of in vitro experiments (Noyes et al. 2008; Badis
et al. 2009; Berger and Bulyk 2009; Zhao et al. 2009; Slattery et al.
2011; Enuameh et al. 2013; Gordân et al. 2013; Jolma et al. 2013;
Afek et al. 2014; Weirauch et al. 2014; Abe et al. 2015; Levo et al.
2015). These in vitro studies show that TFs can bind to different se-
quences containing a similar motif with a large range of different
affinities, which suggests that TF-DNA binding specificity is influ-
enced by theDNA context surrounding themotif. Indeed, the con-
tribution of the regions directly flanking the motif to binding
specificity in vitro has been demonstrated for a small number of
TFs (Gordân et al. 2013; Afek et al. 2014; Yang et al. 2014; Levo
et al. 2015). The sequence environment of a motif has also been
shown to contribute to transcriptional regulation by the TF
Cone-rod homeobox (CRX) (White et al. 2013).

Here, we aimed at performing a large-scale analysis investigat-
ing the inherent contribution of the extended regions surrounding
hundreds of TF binding motifs. This analysis revealed significant
differences in the nucleotide content between bound and un-
bound regions extending far beyond the consensus motif,
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showing high agreement between the in vivo and in vitro data.
Notably, TFs belonging to the same protein families demonstrated
similar sequence preferences in the extended regions around the
binding motifs. Moreover, we show that the preferred nucleotide
content has an overall high similarity to the core motif and exhib-
its unique DNA structural features. These results emphasize the
intrinsic role of the sequence environment in protein–DNA recog-
nition. We propose that the sequence environment around the
consensusmotifmayhelp in guiding the TFs to their cognate bind-
ing sites.

Results

Sequence compositions surrounding TF binding motifs

contribute to in vitro binding preferences

In order to study intrinsic binding preferences, we first concentrat-
ed on in vitro binding assays and analyzed HT-SELEX data for 239
TFs (Supplemental Table 1; Jolma et al. 2013). Specifically, wewere
interested in comparing the sequence composition in regions sur-
rounding the motifs found in bound versus unbound sequences.
To this end, we collected a set of bound sequences for each TF
and a set of unbound sequences. We further filtered both sets
based on the existence of a previously published binding motif
of each TF (Jolma et al. 2013) and aligned the sequences according-
ly. A flowchart representing our analysis is shown in Figure 1. This
process resulted in two distinct sets of sequences, one for bound
and a second for unbound sites, which share the known TF bind-
ingmotif. This allowed us to concentrate on differences in themo-

tif environment, which presumably contributes to the differential
binding status of the sequences in each of the groups. We first ex-
amined the differences in sequence composition surrounding
bound versus unbound motifs by comparing the GC content in
each position of the aligned sequences, 10 bp upstream of and
downstream from the core motif excluding positions of the core
motif and 2 bp upstream of and downstream from the core motif,
and evaluated the statistical significance of the differences (see
Methods). By using this approach, we found that the majority of
TFs show differences in the GC composition surrounding their
binding motifs (Supplemental Figs. 1, 2, 3A; for a comparison of
each nucleotide separately, see Supplemental Fig. 4A), with a dif-
ference of up to 16% in GC content between the bound and un-
bound sequences (3.4% on average) (Fig. 2B). On average, 60%
of the positions surrounding each TF bindingmotif had significant
differences in their GC content between the bound and unbound
pools (q-value≤ 0.05). For comparison, when randomly shuffling
the labels between the bound and unbound sequences, no signifi-
cant differences were detected (Supplemental Fig. 5). Specifically,
we found that 138 TFs preferred binding to motifs surrounded
by high AT content, while 49 TFs preferred binding tomotifs locat-
ed in regions of high GC content (Fig. 2A). When we clustered TFs
based on their Pfam binding domain (Finn et al. 2014), we found
that TFs belonging to evolutionary related domains often have
similar environmental preferences (Fig. 2A). For example, we
found that most of the TFs belonging to the homeodomain family
(88 out of 96 members), the POU family (10 out of 13), and the
forkhead family (14 out of 16) prefer binding to regions with low
GC content surrounding the core motif, as opposed to C2H2

zinc finger (19 out of 41) and ETS TFs
(12 out of 22), which demonstrated a
preference for binding to GC-rich re-
gions. In Figure 2C, we illustrate the
GC preference of EGR4, a C2H2 TF. As
shown in the figure, EGR4 prefers bind-
ing to sequences that are enriched in
GC. The opposite behavior was observed
for BARHL2, a homeodomain TF, which
prefers binding to motifs residing in re-
gions characterized by lower GC content.
To ensure that the differences are not the
result of experimental or statistical bias-
es, we conducted several control tests,
all confirming that TFs from different
families have characteristic sequence
preferences in the environment sur-
rounding bound motifs (see Supplemen-
tal Material).

Sequence preferences detected in

regions surrounding in vivo binding sites

The environmental preference observed
in the HT-SELEX data suggests that TF
binding is influenced by additional in-
formation beyond the core motif. Next,
we asked whether these intrinsic pre-
ferences are also found in vivo. To this
end, we analyzed ChIP-seq data for 56
TFs (Supplemental Table 2; Yan et al.
2013). As described in Figure 1, we
searched the genome for appearances

Figure 1. A flowchart describing the approach used for finding preferences in regions surrounding TF
bindingmotifs. (Left) For each TF, a pool of bound and unbound sequences was collected fromHT-SELEX
data of human and mouse TFs (Jolma et al. 2013). Both sequence pools were filtered, keeping only se-
quences possessing the published TF binding motif. The sequences were further aligned relative to the
TF binding motif. Nucleotide content of the sequences flanking the binding motif was compared be-
tween the bound and unbound groups. (Right) For each TF, a pool of bound and unbound sequences
was collected fromChIP-seq data (Yan et al. 2013). Both pools were filtered, keeping only sequences pos-
sessing the TF bindingmotif in open chromatin. The sequences were further aligned relative to themotif.
Finally, the nucleotide content of the sequences surrounding the binding motif in the bound and un-
bound groups was compared between the two groups.
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of the TF bindingmotifs and divided them into two groups: motifs
found inside ChIP-seq peaks (boundmotifs) and those falling out-
side ChIP-seq peaks (unbound motifs).

As aforementioned, it is well established that TF binding sites
are located preferentially in regions of accessible chromatin (Wang
et al. 2012). Moreover, regions of open chromatin possess highGC
content compared with the rest of the genome (Fenouil et al.
2012). Thus, when comparing sequences that are either bound
or unbound by the TF, we might find differences that reflect the
differential GC content in open and closed chromatin rather
than the intrinsic preference of the TF. To overcome this genomic
bias, we incorporated DNase I hypersensitivity data (see Methods)
in order to separate the genomic sequences into open and closed
regions, thus enabling us to compare bound and unbound motifs
in similar environments. Next, analogous to the in vitro analysis,
we compared the nucleotide content at each position surrounding
the core motifs, examining 300 bp upstream of and downstream
from the motif.

Consequently, when comparing the sequences surrounding
bound and unbound motifs, concentrating on open chromatin,
we found significant differences in GC content (Fig. 3A; Supple-
mental Figs. 3B, 4B, 6), with an overall good agreement with the
in vitro GC preferences (Supplemental Fig. 7). Specifically, we no-
ticed that in half of the TFs, >50% of the 300 nucleotides (nt) dem-
onstrated significant differences in their GC content (Fig. 3B).
Differences of up to 12% in GC content were observed (for
CREB3L4), with an average of 4.3% over all TFs (Fig. 3C).
Consistent with the in vitro results, we found that in vivo, TFs
sharing homologous DNA binding domains (as defined by Pfam)
(Finn et al. 2014) often share the sameGC preferences.We noticed
that similar to the in vitro results, TFs from the homeodomain
family tend to bindmotifs embeddedwithin higher AT content re-
gions, whereas members of the C2H2 and ETS families seem to
bind preferentially to regions of higher GC content (Fig. 3D).
When examining the distribution of the significant positions rel-
ative to the binding motif, we noticed that differences in GC

Figure 2. Differences in nucleotide content of the regions surrounding TFmotifs in bound and unbound sequences extracted from in vitro data. (A) Heat
map representing the differences in GC content 10 bp upstream of and downstream from the coremotifs: Red indicates positions at which the GC content
was significantly lower in the bound motifs; blue, positions at which the GC content was significantly higher in the bound compared with the unbound
motifs (the color intensity represents the statistical significance). The TFs were grouped by the different TF families (FH, forkhead; HD, homeodomain). The
positions correspond to the core-binding motif. (B) Differences between the average GC content (%GC) of the bound and the unbound sequences: Red
indicates TFs that prefer binding in regions with high AT content; blue, TFs that prefer binding to regions with high GC content. (C) The GC content (%GC)
in each position of the bound (blue) and unbound (black) sequences for two TFs: the EGR4 TF (C2H2 zinc finger; left), and the BARHL2 TF (homeodomain;
right). Motif logos representing the aligned bound sequences are shown above.
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content extend far beyond the core motif, reaching 300 bp up-
stream of and downstream from the core motif (Fig. 3E). It has
been previously shown that the promoters of different gene classes
possess an overall higher or lower than average GC content (Smith
et al. 2005). In order to control for GC biases, which could result
from such regulatory regions, we removed all TF peaks that are
found within promoters having either high or low GC content
(top and bottom 10%, respectively) and repeated the analysis
and found overall similar results (Supplemental Fig. 8).

Taken together, we found that most TFs demonstrate strong
preference to bind within regions possessing specific nucleotide
content. Moreover, we found that the TF preferences for specific
sequence environments were similar in the in vitro and in vivo
binding assays, proposing that these preferences demonstrate an
inherent binding property of the TFs.

TF binding sites are preferentially found in homotypic

environments

It is well established that TFs belonging to the C2H2 family prefer-
ably bind to GC-rich motifs (Choo and Klug 1997; Wolfe et al.
2000), while TFs that belong to the homeodomain family general-

ly bind AT-rich motifs (Gehring et al. 1994; Rohs et al. 2010).
Interestingly, for all TFs tested we found a high correlation be-
tween the GC content of their binding motif and the preferred
GC content in the extended regions surrounding the core motif,
both in vitro and in vivo (Fig. 4A). This dependency is exemplified
in Figure 4B. As shown, SP1 (a C2H2protein) and ELF1 (an ETS pro-
tein), which bind GC-rich motifs, have a clear preference for high
GC environments, while HOXA2 (a homeodomain protein),
which binds an AT-richmotif, is surrounded by an AT-rich region.
This correlation could be related to the presence ofmultiple low-af-
finity binding sites of the same TF (homotypic clusters), which
have been shown to be enriched in promoters and enhancers
(Lifanov et al. 2003; Sinha et al. 2008; Gertz et al. 2009; Gotea
et al. 2010; Ezer et al. 2014; Crocker et al. 2015). We therefore
sought to systematically examine the prevalence of homotypic
clusters in our data sets. In general agreement with Gotea et al.
(2010), we found that bound sequences had, on average, three pre-
dicted low-affinity binding sites. When comparing the number of
motifs detected in the bound and unbound sequences, we found
that for 25 of the 56 TFs, there was a significantly higher number
of detected motifs in the extended region around the bound se-
quences compared with their unbound sequences (Fig. 4C). To

Figure 3. Differences in features of the regions surrounding TF motifs in bound and unbound sequences extracted from in vivo data. (A) Heat map rep-
resenting the differences in GC content 300 bp upstream of and downstream from the core motifs: Red indicates positions at which the GC content was
significantly lower in the bound motifs; blue, positions at which the GC content was significantly higher in the bound compared with the unbound motifs
(the color intensity represents the significance). The TFs were grouped by the different TF families (HD for homeodomain). The positions correspond to the
core-binding motif. (B) Cumulative plot representing the proportion of TFs as a function of the number of surrounding positions that differ significantly
between the bound and unbound groups using two different thresholds to define significant differences: −log(q-value)≥ 1.3 in blue and ≥3 in gray.
(C) Differences between the average%GCof the bound and the unbound sequences: Red indicates TFs that prefer binding to regionswith high AT content;
blue, TFs that prefer binding to regions with high GC content. (D) Pie charts showing the number of TFs with significant nucleotide content differences for
the three TF families shared between the in vitro (bottom) and in vivo (top) data. Blue represents GC preferences [Δ−log(q-value)≥ 1.3]; gray, no significant
preferences; and red, AT preferences [Δ−log(q-value) ≤−1.3]. (E) Plot showing the percentage of TFs with significant nucleotide content differences [−log
(q-value) ≥ 1.3] for each position 300 bp upstream of and downstream from the coremotif. (F ) Heatmap representing the differences in propeller twist 300
bp upstream of and downstream from the coremotifs: Red indicates positions at which the propeller twist was lower in the boundmotifs; blue, positions at
which the propeller twist was less pronounced in the bound compared with the unbound motifs (the color intensity represents the statistical significance).
The TFs are grouped by the different TF families (HD for homeodomain). The positions correspond to the core-binding motif.
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examine whether weak motifs are also prevalent in the in vitro
data, we used a subset of in vitro TF data sets, for which the TF
probes were long enough to harbor at least one binding site
not overlapping the core motif. Interestingly, we found that all
TFs in the in vitro subset had significantly higher numbers of
weak motifs in their bound sequences (Supplemental Fig. 9A),
demonstrating intrinsic contributions of low-affinity sites to TF
recognition. Interestingly, whenwe removed all positionswith sig-
nificant similarity to the position frequency matrix (PFM), using
different FIMO P-value cutoffs for defining significant motifs,
the differences in nucleotide content were retained both in vitro
and in vivo (Supplemental Figs. 9B, 10D). This raises the possibility
that not only do the homotypic clusters represent isolated low-af-
finity binding sites embedded within genomic content but rather
the entire region around the bound motifs is characterized by a
unique sequence environment.

To better explore the contribution of the overall sequence
environment surrounding the motif to TF binding, we experi-
mentally tested the binding of the human TF microphthalmia-
associated TF (MITF), employing electrophoretic mobility shift
assay (EMSA). MITF belongs to the bHLH family, which naturally
binds to the E-box motif, specifically to CACGTG and CACATG
(58% GC content on average) (Strub et al. 2011). Since MITF was

not represented in our original data, we first analyzed available
high-throughput binding data for MITF (Strub et al. 2011) and
compared the sequence environment between bound and un-
bound sequences, both all possessing the MITF motif in open
chromatin regions. Consistent with our previous results, our anal-
ysis showed that MITF-bound sequences have higher GC frequen-
cy around the core motif compared with the unbound sequences
possessing the exact same motif (Fig. 5A). To study the contribu-
tion of the sequence environment to MITF binding, we tested its
binding to a known target sequence (derived from the human
TRPM1 promoter) possessing the E-box core motif surrounded by
twoweakermotifs (Miller et al. 2004) compared with two designed
sequences: In one, we mutated the two weak motifs flanking
the core-binding site, while in the other, we changed all G/C to
A/T. In all sequences, we retained the core MITF motif. As shown
in Figure 5B, mutating the two weak MITF motifs (WM) flanking
the core strong motif (SM) showed very similar binding results
as for the WT probe, while changing the GC content sur-
rounding the strong motif dramatically reduced MITF binding.
This experiment is consistent with our previous results showing
that the overall nucleotide content in the environment of the TF
motif affects TF binding, irrespective of the presence of weak bind-
ing motifs.

Figure 4. Differences in motif similarities. (A) Correlation between %GC of the bound motifs and Δ%GC surrounding bound compared with unbound
motifs, in vitro (left) and in vivo (right); black line shows the linear regression trend line. The r2 of the trend line is shown. The TFs are colored according to the
color code used for TF families: cyan for C2H2 TFs, green for ETS TFs, red for homedomains, and all others in gray. (B) %GC upstream of and downstream
frommotifs found in sequences bound by SP1 (dark blue), ELF1 (light blue), E2F7 (light gray), FOXG1 (dark gray), and HOXA2 (red). Logos of the TF-bound
motifs are shown in the center: A and T bases are colored in red; G and C bases, in blue. (C ) Wilcoxon test P-values comparing the number of significant
motifs, includingweakmotifs (FIMO P-value cutoff of 0.001), found in the regions surrounding in vivo bound and unboundmotifs. The bars to the right side
represent TFs having higher motif counts in their bound sequences, while bars on the left side represent TFs having a lower number of motifs in their bound
sequences. The height of the bar represents the significance of the differences. The dashed line represents the significance cutoff using the shuffled data.
The TFs are colored according to the color code used for TF families: cyan for C2H2 TFs, green for ETS TFs, red for homedomains, and all others in gray. (D)
Comparison of the PFM similarity scores between sequences surrounding in vivo bound and unbound motifs. The bars on the right side represent TFs hav-
ing higher motif similarity scores in the bound sequences, and bars on the left represent TFs having lower similarity scores in the bound sequences. The
height of the bar represents the significance of the differences. The dashed line represents the significance cutoff using the shuffled data. The TFs are colored
as in panel C.
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Given our previous results, we explored the overall similarity
of the environment to the core motif. To this end, we scored each
position surrounding the core motif of each TF in the in vivo data
by its similarity to the PFM, without using any arbitrary cutoff and
compared motif similarity scores between the bound and un-
bound sequences. We found that the majority of TFs (30 out of
56) had significantly higher similarity scores surrounding the
motifs in the bound sequences compared with the unbound
sequences (Fig. 4D; for in vitro data, see Supplemental Fig. 9B).
Interestingly, whenwe removed completely all sequenceswith sig-
nificantmotifmatches (not including the coremotif), whenwe re-
moved all positions showing significant similarity to the PFM,
or when we compared the number of significant motifs using dif-
ferent cutoffs, the differences between the bound and unbound se-
quences were retained (Supplemental Figs. 9, 10). Taken together,
our results suggest that the previously reported tendency of TF
binding sites to be surrounded by low-affinity sites (homotypic
clusters) is part of a general tendency of TF binding sites to be em-
bedded within a sequence environment that has overall similar
characteristics to the bindingmotifs (we term the homotypic envi-
ronment), which contributes to recognition of the cognate bind-
ing sites.

Differences in DNA shape features surrounding bound

and unbound TF motifs

It has previously been suggested that DNA flexibility could influ-
ence TF binding (Rohs et al. 2010). While specific DNA sequences
such as A-tracts have been shown to influence DNA flexibility
(Suter et al. 2000), to the best of our knowledge, there is currently
no direct way to measure DNA flexibility in a high-throughput
manner. Previous studies have suggested that the angle between
bases in a base pair (propeller twist) is correlatedwithDNA flexibil-
ity (El Hassan and Calladine 1996; Hancock et al. 2013). We there-
fore used propeller twist as a proxy of DNA flexibility. To this end,
we predicted the propeller twist using our high-throughput meth-

od DNAshape (Gordân et al. 2013; Zhou et al. 2013, 2015). Conse-
quently, for each nucleotide position, we compared the predicted
values between the bound and unbound sequences, excluding the
positions of the core motif. This comparison revealed that the ma-
jority of TFs possess significant differences surrounding their mo-
tifs both in vitro and in vivo (Fig. 3F; Supplemental Figs. 11, 12).
Specifically, we found that TFs belonging to the homeodomain,
POU, and forkhead families prefer sequences with an enhanced
negative propeller twist, while TFs that belong to the C2H2 and
ETS families prefer binding to sequences with a less negative pro-
peller twist. These results were consistent with the knowledge
that propeller twist is highly dependent on GC content. Whereas
GC-rich sequences tend to have less pronounced propeller twist
values, AT-rich sequences tend to have more negative propeller
twist values (Hancock et al. 2013). Accordingly, these results sup-
port the notion that sequences that contain a bona fide binding
site have intrinsic structural features, beyond the core motif, that
possibly can be recognized by the TF.

Binding preferences constrain TF co-occupancy

In this study, we found that many TFs have favorable binding en-
vironments and that the preference for a specific environment dif-
fers between distinct TF families. An intriguing question is how the
preference for a specific environment around a TF binding site co-
incides with the previous observation that TFs tend to bind DNA
cooperatively with other TFs (Escalante et al. 2002; Panne et al.
2007; Mann et al. 2009). To answer this question, we measured
the co-occupancy frequency in colorectal cancer cells for each TF
pair (i.e., the fraction of one TF binding site occurring in proximity
to a binding site of another TF) and compared this frequency to the
similarity in their GC content preferences around the core motif.
We found that pairs of TFs that have very distinct GC content pref-
erences tend to avoid binding close to each other (Fig. 6A). This
tendency is exemplified in Figure 6B for the pair YY1 (C2H2 fam-
ily) andHOXA2 (homeodomain family). As shown, these TFs have

Figure 5. MITF binds to sequences showing overall high similarity to the E-boxmotif. (A) GC content (%GC) upstream of and downstream frommotifs in
sequences that are bound (blue) and unbound (black) byMITF. Logo of theMITF boundmotifs are shown above: A and T bases are colored in red; G and C
bases in blue. (B) EMSA competition assay with probe corresponding to the WT MITF binding region of the human TRPM1 promoter (WT), probe corre-
sponding to the WTwith interruption of the two weakMITF motifs (M1), and probe corresponding to the WTwith replacement of all G/C by A/T base pair
(M2). Highly expressing MITF melanoma cell (WM3682) nuclear extracts were used as a source of MITF (represented in the Nuc extract row above). A bio-
tinylated WT probe was used for the analyses. WT or mutated unlabeled probes as described above were used in the competition analyses. MITF binding
probes and free probes are marked with arrows. Probe sequences are shown below, where SM indicates strong motif and WM indicates weak motifs.
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very different GC content preferences (YY1 prefers binding to a
GC-rich environment; HOXA2 prefers regions with low GC con-
tent). Here, we show that YY1 and HOXA2 target sites are rarely
found in close proximity, with only 0.3% of YY1 binding sites
found close to those of HOXA2 and 2% of all HOXA2 binding
sites found close to those of YY1. Consistently, we found that pairs
of TFs that have similar GC preferences are foundmore frequently
to co-occupy the DNA. Examples are YY1 and KLF5, which are two
C2H2 TFs that prefer binding to regions with high GC content
(Fig. 6C). We found that 41% of all YY1 binding sites are located
close to KLF5 binding sites. In agreement with this, we found
that pairs of TFs from the same family havemore proximal binding
sites comparedwith pairs of TFs belonging to twodifferent families
(Fig. 6D). Our results suggest that a dependency exists between en-
vironmental preferences and the tendency of TFs to bind in prox-
imity to each other.

The motif environment contributes to prediction

of TF binding sites

Given our results showing that motif environments differ signifi-
cantly between bound and unbound motifs, we sought to assess
whether environmental properties could help to discriminate be-
tween bound and unbound sequences. To this end, we employed
L2-regularized multiple linear regression (MLR) models that incor-

porated different environmental features surrounding each motif
as described in the Methods. Since it has been shown that the mo-
tif strength (match to PFM) is correlated with TF binding (Gertz
et al. 2013; Madsen et al. 2014; Sherwood et al. 2014), we used
bound and unbound sequences harboring the samemotif strength
distribution, thus completely removing the effect of the motif
strength. As a first step, we trained four different models using fea-
tures extracted from sequences surrounding the core motif, ex-
cluding the core motif and two positions from each side: Model
1, using the average GC frequency (GC content); Model 2, using
the average propeller twist (propeller twist); Model 3, using the av-
erage motif similarity scores (homotypic environment); and
Model 4, using the summary of allmotif scores above a FIMO P-val-
ue cutoff of 0.001 (homotypic clusters; for details, see Methods).
We evaluated the model performance using the area under the re-
ceiver operating characteristic (AUROC) and found that models
that use only a single environmental feature have a moderate dis-
criminative power,with an averageAUROCof 0.58, 0.57, 0.58, and
0.53 forGC content, propeller twist, homotypic environment, and
homotypic clusters, respectively (Fig. 7A). By comparing the per-
formance of the homotypic environmentmodel to the homotypic
cluster model, we found that for most TFs the homotypic environ-
ment feature performed better (average AUROC of 0.59 compared
with 0.53) (Fig. 7B), emphasizing again that bound motifs have a

Figure 6. TF co-occupancy frequency. (A) Box plots representing the percentage of proximal binding sites relative to the differences in %GC of themotif
environment. For each TF pair, the fraction in which one TF binding site occurs in close proximity to a binding site of another TF (y-axis) is plotted against
the similarity or dissimilarity of the two TFs’ environmental preferences (x-axis). Close proximity is defined as 300 bp. (B, left) Jittered scatterplot showingGC
content for each of the sequences bound by HOXA2 (pink), YY1 (blue), and both (black). (Right) Box plots representing the distribution of GC content for
each of the sequences bound by HOXA2 (pink), YY1 (blue), and both (black). (C, left) Jittered scatterplot showing GC content for each of the sequences
bound by KLF5 (pink), YY1 (blue), and both (black). (Right) Box plots representing the distribution of GC content for each of the sequences bound by KLF5
(pink), YY1 (blue), and both (black). (D) Box plots representing the percentage of proximal binding sites for each of the five TF families. The data were
plotted separately for pairs of TFs from the same family and for pairs of TFs from different families. Wilcoxon test P-values indicate significant differences
between the groups.
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unique sequence environment that resembles the motif itself.
To further assess whether the environmental features are also rele-
vant in vitro, we repeated the above analyses using bound and
unbound sequences from the HT-SELEX experiments, which
have similar distributions of motif match scores (as described for
the in vivo data). Here again, we found that for bound and un-
bound sequences with similar motifs, a single environmental fea-
ture can aid in binding prediction (average AUROC of 0.54, 0.53,
0.53, and0.51 forGCcontent, propeller twist, homotypic environ-
ment, and homotypic clusters, respectively) (Supplemental Fig.
13A). However, in respect to the prediction accuracy for the in
vivo data, the contribution of the environment in the in vitro
data was smaller (Supplemental Fig. 13B), possibly due to shorter
lengths of the HT-SELEX sequences (22 nt on average) compared
with 300 bp upstream of and downstream from the motif using
the genomic environments.

In order to assess the interdependency between the GC
content and the three other features, we trained three additional
models combining GC content with propeller twist, homotypic
environment, or homotypic clusters and found that adding a
second feature to the GC content significantly improved the pre-
dictions (average AUROC improvement of∼8%) (Fig. 7A), support-

ing our findings that propeller twist, homotypic environment, and
homotypic clusters have an additional and independent effect on
binding from that of theGC content.We also found for the in vitro
data, in general agreement with the in vivo data, that adding GC
content as a second feature to a model that uses either propeller
twist, homotypic environment, or homotypic clusters signifi-
cantly improves binding prediction (AUROC improvement of
∼3%, 3%, and 7%, respectively) (Supplemental Fig. 13A). We
next combined the three best-performing features (GC frequency,
propeller twist, and homotypic environment) into one model,
which further improves binding predictions (average AUROC of
0.66) (Fig. 7C), showing that the addition of propeller twist to
GC frequency and homotypic environment improves binding pre-
diction for most TFs (Supplemental Fig. 14). Notably, for some TFs
we found that thismodel highly discriminates between bound and
unboundmotifs (Fig. 7C). For example, for SP1 and YY1 (members
of the C2H2 family), a model combining all three features that
characterize motif environments, without any information from
the core motif, resulted in AUROC values of 0.8 or more.

Next we asked whether TF preferences learned using in vitro
data could also be applied to binding predictions in vivo. To this
end, we used the combined model trained using the HT-SELEX

Figure 7. Predicting bound and unbound TF motifs. (A) L2-regularized multiple linear regression models based on one or two features in vivo. The fea-
tures characterizing the average GC content, the average propeller twist (ProT), the average PFM similarity scores (homotypic environment), and the sum
of all significant PFM similarity scores (using FIMO P-value cutoff of 0.001; homotypic cluster). All features were extracted from 300 bp upstream of and
downstream from the core motif, excluding the core motif. Box plots represent the distribution of the AUROC for all TFs using one or two features. The
dashed line represents the maximum AUROC obtained using randomly shuffled data. Asterisks are shown for features in which the AUROC obtained using
the two-feature model is significantly higher than the AUROC obtained using each feature separately. (B) For each TF, comparison of the AUROC obtained
using the homotypic environment model and the homotypic cluster model. The TFs are colored according to the color code used for TF families: cyan for
C2H2 TFs, green for ETS TFs, red for homedomains, and all others in gray. (C) AUROC values for each of the TFs, employing a model that incorporates the
best preforming features: GC content, propeller twist, and homotypic environment. Dashed line represents themaximumAUROCobtained using random-
ly shuffled data. (D) AUROC of the combined model that was trained using the in vitro data and was tested on the in vivo data. Dashed line represents the
maximum AUROC obtained using randomly shuffled data. Solid line shows AUROC of 0.5. (E) AUROC of the HMMs using different emission probabilities
for the background state: the genomic nucleotide frequency, average nucleotide frequency of the PFM, and the inversed average nucleotide frequency of
the PFM. Wilcoxon test P-values are shown below. The dashed line represents AUROC of 0.5.
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data in order to predict in vivo bound and unbound sequences, fo-
cusing only on TFs belonging to the homeodomain, ETS, and
C2H2 families. We found that a model trained using in vitro
data contributed to the in vivo prediction for 14 out of 18 TFs (av-
erage AUROC 0.62) (Fig. 7D).

In addition to the MLR, we applied a hidden Markov model
(HMM) approach to predict bound sequences. In brief, the HMM
approach scores each sequence by the log likelihood ratio, which
reflects the probability of a sequence to be generated by sampling
from the PFM or different backgrounds (as described below) versus
the probability of it being generated solely by a genomic back-
ground. This HMM model requires no predefined motif cutoff
and therefore accounts for high- and low-affinity sites, does not re-
quire data for training, and, thus, avoids overfitting. We have
found that an HMM model that uses the average nucleotide fre-
quencies from the TF’s PFM as the background probability per-
formed significantly better than the HMM that uses the genomic
nucleotide frequencies as the background probability (Wilcoxon
P-value = 0.001, improvement for 71% of TFs), which emphasizes
the importance of the homotypic environment in modeling TF
binding sites (Fig. 7E; Supplemental Figs. 15, 16). For a compari-
son, we created a third model, this time swapping the nucleotide
background probabilities, and found a significantly lower perfor-
mance for the prediction of bound sequences (Wilcoxon P-value
= 3 × 10−6). Overall, the results from the MLR and the HMM mod-
els indicate that the motif environments hold crucial information
and, presumably, contribute to the recognition of the binding site
by the TF.

Discussion

Over the past decade, an extensive amount of information on
binding preferences of TFs has been accumulated from in vitro
and in vivo high-throughput binding assays (Harbison et al.
2004; Berger et al. 2008; Noyes et al. 2008; Badis et al. 2009; Wei
et al. 2010; The ENCODE Project Consortium 2012; Enuameh
et al. 2013; Jolma et al. 2013; Nakagawa et al. 2013; Yan et al.
2013). Whereas these studies allow deriving consensus binding
sites as well as PFMs of hundreds of TFs, both are insufficient for
accurate identifications of the targets of a given TF within the ge-
nome. In this study, we sought to search for intrinsic features
that discriminate bound from unbound sequences that possess a
cognate bindingmotif. In an attempt to identify the features of se-
quences that are bound preferably by a given TF, we analyzed re-
cently published HT-SELEX data for 239 TFs (Jolma et al. 2013)
in which epigenetic effects are controlled. Furthermore, we ex-
tracted in vivo binding data from 56 ChIP-seq experiments (Yan
et al. 2013), examining regions of open chromatin to avoid biases
between bound and unbound sequences due to chromatin ac-
cessibility of the target sequence. By use of both approaches, we
demonstrated that the information encoded in the regions sur-
rounding the binding motifs allows distinguishing bound from
unboundmotif-containing sequences. These results were observed
consistently for the vast majority of TFs studied, showing that this
is a widespread phenomenon. Furthermore, we found that these
preferences are family specific; homeodomain TFs prefer binding
to AT-rich regions, whereas C2H2 and ETS prefer regions of high
GCcontent, both in vivo and in vitro. Interestingly, C2H2 zinc fin-
ger and homeodomain TFs, which are the two largest TF families in
eukaryotes (Vaquerizas et al. 2009), have opposite nucleotide pref-
erences at the regions surrounding the core motif.

A recent ENCODE study (The ENCODE Project Consortium
2012) suggested thatmost TFs bind toGC-rich regions. This is con-
sistent with the fact that in vivo, most TFs bind to accessible DNA
regions (John et al. 2008; Song et al. 2011; Thurman et al. 2012),
which tend to have higher GC content compared with the rest
of the genome (Fenouil et al. 2012). By restricting the analysis to
accessible DNA regions, we were able to control GC differences
due to DNA accessibility, further discovering that most TFs have
specific DNA preferences beyond their preference for accessible re-
gions. Transcriptional regulation is believed to be a highly dynam-
ic and complex process carried out at multiple levels (Levo and
Segal 2014; Slattery et al. 2014; Voss and Hager 2014). The basic
level required for binding involves chromatin accessibility, which
can roughly divide the genome into closed chromatin (hetero-
chromatin), which is inaccessible to themajority of TFs, and acces-
sible regions (euchromatin), which are transcriptionally active
regions where most TF binding occurs (Grewal and Moazed
2003; Huisinga et al. 2006). However, there are examples of so-
called pioneer TFs that prefer binding to closed regions (Barozzi
et al. 2014). Here, we suggest an additional level that is encoded
by the local environment,whichmayhelp to direct the TFs to their
binding regions. Finally, the undeniably dominant level involves
the recognition of specific short DNA motifs by a given TF.

We found that TF sequence preferences reach far beyond the
core motifs and their direct flanks, which were previously shown
to contribute to TF binding preferences (Gordân et al. 2013; Afek
et al. 2014; Levo et al. 2015). An intriguing question is how the
protein can identify the unique environment so far beyond its
binding site. Based on our analysis, which was conducted for TFs
from several TF families, we found an overall strong dependency
between nucleotide composition of the motif and its environ-
ment. These dependencies, which we found for the vast majority
of TFs, are consistent with early genomic observations showing
that TATA-box–containing promoters are generally AT rich, while
TATA-less promoters have a highGC content (Sandelin et al. 2007;
Yang et al. 2007). It was previously suggested that the homotypic
clusters are important components of the regulatory elements and
might have a functional advantage in facilitating the recruitment
of TFs (Lifanov et al. 2003; Sinha et al. 2008; Gotea et al. 2010; Ezer
et al. 2014; Crocker et al. 2015). We conducted a systematic, TF
binding site–based examination, measuring the prevalence of
homotypic clusters for 21 and 56 TFs from different families, em-
ploying both in vitro and in vivo data sets, respectively.We found,
in agreement with previous studies conducted on individual TFs,
that the bound sequences of the majority of TFs are significantly
enriched in homotypic clusters compared with sequences found
in unbound regions, (Zhang et al. 2006; Gotea et al. 2010). How-
ever, while the regions surrounding TF binding site peaks show
some evolutionary conservation (Håndstad et al. 2011, 2012), pre-
vious studies show that even when deleting some of the weak mo-
tifs surrounding the binding sites, often there are no detectable
changes to gene expression (Driever and Nüsslein-Volhard 1989;
Doniger et al. 2005; Estella et al. 2008). Here we found that weak
binding motifs are usually found embedded within an overall se-
quence environment that resembles the core motif of the TF. We
propose that the tendency of TF bindingmotifs to be foundwithin
an overall homotypic environmentmayhave been selected in evo-
lution to narrow down the search space of a given TF and increase
the thermodynamic probability of binding to a site. We showed
that in addition to the preference of TFs to bind to regions with
similar nucleotide content compared with their binding motif,
the sequence-dependent DNA shape of the motif environment
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might also play a role in TF recognition (Rohs et al. 2009, 2010;
Zhou et al. 2015). By use of our high-throughput DNA shape pre-
dictionmethod (Zhou et al. 2013), we analyzed the DNA propeller
twist and noticed that differences in propeller twist, which are con-
sistent with differences in GC content, can be found as far as 300
bp from the core-binding motif. Possibly, the DNA features sur-
rounding the binding site may contribute to the attraction of TFs
that belong to different families to their cognate binding sites. Fur-
thermore, other possible mechanisms could explain the differenc-
es between the sequence environments found in the in vivo data,
such as cooperative binding and dynamic time-dependent chang-
es in the chromatin state.

It is well established that the regulation of transcription is
achieved by complex interactions of different TFs that bind close
to each other on the DNA. Our analyses show that a dependency
exists between the environmental preferences of the TFs and their
tendency to bind close to each other, which suggests that the en-
vironmental preferences of each TF restrict the binding of other
neighboring factors. The implication of such a constraint is that
TFs from the same family could co-occupy more easily compared
with TFs belonging to different families. A well-known example
of TF family–specific cooperativity is HOX proteins, which are
homeodomains that bind DNAwith cofactors from the same fam-
ily in order to evoke their binding specificity (Slattery et al. 2011;
Abe et al. 2015).

Finally, by employing two different prediction algorithms,we
show that the DNA environment alone (excluding information
from the motif itself) can help distinguishing between bound
and unbound TFmotifs. Currently, motif-scanning tools that con-
sider local backgroundmodels to compensate for regional biases in
nucleotide composition are available. However, in these approach-
es, a GC-rich motif residing in a GC-rich region would receive a
lower score (compared with a GC-rich motif in an AT-rich region)
to remove false-positive weak motifs around the true binding site.
Based on our results, we suggest an adjustment to the local back-
ground models, in which the most significant motif within a re-
gion is promoted when residing in an environment with a GC
content that is similar to themotif. That could improve prediction
performance by reducing the false-negative predictions intro-
duced by the local background models.

In summary, our analyses further support the emerging view
that regions surrounding TF binding motifs, which tend to be
overlooked in characterizations of TF binding due to their low se-
quence information, might have an important contribution to TF
binding both in vitro and in vivo.

Methods

Data collection

In vitro data collection and motif alignment

HT-SELEX data were collected from a study of 241 unique TFs
(Jolma et al. 2013). TF data sets with less than 1000 sequences after
alignment (see below) were removed, resulting in data sets for 239
TFs (Supplemental Table 1). In cases forwhich therewasmore than
one HT-SELEX experiment, the experiment with the higher se-
quence count was selected. The TFs were grouped into 19 Pfam
structural families (Finn et al. 2014). TF families with fewer than
10 members were grouped under “Others.” For the bound se-
quences, we used the final selection round as previously described
(Jolma et al. 2013). For the unbound sequences, we collected two
data sets: one using sequences from “round zero” (the initial

pool of random oligonucleotides) and a second using sequences
from “round minus one” (one round before the selected round).
To prevent biases resulting from differences in sample size, we ran-
domly selected a subset of the bound or unbound pools to match
the size of each other. Orenstein and Shamir (2014) recently de-
scribed the biases that might occur in HT-SELEX experiments. To
test and control for possible biases, several analyses were carried
out as described in detail in the Supplemental Information. PFMs
were collected for each TF (Jolma et al. 2013) and used to search
and align the bound and unbound sequences using FIMO (Grant
et al. 2011). In cases of palindromic motifs, we used both strands.
In cases where more than one motif was found per sequence, we
chose the position with the highest score. Further, if more than
one motif with the same (highest) score was detected within a se-
quence, the sequence was discarded. The length of the probes var-
ied from14 bp (three TFs), 20 bp (194 TFs), 30 bp (23 TFs), to 40 bp
(19TFs). SincedifferentTFshavevariableprobe lengths, theGC fre-
quency analysis was conducted consistently for 10 bp upstream of
and downstream from the TF core-binding motif.

In vivo data collection and motif alignment

ChIP-seq data for 71 human TFs from colorectal cancer cells along
with their published IUPAC sequencemotifs were extracted from a
recent study (Yan et al. 2013). All appearances of the IUPAC motif
seed, allowing for onemismatch, were collected from the TF ChIP-
seq peaks (an approach based on the method described by Berger
et al. 2006). The sequences collectedwere further used to construct
a PFM that enabled a refined motif search and alignment method.
The final PFM was used to search and align the bound and un-
bound sequences using FIMO (Grant et al. 2011). In cases of palin-
dromic motifs, both strands were used. In cases where the motif
was found more than once in a sequence, the position with the
highest FIMO motif score was used. If more than one motif with
the same (highest) score was detected within a sequence, that se-
quence was discarded. In cases where the peak of the motif distri-
bution did not coincide with the ChIP-seq peak summit, the data
for that TF were discarded. The final set included 56 TFs that were
assigned to 21 Pfam (Finn et al. 2014) families. TF families with
fewer than four members were grouped under “Others.” For the
bound sequences, we used sequence motifs found in ChIP-seq
peaks. For the unbound motifs, we used sequences containing
the motifs that were located outside the ChIP-seq peaks. To pre-
vent biases resulting from differences in sample size, we randomly
selected a subset of the bound or unbound pools to match the size
of each other. Promoter regions were defined using RefSeq genes
(Pruitt et al. 2014), using 1000 bp upstream of and downstream
from the TSS. Human MITF ChIP-seq data from melanoma cells
were extracted from a separate study (Strub et al. 2011). The E-
box motif, specifically CACGTG and CACATG, which was charac-
terized asMITF preferredmotif (Strub et al. 2011), was used to align
MITF ChIP-seq peaks.

Characterization of open and closed chromatin

DNase I hypersensitivity data from colorectal cancer cells were ex-
tracted from the experiment described previously (Yan et al. 2013)
andwere analyzed using theHotspot tool (John et al. 2011). DNase
I hypersensitivity data frommelanoma cells were extracted accord-
ing to a method described previously (Marzese et al. 2014) (GEO
accession number GSM1008599). DNase I hypersensitive sites
were defined as open chromatin regions.
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DNA shape analysis

Propeller twist analysis was conducted using DNAshape, our high-
throughput DNA shape prediction method (Zhou et al. 2013),
which infers structural features from a library of all-atom Monte
Carlo simulations using a sliding pentamerwindow. The predicted
average values of propeller twist were obtained for each nucleotide
position of the aligned sequences.

Comparative analysis of the bound and unbound sequences

A comparison of the features between the bound and unbound se-
quences was conducted for each position in the aligned sequences
using the one-sidedWilcoxon signed-rank test. To correct for mul-
tiple testing, we used false-discovery rate (FDR) q-values (Storey
and Tibshirani 2003). The Δ[−log(q-value)] comparing the hypoth-
esis that bound > unbound versus the alternative unbound >
bound was assigned to each position. A negative Δ[−log(q-value)]
was assigned to positions at which the unbound sequences had
significantly higher values in the feature examined than the
bound. A positive Δ[−log(q-value)] was assigned to positions at
which the bound sequences had significantly higher values in
the examined feature than the unbound sequences. A TF was de-
fined as having a preference for a specific feature if it had at least
five positions with significant differences (q-value≤ 0.05).

Comparative analysis of homotypic clusters and homotypic

environment

A comparison of homotypic clusters between the bound and un-
boundsequenceswasdoneby counting thenumberofdetectedmo-
tifs using three FIMO P-value cutoffs:≤0.001, 0.001–0.05, and 0.05–
0.1. A homotypic environment comparison was conducted using a
slidingwindowapproachappliedtoeachof theboundandunbound
sequences inwhich the sizeof thewindow is the lengthof themotif.
The sequence in each window was assigned a similarity score using
the log-odds scores of the PFM. The positions of the core motif
were removed from both the calculations in order to prevent motif
biases. A comparison between scores of the bound and unbound
sequences was made using the Wilcoxon signed-rank test as de-
scribed above. For the in vitro analysis, we used a subset of TFs in
which their probe length was long enough to harbor at least one
binding site that is at a distance of at least 2 nt from the core motif.

Calculating co-occupancy of TF binding sites

The frequency of co-occupancy of TF binding sites was calculated
for all possible pairs of TFs in the in vivo data set in colorectal can-
cer cells. This was conducted by collecting the motif-containing
peaks for each given TF and calculating the frequency of the ap-
pearances of binding sites of all other TFs within a distance of
300 bp from the motif-containing peak. Since TFs belonging to
similar families often have similar binding motifs, overlapping
motifs were discarded. Consequently, each of the co-occupancy
frequencies was compared with the similarity in GC preferences
of the pair. The latter was conducted by calculating the average
q-value of the GCpreferences over all positions for each TF and cal-
culating the ratio of the two averages between each of the TF pairs.

Predicting binding motifs

MLR scoring scheme
Four L2-regularizedMLRmodels were trained using one of the four
different features: (1) To study the contribution of GC content, the
average GC frequency over 300 bp upstream of and downstream
from the core motif was considered; (2) to study the contribution
of propeller twist, the average propeller twist over 300 bp upstream

of and downstream from the coremotif was employed; (3) to study
the contribution of homotypic environment, the average PFM
similarity scores over each window 300 bp upstream of and down-
stream from the core motif was considered; and (4) for the contri-
bution of homotypic clusters, the sum of all PFM scores above a
FIMO P-value score of 0.001, over each window along the 300 bp
upstream of and downstream from the core motif, was taken. To
measure the predictive power of each of the four models, a 10-
fold cross-validation was performed. λ (the penalty parameter)
was learned from the data using an embedded 10-fold cross-valida-
tion on the training set. The AUROCwas used to assess the accura-
cy of the model in predicting the bound and unbound sequences.
The AUROC values generated from the models were compared
with three additional models, each with two features: (1) GC con-
tent and propeller twist, (2) GC content and homotypic environ-
ment, and (3) GC content and homotypic clusters. The three
most predictive features—GC content, propeller twist, and homo-
typic environment—were further employed in a third model
(combined model). For comparison, sequences were shuffled be-
tween the bound and unbound groups, and the combined param-
eters were retrained. The maximum AUROC value of the model
based on shuffled sequences was used as an empirical significance
cutoff. A similar approach was used to predict in vitro bound and
unbound sequences. To evaluate the ability of predicting in vivo
bound sequences using in vitro data, parameters were learned for
three TF families: homeodomain, ETS, and C2H2 using in vitro
data. Tenfold cross-validation was performed for each of the three
families in order to learn λ. The learned coefficients of the three
features (GC content, propeller twist, and homotypic environ-
ment) were then used to predict bound sequences for each TF
from one of the three families in the in vivo data.

HMM scoring scheme

A statistical probability model characterizing the space of all valid
binding configurations was used. Themodel is composed of a state
modeling the TF binding site (motif state) and a statemodeling the
background surrounding the TF binding site (Supplemental Fig.
17). The emission probability of the motif state corresponded to
the nucleotide frequency extracted from the PFM. The background
state is characterized by a PFM of a length of one (the emission
probabilities for the background state are described below). The
transition probability of moving from the motif state to the back-
ground state was arbitrarily set to 0.99 as according to the method
previously described (Hoffman and Birney 2010). To allow occur-
rences of the motif in both directions (for binding sites on both
strands), the strand bias of eachmotif was precalculated by extract-
ing the frequency of the motif (using a FIMO threshold of P-value
= 0.001) in the bound sequences in both directions; the strand bias
was used for defining themotif transition probability. The log like-
lihood ratio was calculated for each sequence, reflecting the likeli-
hood of a given sequence to be generated from the HMM model
that uses both the motif and the background states (described be-
low), as opposed to being generated solely by a fixed genomic
background state, where the emission probabilities of each nucle-
otide are taken from the unbound sequences of each TF separately.
Three different HMM models were implemented using different
emission probabilities for the background state: (1) the genomic
background described above, (2) the average PFM AT/GC frequen-
cies, and (3) the inversed average PFM AT/GC frequencies.

Electrophoretic mobility shift assay

Nuclear extracts were prepared using a NE-PER nuclear and cyto-
plasmic extraction kit (Pierce) according to the manufacturer’s
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instructions. The MITF biotin-labeled DNA probes spanningMITF
binding sites were obtained from IDT. Binding reactions of 10 μg of
nuclear lysates and 0.02 pmol of labeled double-stranded DNA
probe were performed for 20 min on ice using a LightShift chemi-
luminescent EMSA kit (Pierce) according to the manufacturer’s in-
structions. Competition analyses were performed with an excess
(30 pmol) of unlabeled probes. Samples were resolved by 5%
PAGE in 0.5× TBE buffer (45 mM Tris borate, 1 mM EDTA) trans-
ferred to nitrocellulose membranes. Labeled DNA was visualized
with the ECL system (Pierce). The super-shift assay is shown in
Supplemental Figure 18. Probe sequences for the WT and the mu-
tated MITF binding sites are listed in Figure 5B. The WT probe was
derived from theTRPM1promoter,whichwas shown to bindMITF
(Miller et al. 2004). In M1, mutations were introduced to disrupt
MITF low-affinity binding sites. In M2, all G and C bases were re-
placed by A and T bases, respectively.
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