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Noisy matrix completion aims at estimating a low-rank matrix
given only partial and corrupted entries. Despite remarkable
progress in designing efficient estimation algorithms, it remains
largely unclear how to assess the uncertainty of the obtained
estimates and how to perform efficient statistical inference on
the unknown matrix (e.g., constructing a valid and short confi-
dence interval for an unseen entry). This paper takes a substantial
step toward addressing such tasks. We develop a simple pro-
cedure to compensate for the bias of the widely used convex
and nonconvex estimators. The resulting debiased estimators
admit nearly precise nonasymptotic distributional characteriza-
tions, which in turn enable optimal construction of confidence
intervals/regions for, say, the missing entries and the low-rank
factors. Our inferential procedures do not require sample splitting,
thus avoiding unnecessary loss of data efficiency. As a byprod-
uct, we obtain a sharp characterization of the estimation accuracy
of our debiased estimators in both rate and constant. Our debi-
ased estimators are tractable algorithms that provably achieve full
statistical efficiency.

confidence intervals | convex relaxation | nonconvex optimization

ow-rank matrix completion is concerned with recovering a

low-rank matrix, when only a small fraction of its entries
are revealed (1-3). The importance of this problem cannot be
overstated, due to its broad applications in, e.g., recommenda-
tion systems, sensor network localization, magnetic resonance
imaging, computer vision, large covariance estimation, and latent
factor learning to name just a few. Tackling this problem in
large-scale applications is computationally challenging, resulting
from the intrinsic nonconvexity incurred by the low-rank struc-
ture. To further complicate matters, another inevitable challenge
stems from the imperfectness of data acquisition mechanisms,
wherein the acquired samples are usually contaminated by a
certain amount of noise.

Fortunately, if the entries of the unknown matrix are suffi-
ciently delocalized and randomly revealed, this problem may
not be as hard as it seems. Substantial progress has been made
over the past several years in designing computationally tractable
algorithms—including both convex and nonconvex approaches—
that allow one to fill in unseen entries faithfully from partial noisy
samples (4-13). Nevertheless, modern decision making would
often require one step further. It not merely anticipates a faithful
estimate, but also seeks to quantify the uncertainty or “confi-
dence” of the provided estimate, ideally in a reasonably accurate
fashion. For instance, given an estimate returned by the convex
approach, how does one use it to identify a short interval that is
likely to contain a missing entry?

Conducting effective uncertainty quantification for noisy
matrix completion is, however, far from straightforward. For
the most part, the state-of-the-art matrix completion algorithms
require solving highly complex optimization problems, which
often do not admit closed-form solutions. Of necessity, it is
extremely challenging to pin down the distributions of the esti-
mates returned by these algorithms. The lack of distributional
characterizations presents a major roadblock to performing
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valid, yet efficient, statistical inference on the unknown matrix
of interest.

It is worth noting that a number of recent papers have been
dedicated to inference and uncertainty quantification for various
high-dimensional problems, including Lasso (14-18), general-
ized linear models (17, 19), and graphical models (20, 21), among
others. Very little work, however, has looked into noisy matrix
completion along this direction. While nonasymptotic statisti-
cal guarantees for noisy matrix completion have been derived
in prior theory, the existing estimation error bounds are sup-
plied only at an order-wise level. Such order-wise error bounds
either lose a significant factor relative to the optimal guarantees
or come with an unspecified (but often enormous) preconstant.
Viewed in this light, a confidence region constructed directly
based on such results is bound to be overly conservative, resulting
in substantial overcoverage.

A Glimpse of Our Main Contributions

This paper takes a substantial step toward statistically opti-
mal inference and uncertainty quantification for noisy matrix
completion. Specifically, we develop a simple procedure to com-
pensate for the bias of the widely used convex and nonconvex
estimators. The resulting debiased estimators admit nearly accu-
rate nonasymptotic distributional guarantees. Such distributional
characterizations in turn allow us to reason about the uncer-
tainty of the obtained estimates vis-a-vis the unknown matrix.
For instance, we can construct 1) confidence intervals for each
entry—either observed or missing—of the unknown matrix and
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2) confidence regions for the low-rank factors of interest (mod-
ulo some global ambiguity), both of which are provably optimal.
As a byproduct, we characterize the Euclidean estimation errors
of the proposed debiased estimators, which match statistical effi-
ciency precisely (including the preconstant). This theory demon-
strates that a computationally feasible algorithm can achieve the
best possible statistical efficiency (including the preconstant) for
noisy matrix completion.

Models and Notation

To cast noisy matrix completion in concrete statistical settings,
we adopt a model commonly studied in the literature.

Ground Truth. We are interested in estimating an unknown rank-
r matrix M* € R"*™T whose rank-r singular-value decompo-
sition (SVD) is given by M*=U*2*V*'. For convenience,
let X*2U*3*'/2€R™" and Y2 V*¥*/2 R be the
balanced low-rank factors of M *, which obey

X 'X=y'Y"=%* and M*=X*Y"". [1]

Denote by o; (M ™) the ith largest singular value of M *. Set

Umaxéal(M*)y Uminéo'r(M*), andﬁéo—max/amin- [2]

Observation Models. What we observe is a randomly subsampled
and corrupted subset of the entries of M *; namely,

My =M} +Ey, Ey; "~"N(0,0%), forall (i,
where Q C{1,--- ,n} x {1, .-, n}is a small set of indexes, and
E;; denotes independently generated noise at the location (4, 7).
From now on, we assume the random sampling model where
each index (¢, ) is included in §2 independently with probability p
(i.e., data are missing uniformly at random). We use Pq (+) to rep-
resent the orthogonal projection onto the subspace of matrices
that vanish outside the index set 2.

7)€, 3]

Incoherence Conditions. Clearly, not all matrices can be reliably
estimated from a highly incomplete set of measurements. To
address this issue, we impose a standard incoherence condition
(2) on the singular subspaces of M * (i.e., U* and V*),

max{[|U" |l 000 IV |20} < Vi /m, [4]

where 4 is termed the incoherence parameter and [|All,
denotes the largest £2 norm of all rows in A. A small p implies
that the energies of U™ and V* are reasonably spread out across
all of their rows.

Asymptotic Notation. f(n) < h(n) (or f(n)= O(h(n))) means
[f(n)]| <cilh(n )\ for some constant ¢; >0, f(n )zh(n) means
|f(n)] > c2]h(n)| for some constant ¢z >0, f(n) < h(n) means

c2lh(n)| <|f(n)] < eci|h(n)| for some constants ci, c2 iO, and
f(n)=o0(h(n)) means lim, o f(n)/h(n) =

Inferential Procedures and Main Results

The proposed inferential procedure has its basis on 2 of the
most popular matrix completion paradigms: convex relaxation
and nonconvex optimization. Recognizing the complicated bias
of these 2 highly nonlinear estimators and motivated by refs. 14,
15, and 17, we first illustrate how to perform bias correction,

TWe restrict attention to squared matrices for simplicity of presentation. Most find-
ings extend immediately to the more general rectangular case M™ e R %2 with
different ny and n,.
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followed by a theory that establishes the near-Gaussianity and
optimality of the proposed debiased estimators.

Algorithm 1. Gradient descent for solving Eq. 7

Suitable initialization: X°, Y° (S/ Appendix)

Gradient updates: for t=0,1,...,t, — 1do
Xt =Xt — g[pg XY T —MyY! 4 axY, [6a]
Yyt —yt_ [['pg(x‘yfT —M)] TX 4+ AYY, [6b]

where 1 > 0 determines the step size or the learning rate.

Background: Convex and Nonconvex Estimation Algorithms. We first
review in passing 2 computationally feasible estimation algo-
rithms that are arguably the most widely used in practice. They
serve as the starting point for us to design inferential procedures
for noisy low-rank matrix completion.

Convex Relaxation. Recall that the rank function is highly non-
convex, which often prevents us from computing a rank-
constrained estimator in polynomial time. For the sake of
computational feasibility, prior works suggest relaxing the rank
function into its convex surrogate (22); for example, one can
consider a penalized least-squares convex program

A 1
minimize = ||Pq (Z - M) +)||Z].,. [5]
ZeRnXxn 2
Here, || - ||, is the nuclear norm (the sum of singular values, which

is a convex surrogate of the rank function), and A >0 is some
regularization parameter. Under mild conditions, the solution to
the convex program Eq. 5 attains appealing estimation accuracy
(in an order-wise sense), provided that a proper regularization
parameter A is adopted (4, 13).

Nonconvex Optimization. It is recognized that the convex
approach, which typically relies on solving a semidefinite pro-
gram, is still expensive and not scalable to large dimensions. This
motivates an alternative route, which represents the matrix vari-
able via 2 low-rank factors X, Y€ R"*" and attempts solving the
following nonconvex program directly:

minimize
X,YERXT

3lPe (YT )|+ JixIE - SmE. )

Here, we choose a regularizer of the form 0.5X(|| X||2 + ||Y]|%)
primarily to mimic the nuclear norm \||Z||, (23, 24). A vari-
ety of optimization algorithms have been proposed to tackle the
nonconvex program Eq. 7 or its variants (7, 10, 11, 25); read-
ers are referred to ref. 26 for a recent overview. As a prominent
example, a 2-stage algorithm—gradient descent following suit-
able initialization—provably enjoys fast convergence for a wide
range of scenarios (11, 13). The present paper focuses on this
simple yet powerful algorithm, as documented in Algorithm 1 and
detailed in SI Appendix.

Intimate Connections between Convex and Nonconvex Estimates.
Denote by Z° any minimizer of the convex program Eq. 5 and
(X" Y™™ the estimate returned by Algorithm 1 aimed at
solving Eq. 7. As was recently shown in ref. 13, when the reg-
ularization parameter A is properly chosen, these 2 estimates
provably obey (see SI Appendix for a precise statement)

chvxyncvxT ~ chx. [8]

Chen et al.
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In truth, the 2 matrices in Eq. 8 are exceedingly close to, if not
identical with, each other. This salient feature paves the way for
a unified treatment of convex and nonconvex approaches: Most
inferential procedures and guarantees developed for the noncon-
vex estimate can be readily transferred to perform inference for
the convex one, and vice versa.

Constructing Debiased Estimators. We are now well equipped to
describe how to construct estimators based on the convex esti-
mate Z°” and the nonconvex estimate (X ", Y"), to enable
efficient inference. Motivated by the proximity of the convex
and nonconvex estimates and for the sake of conciseness, we
abuse notation by using Z, X, Y for both convex and nonconvex
estimates; see Table 1 and SI Appendix for precise definitions.
This allows us to unify the presentation for both convex and
nonconvex estimators.

Given that Egs. 5 and 7 are both regularized least-squares
problems, they behave effectively like shrinkage estimators, indi-
cating that the provided estimates necessarily suffer from non-
negligible bias. To enable the desired statistical inference, it is
natural to first correct the estimation bias.

A debiased estimator for the matrix. A natural debiasing strat-
egy that immediately comes to mind is the simple linear
transformation (recall the notation in Table 1)

Z°2Z—p 'Pa(Z-M)
=p "Po(M*)+p "Po(E)+ Z—p 'Pa(Z), [9]
—_———— —m —

mean: M * mean: 0 mean: 0 (heuristically)
where we identify P (M) with Po (M ™) + Pq (E). Heuristically,
if Q and Z are statistically independent, then Z° serves as an
unbiased estimator of M*, i.e., E[Z°] = M*; this arises since
the noise E has zero mean and E[Pq] = pZ under the uniform
random sampling model, with Z the identity operator. Despite
its (near) unbiasedness nature at a heuristic level, however, the
matrix Z° is typically full rank, with nonnegligible energy spread
across its entire spectrum. This results in dramatically increased
variability in the estimate, which is undesirable for inferential
purposes.

To remedy this issue, we propose to further project Z° onto

the set of rank-r matrices* , leading to the estimator
da 1
M" = Pranir |2 — ;PQ (Z- M), [10]

where Prank.r (B) £ arg ming.ank(a)<r [|A — Bl|p, and Z can
again be found in Table 1. This projection step effectively
suppresses the variability outside the r-dimensional principal
subspace. As we shall demonstrate, the proposed estimator Eq.
10 provably debiases the provided estimate Z, while optimally
controlling the extent of variability.

An equivalent perspective on the low-rank factors. As it turns
out, the debiased estimator Eq. 10 admits another almost equiv-
alent representation that offers further insights. Specifically, we
consider the following estimator for the low-rank factors,

XdéX(Iﬁp’lx(XTX)*l)l/?, [11a]

YdéY(Irer’lA(YTY)*l)l/?, [11b]

*The true rank r can often be reliably estimated in a data-dependent manner. For

instance, according to ref. 13, theorem 1, one can employ a rank estimator =
min; {a,-+1(2)/a,-(2) gn*”Z}, which recovers the true rank with high probability
under our assumptions.
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where we recall the definition of X and Y'in Table 1. To develop
some intuition, let us look at a simple scenario where UV
is the rank-r SVD of XY and X=UXZY?, Y=VE'/2 1t is
then self-evident that X4 =U(Z 4 (\/p)I,)"/? and Y = V(2 +
(A/p)I)*/?. In words, X9 and Y are obtained by deshrinking
the spectrum of X and Y properly.

As we formally establish in SI Appendix, the estimator Eq.
11 for the low-rank factors is extremely close to the debiased
estimator Eq. 10 for the whole matrix, in the sense that

MY~ XY, [12]

Main Results: Distributional Guarantees. The proposed estimators
admit tractable distributional characterizations in the large-n
regime, which facilitates the construction of confidence regions
for many quantities of interest. In particular, this paper centers
around 2 types of inferential problems:

1) Each entry of the matrix M *: The entry can be either missing
(i.e., predicting an unseen entry) or observed (i.e., denoising
an observed entry). For example, in the problem of sensor
localization (27), one wants to infer the distance between any
2 sensors, given partially revealed distances. Mathematically,
this seeks to determine the distribution of

Mg — M,

ij

forall1<4,j <n. [13]

2) The low-rank factors X *, Y* € R"*": The low-rank factors
often reveal critical information about the applications of
interest [e.g., community memberships of each individual in
the community detection problem (28), angles between each
object and a global reference point in the angular synchro-
nization problem (29), or factor loadings and latent factors in
factor analysis (30)]. Recognizing the global rotational ambi-
guity issue,® we aim to pin down the distributions of X ¢
and Y up to global rotational ambiguity. More precisely, we
intend to characterize the distributions of

X‘H-XxX* and Y'H'-Y* [14]
for the global rotation matrix HH¢ € R™*" that best “aligns”

(X9, YY) and (X*,Y%),ie.,

2 2

X‘R-X*|| +||[y'R-v| . ns]

da :
H" =arg min
RGOTXT

Here, O™ *" is the set of orthonormal matrices in R"*".

Clearly, the above 2 inferential problems are tightly related:
An accurate distributional characterization for the low-rank fac-
tors (Eq. 14) often results in a distributional guarantee for the
entries (Eq. 13).

Distributional guarantees for low-rank factors. We begin with
our distributional characterizations of the low-rank factors.
Here, e; denotes the ith standard basis vector in R"™.

Theorem 1. Suppose that the sample complexity meets n’p >
CrBur®nlog®n for some sufficiently large constant C >0
and the noise obeys o/omin < c\/p/(kEprnlog® n) for some
sufficiently small constant ¢ > 0. Then one can write

XHY - X*=7Zx+ ¥y, [16a]

Y'HY - Y* = Zy+ Uy, [16b]

SFor any r x r rotation matrix H, we cannot possibly distinguish (X*,y*) from
(X *H, Y *H), if only pairwise measurements are available.
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Table 1. Notation used to unify the convex estimate Z* and the nonconvex estimate

(X ncvx Y nCVX)

Zc Rnxn Either zcvx or X ncvancvxT

X, Y eR"%" For the nonconvex case, we take X =X "“* and Y = Y "*; for the convex case, let
X=X and Y = Y%, which are the balanced low-rank factors of Z**" obeying
zcvx o Xcvx chxT and XcvxT Xcvx chxT chx

M9 e RP<" The proposed debiased estimator as in Eq. 10.

X9, ydernxr The proposed estimator as in Eq. 11.

Here, ZY" = P 0k (Z%%) is the best rank-r approximation of Z<*. See SI Appendix for a complete summary.

with (X *,Y*) defined in Eq. 1, (X ¢, Y") defined in Table 1, and
H < defined in Eq. 15. Here, the rows of Zx € R™*" (resp. Zy €
R™*") are independent and obey

. 2
z;ej"kdyv(o,“—(z*)—l), for 1<j<mn; [17a]

p

L 2
ZYTe_j'~kd~N<0,%(2*)—l>, for 1<j<n. [17b]

In addition, the residual matrices ¥x, OyecR™ " satisfy, with

probability at least 1 — O(n™?), that
o\
{9, 9l } =0 (S22 ). s

In words, Theorem 1 decomposes the estimation error
X?HY— X* (resp. YYH? —Y*) into a Gaussian component
Zx (resp. Zy) and a residual term $x (resp. Py). If the sam-
ple size is sufficiently large and the noise size is sufficiently small,
then the residual terms are much smaller in size compared to Zx
and Zy. To see this, it is helpful to leverage the Gaussianity (Eq.
17a) to compute that for each 1 < j < n, the jth row of Zx obeys

2 2
] Tr (" (2*)‘1)2 7

p pattlax
in other words, the typical size of the jth row of Zx is no smaller

than the order of o1/ /(pomax). In comparison, the size of each

row of ¥x (Eq. 18) is much smaller than o+/7/(pomax) (and
hence smaller than the size of the corresponding row of Zx) with
high probability.

{HZX €j

Remark 1. Another interesting feature—which we make precise in
the proof of Theorem 1—is that for any given 1 < i, j <n, the two
random vectors Zx e; and Zy e; are nearly statistically indepen-
dent. This is crucial for deriving inferential guarantees for the entries
of the matrix.

Distributional guarantees for matrix entries. Equipped with the
above theory for low-rank factors and Remark 1, we are ready to
characterize the distribution of Mi;‘ — M.

Theorem 2. For each 1 <1, j < n, define the variance v;; as

2
03 2 7 (o lls+ 7. 7). (191

where U} (resp. V') denotes the ith (resp. jth) row of U* (resp.

V*). Suppose that
o/ (k5 prn10g? 1) /p S i, [20a]

k8pu2rnlog® n
ond U7 V5 2 [

22934 | www.pnas.org/cgi/doi/10.1073/pnas.1910053116

np > k2 p3r3 log® n,

Then the matrix M defined in Table 1 satisfies
Mg — M} = gi + Ay, [21]

where gi; ~ N (0, vj;) and the residual obeys |A;| = o(\/v;}) with
probability exceeding 1 — O(n™3).

Several remarks are in order. First, we develop some intu-
ition regarding where the formula v;; comes from. By virtue of
Theorem 1, one has the following Gaussian approximation
Y'H!

XYHY - X*~Zx  and —Y* ~ Zy.

Assuming that the first-order expansion is tight, one has

M - My =[x H (YHY) T =X,
T (Xde - X*)Y*Tej te X" (Yde - Y*) Te,
~e! ZxY ej+e X Zye;. [22]

According to Remark 1, Z e; and Zy e; are nearly independent.
One can thus compute the variance of Eq. 22 as

Var (M M;)g Var (e ZxY" e, )+ Var (e X" Zy ;)
(i:i)pq 2{ Y*( )71Y*Te]_+eiTX*(2*)—1X*Tei}

oto? (U3 + 17 0z) = v

Here, (i) relies on Eq. 22 and the near independence between
Zye; and Zy e;, (ii) uses the variance formula in Theorem 1,
and (iii) arises from the definitions of X * and Y™ (cf. Eq. 1).
This explains (heuristically) the variance formula v;;.

Given that Theorem 2 reveals the tightness of Gaussian
approximation under conditions in Eq. 20, it in turn allows us
to construct nearly accurate confidence intervals for each matrix
entry M, . This is formally summarized in the following corollary.
Here, [a + b] denotes the interval [a — b, a + b].

Table 2. Empirical coverage rates of M,.’If for different (r, p, o)
over 200 Monte Carlo trials

(r.p. o) Mean(Cove) Std(Cove)
(2,0.2,107%) 0.9380 0.0200
(2,0.2,1073) 0.9392 0.0196
(2,0.4,107%) 0.9455 0.0164
(2,0.4,1073) 0.9456 0.0164
(5,0.2,107%) 0.9226 0.0247
(5,0.2,1073) 0.9271 0.0228
(5,0.4,10~°) 0.9410 0.0173
(5,0.4,1073) 0.9417 0.0172
Chen et al.
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Empirical quantiles of Sy

3 2 2 3

Bl 0 1
Standard normal quantiles

-3 2 2 3

-1 [ 1
Standard normal quantiles

Fig. 1. Q-Q plots of Sy; (Left) and Sy, (Right) vs. the standard normal distribution. The results are reported over 200 independent trials for r =5, p = 0.4,

and o =1073.

Corollary 1 (Confidence Intervals for the Entries {M*}). Let X9,

Y?, and M? be as defined in Table 1. For any given 1<i,j <n,
suppose that Eq. 20a holds and that

N r oo k19u2rnlog® n
020, + V5, 22 Ty g

Denote by ®(t) the CDF of a standard Gaussian random variable
and by &~ (-) its inverse function. Let

2
vy 2 % (x2 (x7x) 7 x) Ty (YY) ) )
[24]
be the empirical estimate of v;;. Then one has

sup
0<a<1

]P’{Mij* c [Mi;’ o' (1 —a/z)\/@}}— (1 —a)‘ = o(1).

Inwords, Corollary 1 tells us that for any fixed significance level
0 < a < 1, the interval

(M5 071 (1 - a/2) /o7 [25]

is a nearly accurate (1 — «) confidence interval of M.

In addition, we remark that when ||U;".||, =||V}.], =0 (and
hence V, =0), the above Gaussian approximation is completely
off. In this case, one can still leverage Theorem I to show that

Mg — My =M ~u'v, [26]

where u,v€R" are independent and identically distributed
according to N(0,0%(X*)""/p). However, it is nontrivial to
determine whether ||U;. ||, + ||V}.|l,, is vanishingly small or not
based on the observed data, which makes it challenging to
conduct efficient inference for entries with small (but a priori
unknown) U ||, 4 [[V5.1l,-

Last but not least, the careful reader might wonder how to
interpret our conditions on the sample complexity and the signal-
to-noise ratio. Take the case with r, u, x = O(1) for example:

Our conditions read
0/0min S/ p/(nlog®n).  [27]

The first condition matches the sample complexity limit (up to
some log factor), while the second one coincides with the regime
(up to log factor) in which popular algorithms (like spectral
methods or nonconvex algorithms) work better than a random
guess (7, 10, 11). The take-away message is this: Once we are able
to compute a reasonable estimate in an overall /> sense, then we

n’p > nlog® n;

Chen et al.

can reinforce it to conduct entrywise inference in a statistically
efficient fashion.

Lower Bounds and Optimality for Inference. It is natural to ask how
well our inferential procedures perform compared to other algo-
rithms. Encouragingly, the debiased estimator is optimal in some
sense; for instance, it attains the minimum covariance among all
unbiased estimators. To formalize this claim, we 1) quantify the
performance of 2 ideal estimators with the assistance of an oracle
and 2) demonstrate that the performance of our debiased estima-
tors is arbitrarily close to that of the ideal estimators. We remark
in passing such results here; see SI Appendix for precise state-
ments. Below, we denote by X ;. (resp. Y;'.) the ith row of X*
(resp. Y™).

Lower bound for estimating X" (1 <i < n). Suppose there is an
oracle informing us of Y* and we observe the same set of data
as in Eq. 3. Under such an idealistic setting and under our sam-
ple complexity condition, one has, with high probability, that any

unbiased estimator X; . of X", satisfies
Cov (5( . & |Q)§ (1—o(1)p o> (=% L

This reveals that the covariance of the estimator X (cf.
Theorem 1) attains the Cramér—-Rao lower bound with high
probability. The same conclusion applies to Y} . too.

Lower bound for estimating M,.j* (1<i,j<n). Suppose there is
another oracle informing us of { X }r.x2: and {Y} }r.x;, that
is, everything about X * except X;". and everything about Y~
except Y. In addition, we observe the same set of data as
in Eq. 3, except that we do not get to see M;;.% Under this
idealistic model, one can show that with high probability, any
unbiased estimator of M7 must have variance no smaller than
(1—o0(1))v;;, where v;; is defined in Theorem 2. This indicates
that the variance of our debiased estimator M, (cf. Theorem 2)—
which certainly does not have access to the side information pro-
vided by the oracle—is arbitrarily close to the Cramér—Rao lower
bound aided by an oracle.

Back to Estimation: The Debiased Estimator Is Optimal. While the
emphasis herein is on inference, we nevertheless single out an
important consequence that informs the estimation step. To be
specific, the distributional guarantees derived in Theorems I and
2 allow us to track the estimation accuracy of M, as stated
below.

TThe exclusion of Mj; is merely for ease of presentation. One can consider the model
where all Mj; with (i, j) € Q are observed with a slightly more complicated argument.
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Fig. 2. (Left) Estimation error of Z* vs. M9 measured in the Frobenius norm. (Right) Estimation error of Z* vs. M measured in the £o, norm. The results

are averaged over 20 independent trials for r=5, p=0.2, and n =1, 000.

Theorem 3 (Estimation Accuracy of MY). Let M be the debiased
estimator as defined in Table 1. Instate the conditions in Eq. 20a.
Then with probability at least 1 — O(n™?), one has

HM“—M* i:(2+0(1))nr02/p. [28]

In stark contrast to prior statistical estimation guarantees
(e.g., refs. 4-6 and 13), Theorem 3 pins down the estimation
error of the proposed debiased estimator in a sharp manner
(namely, even the preconstant is fully determined). Encourag-
ingly, there is a sense in which the proposed debiased estimator
achieves the best possible statistical estimation accuracy. In
fact, a lower bound has already been derived in ref. 4, section
II1.B, asserting that one cannot beat the mean-square estimation
error (2 — o(1)) nro?/p even with the help of an oracle. See SI
Appendix for a precise statement.

The implication of Theorems I to 3 is remarkable: The debi-
asing step not merely facilitates uncertainty assessment, but
also proves crucial in minimizing estimation errors. It achieves
optimal statistical efficiency in terms of both the rate and the pre-
constant. This theory about a polynomial time algorithm matches
the statistical limit in terms of the preconstant. This intriguing
finding is further corroborated by numerical experiments (see
Fig. 2).

Numerical Experiments. We conduct numerical experiments on
synthetic data to verify the distributional characterizations pro-
vided in Theorem 2. The verification of Theorem 1 is left to SI
Appendix. Note that our main results hold for the debiased esti-
mators built upon Z* and X "*Y"**T. As we formalize in SI
Appendix, these 2 debiased estimators are extremely close to each
other. Therefore, to save space, we use the debiased estimator
built upon the convex estimate Z°* throughout the experiments.

Fix the dimension n=1,000 and the regularization param-
eter A=2.50,/np throughout the experiments. We generate a
rank-r matrix M* = X *Y*", where X *, Y* € R"*" are random
orthonormal matrices, and apply the proximal gradient method
to solve the convex program Eq. 5.

Denote Sj; £ v; '/ (Mg — M;}), where v;; is the empirical
variance defined in Eq. 24. In view of the 95% confidence interval
predicted by Corollary 1, for each (i, j), we define Covg (; ;) to be
the empirical coverage rate of M, over 200 Monte Carlo simula-

tions. Correspondingly, denote by Mean (fo\vE) (resp. Std(C/o\vE))

the average (resp. the SD) of Covg (; ;) over indexes 1 <i,j <
n. As before, Table 2 gathers the empirical coverage rates for
M;; and Fig. 1 displays the quantile-quantile (Q-Q) plots of
S11 and Si2 vs. the standard Gaussian random variable over
200 Monte Carlo trials for r=5, p=0.4, and o =10"3. It is
evident that the distribution of S; matches that of A(0,1)
reasonably well.

22936 | www.pnas.org/cgi/doi/10.1073/pnas.1910053116

In addition to the tractable distributional guarantees, the debi-
ased estimator M also exhibits superior estimation accuracy
compared to the original estimator Z°™ (cf. Theorem 3). Fig. 2
reports the estimation error of M vs. Z°* measured in both
the Frobenius norm and the /.. norm across different noise
levels. The results are averaged over 20 Monte Carlo simula-
tions for =25, p=0.2. It can be seen that the errors of the
debiased estimator are uniformly smaller than that of the orig-
inal estimator and are much closer to the oracle lower bound.
As a result, we recommend using M even for the purpose of
estimation.

We conclude this section with experiments on real data. Sim-
ilar to ref. 4, we use the daily temperature data (31) for 1,400
stations across the world in 2018, which results in a 1,400 x 365
data matrix. Inspection of the singular values reveals that the
data matrix is nearly low rank. We vary the observation prob-
ability p from 0.5 to 0.9 and randomly subsample the data
accordingly. Based on the observed temperatures, we then apply
the proposed methodology to obtain 95% confidence intervals
for all of the entries. Table 3 reports the empirical coverage prob-
abilities and the average length of the confidence intervals as well
as the estimation error of both Z** and M ¢ over 20 independent
experiments. It can be seen that the average coverage probabil-
ities are reasonably close to 95% and the confidence intervals
are also quite short. In addition, the estimation error of M
is smaller than that of Z, which corroborates our theoreti-
cal prediction. The discrepancy between the nominal coverage
probability and the actual one might arise from the facts that
1) the underlying true temperature matrix is only approximately
low rank and 2) the noise in the temperature might not be
independent.

Discussion

The present paper makes progress toward inference and uncer-
tainty quantification for noisy matrix completion, by developing

Table 3. Empirical coverage rates and average lengths of the
confidence intervals of the entries as well as the estimation error
vs. observation probability p

Coverage Cl length 1Z = M*||e /1M ||
P Mean SD Mean SD Convex Z**  Debiased m¢
0.5 0.8265 0.0016 3.6698 0.0209 0.029 0.028
0.6 0.8268 0.0011 2.8774 0.0098 0.025 0.023
0.7 0.8431 0.0006 2.3426 0.0054 0.022 0.019
0.8 0.8725 0.0003 2.0234 0.0052 0.020 0.015
0.9 0.9093 0.0003 1.8296 0.0072 0.018 0.011
The results are averaged over 20 Monte Carlo trials.
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simple debiased estimators that admit tractable and accurate dis-
tributional characterizations. While we have achieved some early
success in accomplishing this, our results are likely suboptimal in
the dependency on the rank r and the condition number «. Also,
our theory operates under the moderate-to-high signal-to-noise
ratio (SNR) regime, where o2, /o2 (which is proportional to the
SNR) is required to exceed the order of n/p; see the conditions
in Theorem 1. How to conduct inference in the low SNR regime
is an important future direction.

More broadly, this paper uncovers that computational feasibil-
ity and full statistical efficiency can sometimes be simultaneously
achieved despite a high degree of nonconvexity. The analysis and
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