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ABSTRACT

Transcription factors (TFs) play crucial roles in reg-
ulating gene expression through interactions with
specific DNA sequences. Recently, the sequence mo-
tif of almost 400 human TFs have been identified
using high-throughput SELEX sequencing. However,
there remain a large number of TFs (~800) with no
high-throughput-derived binding motifs. Computa-
tional methods capable of associating known motifs
to such TFs will avoid tremendous experimental ef-
forts and enable deeper understanding of transcrip-
tional regulatory functions. We present a method to
associate known motifs to TFs (MATLAB code is
available in Supplementary Materials). Our method
is based on a probabilistic framework that not only
exploits DNA-binding domains and specificities, but
also integrates open chromatin, gene expression and
genomic data to accurately infer monomeric and ho-
modimeric binding motifs. Our analysis resulted in
the assignment of motifs to 200 TFs with no SELEX-
derived motifs, roughly a 50% increase compared to
the existing coverage.

INTRODUCTION

A central challenge in current biology is to elucidate tran-
scriptional regulatory mechanisms that influence animal
growth and development. Experimental techniques deter-
mining target genes of transcription factors (TFs) have led
to well characterized transcriptional networks in both low
complexity organisms (1-3) and mammals (4-7). Although
such approaches continue to provide valuable knowledge,
they often demand time-consuming and costly strategies
that are limited to a very modest subset of TFs and nar-
rowly focused on particular cell types.

The chromatin immunoprecipitation (ChIP) coupled
with DNA sequencing has recently become a powerful
method for identifying TF-DNA interactions in mam-
malian genomes (8,9). However, given the diversity of cell
types, environmental conditions, and TFs, it is not feasible
for ChIP-seq assays to cover all cellular contexts.

Since TFs typically bind to DNA at sites matching spe-
cific sequence motifs, knowledge of the motif for a TF will
be useful in determining the potential binding sites of the
TF. Of course, the accurate inference of the binding sites in
a particular cellular context will also require context depen-
dent experimental data such as chromatin accessible regions
(10,11). In any case, knowledge of the TF motif is essential.

In a recent study by the Taipale lab (12), called Taipale
hereafter, high-throughput SELEX and ChIP sequenc-
ing was employed to analyze sequence preferences of
human/mouse TFs. They acquired a total of 843 high-
resolution motifs expressed as position weight matrices
(PWMs). Taipale analysis identified PWMs that are 13 bp
long on average and also recovered numerous homodimers
for different structural TF families. These results signifi-
cantly improved knowledge of human TF motifs compared
to existing studies (13-15).

On the other hand, there are still many TFs with
unknown PWMs. In fact, Universal Protein Resource
(UniProt) has annotated more than 1100 DNA-binding
TFs (16). Excluding TFs that possess Taipale PWMs, we
arrive at approximately 800 human TFs without experi-
mentally determined motifs. The lack of motif information
presents a substantial obstacle in the understanding of the
regulatory roles of these TFs.

Existing methods to predict TF motifs in the absence
of TF-DNA binding data are mostly based on protein se-
quences (17-19). They concentrate on amino acid sequences
with annotated DNA-binding domains (DBDs) and intro-
duce various features originated from DBDs. Dataset com-
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Figure 1. Overview of DNA-binding specificities inference, beginning wi

1) Specificities belonging to the matched DBDs are
considered as candidate motifs for the target TF.

2) A probabilistic method is designed to choose a subset of
candidate motifs more likely to be correlated with the target
TF.
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th collecting human DBDs and their position weight matrices. The next stage

involves mapping TTF to a set of TFs that follow similar DBD patterns as TTF. Finally, our algorithm takes experimental data into account and select

candidates describing the best specificities for TTF.

prising TFs/DBDs coupled to PWMs are then used to
train features and predict DNA-binding specificities of tar-
get TFs. In this work, we show that DBD-based algorithms
do not always predict an accurate motif, which suggests a
need to improve motif inference by leveraging new experi-
mental data. We develop a pipeline consisting of two steps:
(1) based on DBD similarity, we map a target TF (TTF)
to a set of Taipale motifs; and (ii) we construct a proba-
bilistic procedure that combines RNA-seq and DNase-seq
platforms to select suitable motifs from candidates obtained
in the previous step. The proposed approach incorporates
high-throughput data across diverse tissue types, takes ad-
vantage of genomic information, and reduces our inference
algorithm into an optimization problem that can be quickly
solved. Our method is named MPAE, which stands for Mo-
tif Prediction based on Accessibility and Expression data.

OVERVIEW OF METHODS

A graphical overview of our method is shown in Figure 1.
First, we consider a set of DBDs whose DNA-binding speci-
ficities are experimentally determined. Next, for any TTF
without known motif, we use a DBD-based approach to
map our TF of interest to a set of candidate motifs. Finally
we use a statistical method, based on gene expression and
chromatin accessibility data across a diverse set of cellular
contexts, to select a small number of the candidate motifs
(<3) for association to the TTF. In this section, we present
an overview for the proposed methods and illustrate their
strengths and weaknesses. A more systematic assessment of
methods will be described in the ‘Results’ section.

Motif inference based on DBD similarity

To predict sequence-specific binding motifs for a TF, we
implement a DBD similarity-based approach (DBDSim),
which applies an agglomerative hierarchical cluster tree
to determine a set of TFs that have DBDs analogous to
TTF. In particular, we first construct a library consisting
of Taipale TFs (12) and retrieve their DBD sequences from
Uniprot (21) (Supplementary Table S1). DBDSim calcu-
lates pairwise distances among the DBD sequences to create
a hierarchical tree. We next build TF clusters based on the
tree and measure DBD similarity between each cluster and
TTF, named DBDSim score (see ‘Materials and Methods’
section). We consider motifs associated with clusters that
have the highest DBDSim scores as candidate PWMs for
our TF of interest.

DBDSim typically yields a modest number of candidate
motifs (on average 14) and if the DBD similarity is signifi-
cant enough, the candidate set is highly likely to contain a
good motif for the TTFE. However, not all motifs in the can-
didate sets are good motifs. For example when targeting TF
PAXS, the left column in Figure 2A represents motifs iden-
tified by DBDSim, each having a very high DBDSim score.
However, the second cluster illustrates a significant dissim-
ilarity between PAX3 and PAX7 motifs and the ground
truth. Moreover, TF-DNA binding specificities in one clus-
ter can show different structures, leading to the question
whether all of them are appropriate predictions? For in-
stance in Figure 2B, MEOX2 is associated with a monomer
and two dimeric motifs representing three distinct binding
candidates for MEOX1. Despite the significant DBD sim-
ilarity between MEOX1 and MEOX2, only the monomer
is correct motif for MEOXI1. Here, it might be suggested
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Figure 2. Motif prediction performance. Left panels in A-C illustrate DBDSim performance and right panels correspond to MPAE method. PAXS, PITX3
and MEOX1 specificities, labeled as true motif, are removed from Taipale dataset. In the first step, we apply DBDSim to recover TFs with significant DBD
similarities to the TTFs and ranked them based on DBD scores. The highest score in the left columns indicates the best DBD match to the TF of interest. We
compare the PWMs with the true motifs using TOMTOM tools (20), an ungapped alignment scheme that statistically measures similarities between pairs
of motifs. TOMTOM motif comparison function is set to the Pearson correlation coefficient and outcomes are reported as P-values in Motif similarity
columns. Clearly in A, B and C, only part of the candidates are appropriate for the TTFs. We next use our probabilistic approach, MPAE method and
reorder candidates in which motifs best suited for the TTFs are assigned to larger « values. We call a the MPAE score. Here, the sum of MPAE scores is
equal to the number of motifs suggested by DBDSim. The final candidate rankings, denoted by the right columns, successfully preserve correct specificities
while wrong decisions are separated by low MPAE scores.



that MEOX1 and MEOX2 actually possess the same bind-
ing profiles since unexpected noises in Taipale experiments
did not allow to capture the dimeric motifs of MEOX1. But,
we can find many similar examples with notable DBD sim-
ilarities and different motifs (e.g. ALX3 and ALX4, ENI
and EN2, PRRX1 and PRRX2). It is thus likely that pro-
tein structures are responsible for such consistent binding
variation. Throughout the paper, we draw our conclusions
assuming that experimental TF motifs are complete and ac-
curate.

As another example, the left column in Figure 2C dis-
plays a set of candidate TFs that do not have an obvi-
ous relation to PITX3 such as the same starting protein
names. Additionally, while all selected TFs are almost indis-
tinguishable in terms of DBDScore, according to motif sim-
ilarity, the single best choice for PITX3 motif is DMBXI.

MPAE: motif prediction from chromatin accessibility and
gene expression

The example in Figure 2 and the validation in ‘Results’ sec-
tion suggest the need for methods to reduce the false pos-
itives in the DBDSim candidate set. Here, we propose a
model-based approach (MPAE) for this task. MPAE com-
bines genomic information with matched chromatin acces-
sibility (DNase-seq) and gene expression (RNA-seq) data to
re-order TFs in the DBDSim candidate set. We collect data
from the ENCODE Project Consortium (22), ROADMAP
Epigenomics Project (23) and Pritchard Lab (available at
the Coriell Institute for Medical Research) and construct a
database that includes matched RNA-seq and DNase-seq
profiles on a large variety of cellular conditions (Supple-
mentary Tables S2 and 3). Assuming we have J candidate
motifs, for each promoter, say promoter i, we summarize the
correlation between TTF expression and candidate binding
site openness by D; = (Dj1, -+, Dj;, -+, Djy). Here, D;; repre-
sents the summarized data for motif j at promoter 7, and it
takes a larger value if:

e There are binding sites within the promoter well matched
to the PWM of motif ;.

e The binding site for motif j is closer to promoter /’s tran-
scriptional start site.

e Target TF expression is highly correlated with the binding
site openness.

We assume a statistical model for D; with parameters
a = (ay, -, o, -, ay) for all promoters i, where «; pro-
vides evidence whether motif jis a good candidate (see ‘Ma-
terials and Methods’ section for details). As o; becomes
large, we are more confident that motif j is associated with
TTF. The parameter a needs to be estimated from the data.
To account for the possibility that TTF may not bind to
the promoter, we introduce a binary random variable U;,
which U; = 1 indicates that TTF is bound to promoter i,
otherwise U; = 0. We treat U as missing data and imple-
ment the expectation-maximization (EM) algorithm to ob-
tain the maximum likelihood estimate (MLE) for . Finally,
we rank candidate motifs according to the estimated & and
choose the top three candidates as predicted motifs for the
target TF.
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MPAE tends to select candidate motifs that (i) have
stronger correlations between their motif sites openness and
TTF expressions across various cell types and (ii) are close
to transcription start sites (TSS). Such considerations have
been quite effective and generated promising inferences as
demonstrated by Figure 2A—C. The right columns in the
figure show our probabilistic method correctly rearranges
DBDSim candidates and allocates larger MPAE scores, a,
to the candidate motifs that are almost identical to PAXS,
MEOXI1 and PITX3 true motifs.

MATERIALS AND METHODS
Data

We used Taipale motifs that were obtained by high-
throughput SELEX and ChIP sequencing (12). All DBDs
associated with the PWMs were extracted from www.
uniprot.org (Supplementary Table S1). For a given PWM,
we scanned the human genome sequence (hgl9) and pre-
served matches above a defined threshold (see ‘MPAE’ sub-
section). We restricted motif occurrences to those within 5
kb of TSS. We next collected 217 DNase-seq and RNA-seq
pairs, each performed on the same cell type. The experiment
accession numbers are listed in Supplementary Table S2 and
publicly available at ENCODE Project Consortium (22),
ROADMAP Epigenomics Project (23) and Pritchard Lab
(the Coriell Institute for Medical Research). To ensure our
analysis is not biased by tissue-type, we employed the ag-
glomerative hierarchical clustering algorithm to cluster the
217 matched pairs into 100 groups based on TF expressions.
In MPAE procedure, we considered just one matched pair
from each cluster (Supplementary Table S2). We then gath-
ered known DNA-binding TFs and retrieved their DBDs
from Uniprot (Supplementary Table S3). We finally calcu-
lated motif sites openness and DNA-binding TF expres-
sions using the 100 matched samples (Supplementary Ma-
terial 1).

DBDSim

We employ MATLAB function seqpdist(DBD sequences,
‘ScoringMatrix’, ‘BLOSUM®62’) and compute pairwise dis-
tances between DBD sequences of Taipale TFs. We uti-
lize BLOSUMG62 to score amino acid alignments for non-
zinc finger proteins. Since zinc fingers often include multiple
binding domains and require strict scoring alignment, we
perform PAM10 on these proteins. The MATLAB function
linkage(DBD distances,‘average’) is next applied to gener-
ate an agglomerative hierarchical cluster tree based on the
calculated pairwise distances. Here, linkage is set to use
unweighted average distance when comparing clusters. A
threshold ¢ ~ 0.5 for cutting the tree is defined and clusters
are formed when a node and all sub-nodes have inconsistent
value below ¢ (MATLAB function cluster(tree,‘cutoff’,c) is
used). The cutoff ensures that DBDs belonging to each clus-
ter are quite similar, i.e. sequences are identical at roughly
85% of their aligned positions or more.
We finally calculate the DBDSim score of cluster C as:

< S(Cy, TTF)

e : 1
Tl (D
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where |Cl indicates the total number of TFs within cluster C
and S(C,,, TTF) represents the protein alignment score be-
tween mith element of C and TTF (nwalign from MATLAB
provides score S). Motifs having DBDSim score above a set
threshold are predicted as candidate motifs. This threshold
is set to be 100 if the DBD of TTF is 60-80 amino acids in
length. The threshold is decreased to 50 for shorter protein
sequences such as bZIP and bHLH and increased to 200
for zinc finger TFs with long DBDs. These cutoffs, obtained
in leave-one-out cross-validation (see Results), are the high-
est DBDSim scores that capture existing correct motifs for
every TTFs. Note that small variations in the thresholds,
+20%, does not notably change the cross-validation results.

MPAE

We propose MPAE to select candidate motifs that are more
likely to be a good motif for TTF. Our unsupervised learn-
ing algorithm aims to take advantage of DNA accessibility
combined with the expression of TTF. The proposed proce-
dure is described in the following.

TF-promoter activity. Our method starts by scanning all
promoters for sites with substantial similarity to the candi-
date PWMs. We use FIMO software to locate motif matches
and calculate P-value scores for matches found in the pro-
moters (24). Denote by J the total number of candidate mo-
tifs and N the total number of promoters under considera-
tion. The PWM score X; ; for candidate motif ; at site / in
promoter i is defined as:

—lo P-value),
X, = {O, gio ( )

We perform thresholding on the P-values to exclude sites
with poor motif match. The PWM score is not a new con-
cept and simply derived from P-values reported by FIMO.
Let Y ; denote the correlation between our TTF expres-
sions and the openness at position j;. Specifically, we ob-
tain TTF expressions and the j; openness from 100 matched
RNA-seq and DNase-seq samples (Supplementary Mate-
rial 1) and calculate Y, ; as the normalized inner product be-
tween the expression and openness vectors. Replacing inner
product with Pearson or Spearman correlation increases
computational costs and shows negligible changes in Re-
sults section. We introduce the TF-promoter activity D; ; as
follows:

if —log;, (P-value) > 5
otherwise

TSS;  \ !
Di,_j := Z (1 + 8[ PL’j1> A/l',j[ Z,j]a (2)
l 1

where TSS; ;, shows the distance from position j; to tran-
scription i start site, PL; shows promoter i length and §; in-
dicates the weight-distance. The promoter regions are as-
sumed to start from the TSS of genes. We fix the promoter
length PL; to 5kbp and set §; = 5 for every i. If D; ; is zero
for all j, we do not take promoter 7 into consideration. We
then scale D; ; with respect to Z}’:l D; ; to make it sum up
to one.

DNA accessibility at the precise locations to which TF is
bound can be low because the TF protects its binding sites
from DNase I cleavage (25,26). Here, we do not consider

chromatin accessibility at the exact binding sites. Instead,
we identify open chromatin regions using HOTSPOT soft-
ware (see Supplementary Material 1 for details). If a motif
binding site falls within hotspot region, we allot the hotspot
openness to the motif site, otherwise openness is set to zero.
In other words, we assume that genomic regions surround-
ing actual TF binding sites are accessible given the TF is
expressed. We hence expect Y; ;, to play an important role
in TF-promoter activity, which has led to promising motif
predictions (‘Results’ section).

To obtain a functional form for TF-promoter activity, we
examined multiple linear and non-linear models to achieve
a reliable motif inference in leave-one-out cross-validation.
We further investigated different promoter lengths rang-
ing from 1 kbps to hundreds of kbps, various threshold-
ing on motif match scores, and several functions to cor-
relate expression and accessibility across diverse cell types.
The proposed TF-promoter activity led to not only near-
optimal performance but also inexpensive computational
algorithms due to the summarization of input data.

The introduced model for TF-promoter activity has par-
allels with previous studies. For instance, Chen et al. (27)
developed a statistical framework that integrates ChIP-seq
data and expression profiles to identify target genes of TFs.
Similar to our model, they assumed that TF binding sites
are more probable to occur in ChIP peaks closer to TSS.
They also required peak intensity and target expression to
follow analogous patterns in different cellular conditions,
which roughly corresponds to ¥ ;. In another work by (10),
distance to TSS, motif match score, and experimental data
such as histone modifications and chromatin accessibility
were statistically combined to infer genome-wide TF bind-
ing sites. Note that these studies utilized either expression or
accessibility information to elucidate transcriptional regu-
lations while we propose a joint analysis of expression and
accessibility suitable for motif prediction.

Ranking candidate motifs by modeling TF-promoter activity.
We assume that TTF has regulatory roles on only a subset
of promoters, which are called the relevant promoters. Let
U; be the binary indicator of the event that promoter i is a
relevant promoter. Since we do not know the relevant pro-
moters, we regard U; as a latent random variable following
a Bernoulli distribution with parameter 6:

P(U10) = 60U (1 — 0)' 7Y, 3)

where 0 is the probability that TTF binds to a random pro-
moter. When U; = 1 (i.e. the promoter is relevant for TTF),
the TF-promoter activities D; = (D; 1, ..., Djj, ..., Di )
should be informative to rank the candidate motifs of TTF.
In other words, a good motif is likely to give a higher value
for D; ;. Thus, D; is assumed to follow a Dirichlet distribu-

tion with parameters o« = (g, ..., o), ..., oy):
[ !
DU =1,0)= —[[ D%
f( | (X) B((Y) i L]

= Mﬁpﬁ‘f/l @)

[T2i D))



where B( - ) is the beta function and «; represents the belief
that motif j is a good candidate for TTF. We assume that
Zle «; = J. Fitting the above model to all relevant pro-
moters, « is inferred and then used to select good motifs for
TTF.

When U; = 0 (i.e. the promoter is not relevant for TTF),
D, should not depend on the parameter a. Accordingly, we
assume a neutral distribution by setting o;; = 1 for all j:

SDi|U; =0,0) = (J = 1)! )

The expectation-maximization (EM) algorithm. The
model parameters (a, 0) are estimated by maximizing the
likelihood function f{D]a, 0) for each TTF separately, as
the parameters are assumed to be TTF-specific. Because
the latent variable U is unknown, we implement the EM
algorithm. We first calculate the complete likelihood f(D,
Ula, 0):

J(D, Ula, ) = f(D|U, a) P(U|0)

N
=1 | /(DilU;, o) P(U;10)

—

FDi|U; =1, )Y f(D;|U; = 0,0) Y 0% (1 — )Y

Il
=

—.

Ui

N J a;—1

1_[/:] Dl; > U 1-U;

—(J= D[ =) b —g) U (6)
E (H}I=l I'(e))

In the expectation step (E-step), the expectation of the log
likelihood function, given the current estimated parameters,
(!, 67), is calculated as:

Q. 0la’,0") = > P(U|D.a'. 0" log f(D, Ula, 0)
U

= Y P(UID, o', 0" log f(D|U, &) +
U

> P(UID. o', 0" log P(U|0) (7)
U

To simplify the above equation, we calculate

P(U, = 1|D;, ', 67) =

P(D;|Ui=1,a") P(Ui=1]0")
P(Di|Ui=1.0") P(Ur=116")+ P(D;|U;=0,a") P(U;=016")

9! 1 J Dn’/‘71
B(a’}l_[f:l ij

al—1
o' 57 [T D) +(1-0)(J-1)!

1 .
= 1_ot J J 17“5‘ = qlt (8)
4+ (H/=1r(“§))<1_[/=1 D;; )
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Employing ¢/, the first term in (7) can be rewritten as:

J N J N
— D logT(@) ) qf+) a; ) qflog D, —
j=1 i=1 j=1 =l

J

> 4flog D; j+Nlog(J—1)! ©9)
j=1 i=1

and the second term as:

N N
log6 ) g/ +log(1—0)) (1 —g) (10)
i=1

i=1

See Supplementary Material 1 for details and derivations.
Formula (9) is only a function of parameter o while (10)
only depends on 6. Therefore in the maximization step (M-
step), we maximize (9) and (10) separately. It can be shown
that

N
ef-‘rl — Zi:l qi (11)
N

To this end, we estimate parameter o through the following
concave optimization

N N J N
@'l = argmax Z a; Z g/ log D; ; — Z log I'(« ;) Z q!
o j=1 =l J=1 i=l

J
subject to Zoz]:J anda; >0, 1 <j<J (12)
j=1

Although our optimization is concave, the estimate of pa-
rameter « is not available at a closed form. Borrowing ideas
from (28), we propose a simple and efficient iterative scheme
to approximate a. In this scenario, we consider an alterna-
tive representation for a:

J
wj=Jw; and Y w;=1 (13)
j=1

which assures that Z}’:1 «; = J. We emphasize that an ini-
tial @ > 0 always lead to a positive parameter estimation due
to the concavity of the cost function when o > 0. We next
reparameterize our optimization problem with the uncon-
strained vector z where
Zj
(14)
Z}f:l Zk

The gradient of (12) with respect to z; is

lUj=

N N
J
(—\I/(ij)Zq,-[—i-Zq,-’logD,-,j +

Z/f:l Zk

J N J N
D owW(Jwg) Y gi= > wi Yy gflog Di,k) (15)
k=1 =1 il

i=l

i=1 i=1
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and ¥(x) = dlogI'(x)/dx. Setting the gradient to zero, we
arrive at the update

j= i=1

\I](‘Xj) = 21_ 7 <ZQ, log D; gt Z wk\Il(ka) Z (],

J N
> w2 gilog D,;k) (16)
=1 i=1
+1 __ 0‘/
wj Zk 1 %k (17)

We make use of Newton method to solve equation (16) for
a; where other variables are estimated from the last iteration
t (Supplementary Material 1). We then calculate the new

w't! asindicated in (17). In a similar fashion, we derive wj“

for every j and finally update '.
We summarize our MPAE approach in four steps:

e Initialize o with respect to the constraint (12) and also 0
<0<l

e Compute ¢, as shown in (8), E-step.

e Find 6’ ! and o' * ! using (11), (16), and (17), M-step.

e Perform E-step and M-step until la’*! — o/l < 107% and
0’1 — 01 <107C.

The EM algorithm converges to a local minimum quickly,
typically in a few iterations (Supplementary Material 1). We
perform the EM multiple times and choose the local optima
that results in the largest log marginal likelihood. We finally
rank candidate motifs once « is estimated and view candi-
dates with the highest « values as reliable predicted motifs.

RESULTS
Performance analysis

We performed leave-one-out cross-validation to assess the
performance of our procedure. Specifically, we inferred the
motif of each Taipale human TF that was first removed
from the training data. We then used the TOMTOM pro-
gram (20) to compare the inferred candidate motifs to the
omitted Taipale motif by computing the motif-comparison
P-value. Any candidate motif with a P-value < 0.0001 is re-
garded as a ‘suitable/correct’ motif for the (removed) target
TF. Our findings are presented in the following three sub-
sections.

Protein sequences are strongly informative to infer motif
models for zinc finger TFs. We first analyze the DBDSim
performance for zinc finger TF (ZF-TF) based on cross-
validation among the 48 Taipale ZF-TFs. For every tar-
get ZF-TF, we define positive outcomes as candidate motifs
with DBDSim score above a threshold. Given the positive
set, the red curve in Figure 3A shows the average propor-
tion of correct predictions across 48 cases as we change the
DBD similarity threshold (see average precision in Supple-
mentary Material 1). The black color at any threshold de-
picts the proportion of cases that have at least one correct
motifin their positive sets, called sensitivity. When DBDSim
score between the target ZF-TF and the candidate TF meets

200, we observe that the precision becomes 88% while the
sensitivity does not notably drop. However when the DBD-
Sim falls below 200, the precision is likely to be low and
we simply refrain from making a prediction. Note that the
threshold was obtained for target ZF-TFs that contain three
to five ZF domains.

Moreover, DBDSim always allotted the highest DBD
score (>200) to the best motifs. In particular, we found
27 cases satisfying the 200 threshold where the percentage
of correct motifs within the first cluster, candidates with
the highest DBDSim score, was on average 91%. Cross-
validation analysis on a subset of these cases are shown
in Table 1 (complete results are available in Supplementary
Material 2). For the remaining 21 ZF-TFs that did not meet
the threshold, we have 12% correct motifs in the first cluster
and 4% among the top 10 clusters.

Several methods have been developed to predict ZF
motifs from DBD sequences (19,29). They analyze struc-
tural models of ZF-DNA interface to estimate new bind-
ing specificities. To compare such predictions with DBD-
Sim, we used the recent algorithm in (19), named Persikov
method. Recall our 91% average precision derived from the
27 ZF-TFs. Persikov average precision for these cases is just
4%. Even increasing the default P-value to 0.001 and 0.01,
we observe low average precisions, 26 and 33%. To enable a
fair comparison, we also determined DBDSim performance
for the ZF proteins in which Persikov method works best.
Setting the P-value to 0.01, Persikov predicts correct mo-
tifs for 12 Taipale ZF-TFs. DBDSim, performed on these
cases, is able to make predictions for 9 ZF-TFs with 100%
average precision. The other 3 cases that do not satisfy the
200 threshold have no similar motif in Taipale dataset and
DBDSim properly avoids making a prediction. Decreasing
the P-value to 0.0001 when evaluating DBDSim precision
among 12 cases, we still achieve 100% precision for the 9
ZF-TFs. On the contrary, Persikov obtains just one predic-
tion having the P-value < 0.0001. To generalize our com-
parison to all Taipale ZF-TFs, we eliminated the 200 thresh-
old criteria and treated the top cluster as DBDSim predic-
tions. Applying DBDSim and Persikov methods to 48 ZF-
TFs, Persikov arrives at 2, 17 and 25% average precision for
the P-value 0.0001, 0.001 and 0.01 while DBDSim gives 57,
58 and 60%. Although DBDSim outperforms Persikov, we
note that our comparison may be not entirely fair since both
methods do not utilize the same training dataset.

Persikov predictions are inaccurate when the total num-
ber of ZF domains in a single protein increases. The main
challenge involves various unknown cooperations among
ZF domains that only activate a subset of domains bound to
DNA. DBDSim, on the other hand, is able to handle such
complexity provided that a ZF protein with the DBDSim
score above the threshold exists in our dataset. Figure 3B
demonstrates a comparison of DBDSim and Persikov per-
formance based on the number of ZF domains. For KLF16
and ZNF740, the two methods predict motifs close to the
true binding models. As the number of ZFs becomes larger,
DBDSim notably outperforms and accomplishes the best
motif approximation for GLIS1, HIC2 and ZIC1. We em-
phasize that many ZF proteins are associated with numer-
ous domains and the architecture of ZF-DNA interactions
cannot be properly addressed by current models.
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Figure 3. (A) DBDSim analysis for ZFs. We impose a cut-off value on DBDSim score to select the candidate set. As this threshold alters (x-axis), the red
curve gives the average precision among 48 Taipale ZF-TFs and the black line indicates the fraction of cases whose candidate sets include minimum one
correct motif. (B) Method comparison of ZF-DNA specificity inference. Second column shows the total number of ZF domains retrieved from Uniprot.
The specificities of all five factors, indicated as True motif, have been determined in Taipale data. We denote the proposed algorithm by (19) as Persikov
method. Both DBDSim and Persikov method suggest specificities analogous to the grand truth provided that TFs contain three ZF domains. However
as ZF domains increases, DBDSim notably outperforms structural model-based predictions. Note that our conclusion was validated across all Taipale
ZFs. Here, we only show a few comparisons to avoid repetition. (C) DBDSim performance. We performed DBDSim to infer specificities of Taipale human
non-ZF TFs assuming their true motifs were missing. The top 10 clusters were used as candidate motifs and the percentage of candidates suitable for each
TTF was calculated. Histogram of the percentages shows that DBDSim most likely obtain suitable candidates, however, those are combined with numerous

bad candidates that must be disregarded.

Recent study by (30), named Weirauch method, has de-
veloped a heuristic DBD-based scheme to expand the as-
signment of motifs to both ZF and non-ZF TFs. Rely-
ing on motif database generated through PBM technique,
they measured the levels of DBD similarity between any
two proteins that have approximately an identical motif. It
was concluded DBD similarity above a rigid threshold for
each TF class typically guarantees accurate motif predic-
tions. We observe that Weirauch method when applied to
non-ZF proteins gives considerably lower sensitivity com-
pared to DBDSim (see the next subsection), however for
ZF, both methods exhibit analogous performance. Apply-
ing Weirauch to 48 Taipale ZF-TFs, we are able to infer
motifs for 21 ZF proteins representing 98% average preci-
sion. DBDSim can also attain the same performance if our
threshold increases to 250, but, the sensitivity reduces from
27 cases to 21. Note that Taipale motif database was used
for both Weirauch and DBDSim predictions to allow fair
comparison.

‘We emphasize that correct motif predictions for ZF fam-
ily are always associated with the highest DBDSim score
and thus, Weirauch strict thresholding does not significantly
reduce the sensitivity of method. But imposing such thresh-
olding on non-ZFs nonetheless sacrifices sensitivity to en-
sure accurate motif inference. Unlike Weirauch, DBDSim is
designed to capture candidate sets that most likely contain
suitable motifs for TTF. We then propose MPAE to improve
DBDSim’s precision while benefiting from its high sensitiv-

ity. The detailed analysis is provided in the following sub-
section.

M PAE accurately predicts motifs for the majority of TF fami-
lies. For non-ZF proteins, suitable candidates are not nec-
essarily coupled with the highest DBDSim score; e.g. Fig-
ure 2B and C. To assess DBDSim performance more sys-
tematically, we calculated the percentage of Taipale human
TFs (ZF excluded) whose candidate set includes at least one
correct motif, defined as the sensitivity of our scheme. The
sensitivity was 94% where DBDSim candidate set was con-
structed using the 10 closest clusters to TTF. We then com-
puted the percentage of suitable motifs among each candi-
date set. On average, <38% of motifs in the candidate set
are correct, Figure 3C depicts histogram of suitable motif
percentages. Therefore, DBDSim can offer a candidate set
highly likely to contain the correct motif, but a majority of
the motifs in the candidate set may be incorrect. This moti-
vated us to develop the MPAE method to select the correct
motif(s) among the candidates.

To perform MPAE on non-ZFs, we considered proteins
expressed in at least one sample because otherwise the cor-
relation Y ;, would become meaningless. In the first step,
DBDSim was applied and TTFs not comparable to any
available DBDs were dropped, i.e. no prediction will be
made for those with DBDSim scores below the aforemen-
tioned thresholds. For the remaining TTFs, we used MPAE
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Table 1. Leave-one-out cross-validation

Family Name Correct consensus Predicted consensus P-value
znfC2H2 EGRI1 TACGCCCACGCATT ATACGCCCACGCATTT 5.51817 x 10~1¢
znfC2H2 GLI2 GACCACCCACGACG GACCCCCCACGAAG 522287 x 10~%
znfC2H2 KLF14 GGCCACGCCCCCTT GCCACGCcccee 1.8514 x 10710
znfC2H2 SCRT2 ATGCAACAGGTGG GAGCAACAGGTGGTT 2.44446 x 10712
znfC2H2 SP1 ACCCCGCcececce GCCACGCccccece 8.45718 x 1071¢
znfC2H2 YY2 GTCCGCCATTA GCCGCCATTAT 7.26281 x 107°
znfC2H2 ZBTB7B GCGACCACCGAA GCGACCACCGAA 1.58617 x 1077
ETS EHF AACCCGGAAGTA AACCCGGAAGTG 2.57183 x 1078
ETS ELK3 ACCGGAAGTA AACCGGAAATA 2.53826 x 107°
E2F E2F1 ATTGGCGCCAAA TTTGGCGCCAAA 9.30523 x 1077
bHLH HES5 CGGCACGTGCCA GACACGTGCC 9.92475 x 1078
bHLH NEUROG2 AACATATGTC ACCATATGGC 4.12085 x 10-°
bZIP BATF3 TGATGACGTCATCA GATGACGTCATC 3.11216 x 1078
bZIP CREB3 GTGCCACGTCATCA ATGCCACGTCATCA 6.85621 x 1010
homeobox HOXA10 GGTCGTAAAAAT GTCGTAAAA 1.19757 x 1077
homeobox MEIS3 TGACAGGTGTCA TGACAGGTGTCA 1.21951 x 10712
homeobox PRRX1 CCAATTAA TCTAATTAAA 4.33052 x 1077
POU POU3F3 ATGCATAAATTA ATGCATAATTTA 7.40732 x 10714
RFX RFX4 CGTTGCCATGGCAACG CGTTGCCATGGCAACC 3.06322 x 10713
AP2 TFAP2B TGCCCTGAGGGCA TGCCCTGAGGGCA 1.0674 x 10!
NFI NFIA TTGGCACGGTGCCAA TTGGCACGGTGCCAA 9.47109 x 10!
HSF HSF1 TTCTAGAACGTTC TTCTAGAACGTTC 1.31947 x 107V
IRF IRF4 CCGAAACCGAAACTA CCGAAACCGAAACT 1.27332 x 107?
MADS MEF2D ACTATAAATAGA TCTAAAAATAGA 2.11539 x 10~1°
PAX PAX2 CGTCACGCTTGACTGCTC CGTCACGCATGAGTGCTC 1.58414 x 1072
HMG SOX2 GAACAATGGTATTGTTC AACAATGGTAGTGTT 6.01762 x 101°
HMG SOX8 ATGAATTGCAGTC ATGAATTGCAGTCAT 1.84138 x 10710
forkhead FOXC2 GTAAATAAACA TGTAAATAAACAA 1.03226 x 10~°
forkhead FOXOl TTTCCCCACACG TTTCCCCACACGAC 2.51112 x 107!
p53 TP63 AACATGTTGGGACATGTC AACATGCCCGGGCATGTC 9.91755 x 1078
RUNT RUNX2 TAACCGCAAACCGCAA TAACCGCAAACCGCAA 7.42584 x 10~!8
T-box TBX21 TCACACCTTAAAGGTGTGA TTTCACACCTCAGAGGTGTGAGA 9.11484 x 10°13
nuclear receptor ESRRA TTCAAGGTCAT GAGGTCATGACCCC 4.25694 x 1072
nuclear receptor RXRG GAGGTCATGACCCC GGGGTCATGACCCC 4.18164 x 1071¢

Column 1 and 2 denote TF family and TF name. Column 3 and 4 indicate true and inferred consensus whose motif-comparison P-value is depicted in column 5. For predicting
ZF motifs, we select candidates with the highest DBD score above 200 and for non-ZF, we consider the top three candidates having a > 1. Although multiple motifs were
predicted for each TTF, we only show one motif for simplicity. Detailed results are provided in Supplementary Material 2.

method and selected the top three candidates satisfying o >
1 (see section 4 in Supplementary Material 1).

The performance was promising where the average frac-
tion of correct motifs within the top three candidates, av-
erage precision, was almost 90% (nuclear receptors not in-
cluded, see the last paragraph). For comparison, we se-
lected the smallest number of DBDSim clusters that (i) con-
tain three candidates and (ii) have the highest DBDSim
scores. Given this new candidate set, on average, 71% of
motifs were appropriate for TTFs. Since Taipale data con-
tains many TFs with both human and mouse motifs, the
above precision for DBDSim can be misleading. Specifi-
cally, leave-one-out cross validation is in favor of DBD-
Sim due to the strong similarity between human and mouse
DBDs/motifs. Removing mouse TFs from our analysis,
the average precision dropped to 66 for DBDSim, but,
MPAE performance did not change. We also emphasize that
Taipale includes many paralog proteins (e.g. ELF3, ELF4
and ELFS5 are paralogs of ELF1), which causes an overesti-
mation of DBDSim performance. For instance, we limited
our training data to a subset of Taipale TFs that has less
paralog proteins, in total 192 TFs, and obtained 46 and 83
as the average precision for DBDSim and MPAE, respec-
tively.

As another comparison, Weirauch method was applied
to non-ZFs (nuclear receptors removed) assuming predicted
motifs were taken from Taipale dataset. The average preci-
sion was 85% which is 5% below MPAE. Weirauch sensi-

tivity, however, was 69% significantly lower than our 94%.
Note that we achieve 94% whether nuclear receptors are
considered or not. The sensitivity difference becomes even
larger when Taipale training data is limited to thel92 TFs
with less paralog proteins. In particular, DBDSim com-
bined with MPAE exhibited 86% sensitivity and 83% aver-
age precision while Weirauch showed 50 and 79%.

Supplementary Material 2 shows the MPAE evaluation
on a subset of TTFs that reflects the overall performance.
Table 1 also illustrates part of the evaluation. As indicated
in Table 1, the motif inference for the majority of TF fam-
ilies were accurate, however for nuclear receptor family, we
observed that some motifs were mispredicted. This could be
due to the multifunctional mechanism of receptors, such as
ligand binding and heterodimerization (31), which cannot
be correctly addressed in the proposed models.

M PAE takes homodimers into account. 'The SELEX analy-
sis followed by massively parallel sequencing in (32) showed
that many TFs can bind to DNA either as monomers or
homedimers. To obtain homodimeric binding, Jolma et al.
(12) employed the SELEX technique to determine whether
TF is bound to two similar sites that are close in a DNA
fragment. Given a clear spacing and orientation between
the two sites, the homodimer profile were attained.
Dimerization introduces various spacings and orien-
tations among the monomers/half sites. MPAE cross-
validation for different families such as SOX, E2F, FOX,
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Family Taipale Predicted Name Taipale Predicted
homeobox 112 37 E2F 6 2
bHLH 35 34 IRF 6 2
znfC2H2 48 32 RFX 4 2
bZIP 20 29 T-box 12 2
forkhead 16 19 p53 1 2
HMG 13 8 MADS 4 1
NFAT 4 6 NFI 3 1
MAD 1 5 PAX 8 1
GATA 3 4 POU 14 1
ETS 24 3 RUNT 2 1
IRX 2 3 SAND 1 1
MYB 2 3 TEA 3 1

Here, ‘Family’ identifies TF class, ‘“Taipale’ indicates the number of Taipale human TFs and ‘Predicted’ shows the number of TFs for which motif inference

was achieved.

RFX and RUNT revealed that homodimeric orientation
and spacing preferences can be anticipated (Supplemen-
tary Material 2). For instance, MPAE detects distinct
spacing/orientation preferences in SOX family, proteins
that mainly display dimeric motifs in Taipale. Furthermore,
our method inference is not biased toward monomer nor
homodimer and selects candidates that have larger MPAE
score across varied cell types. As an example, RUNX2 pos-
sesses one Taipale monomer and two homodimers where
MPAE prefers homodimeric motif. On the other hand, for
ELK1 containing two monomers and one dimer, MPAE
nominates monomeric binding.

Identification of DNA-binding specificities for human tran-
scription factors not covered by Taipale

We employed a list of 1988 human proteins from (33) and
collected sequence-specific DNA binding TFs (16). The TFs
were checked against Uniprot and DBDs are recovered ac-
cordingly (Supplementary Table S3). This gives us 1137 TFs
covering different structural families. Excluding the Taipale
TFs, we arrive at 756 TFs divided into 443 ZFs and 313
non-ZFs. We analyzed these two groups separately, i.e. ZF
motif inference were achieved based on DBDSim, whereas
MPAE was applied on non-ZF factors.

We were able to elucidate DNA-binding specificities of
32 ZF and 168 non-ZF proteins (Supplementary Table S4).
Table 2 exhibits the number of predictions attained for each
TF family. The 168 non-ZF predictions substantially ex-
pand human motif database, almost 50% growth compared
to Taipale. However, the ZF coverage is low since ZF pro-
teins represent the largest class of eukaryotic TFs while
Taipale includes only a small set of them. In particular, ZFs
with the starting Uniprot names ZB, ZE, ZF, ZI and ZN
are numerous and often have ten to thirty domains in a
protein. Unfortunately, to the best of our knowledge, few
motifs have been experimentally determined for this type of
ZFs. Note that even though ZF sensitivity is low, our cross-
validation suggests predicted motifs are most likely precise.

To assess the reliability of these new predictions, non-
Taiplae TFs, we looked for additional experimental data
that may be useful for their validation. We found HOMER
ChIP-seq experiments (34) for 60 of the 200 TFs, 32 ZFs and
168 non-ZFs, but across different organisms mostly non-

human, http./lhomer.salk.edu. The 60 predicted motifs and
the corresponding ChIP-seq derived motifs from HOMER
are displayed side by side in part 3 of Supplementary Mate-
rial 2. It is seen that the majority of the predicted motifs are
in good agreement with HOMER motifs. Specifically, 87,
77 and 60% of the predicted motifs have P-values < 0.01,
0.001 and 0.0001 respectively. This unbiased validation by
external experimental data implies that the remaining 140
new predictions should also be similarly reliable.

We stress that the expected accuracy of the 200 novel pre-
dictions can be higher than 60%, for the P-value 0.0001, due
to biological and technical differences between HOMER
and our training data. On the other hand, leave-one-out
cross-validation might overestimate the expected perfor-
mance, 90% precision. We therefore presented both leave-
one-out and ChIP analysis to enable a fair evaluation on
our new predicted motifs.

DISCUSSION

We have shown that the DBD-based approach is not always
capable of predicting accurate binding profiles and the joint
analysis of open chromatin and gene expression data can
further improve inferences. The proposed method is best
suited for TFs recognizing short DNA motifs or homod-
imers. In recent studies (35), many TFs are shown to co-
operate with each other and bind to DNA as heterodimers.
Such interactions play a crucial role in activating/repressing
gene expressions and migrating cells into specific tissues. We
expect that our approach can be generalized to identify het-
erodimers. This will be highly useful as the set of possible
TF-TF-DNA interactions is enormous and difficult to as-
certain experimentally.

The modular structure of our pipeline allows for the mod-
ification of different steps to best predict specificities of par-
ticular TFs. Alternative procedures may be implemented
in DBDSim to better reflect resemblance between DBDs,
for instance taking advantage of 3D-structure of proteins
(36,37) as well as utilizing the four key residues of ZF do-
mains (29). Moreover, the performance of MPAE method
can further be improved with new motif scanning programs.
Current scanning tools (24,34) do not exploit characteris-
tics of dimeric spacing and orientation preferences and can
not clearly distinguish dimeric binding models from similar
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monomers. Furthermore, sequencing technologies are be-
ing continually improved to precisely capture genome-wide
measurement of chromatin accessibility. Our inference can
readily discriminate closely located DNA-binding specifici-
ties as a result of reliable open chromatin in short genomic
windows.

Motif findings have broad application in discovery of
gene regulatory network, functional elements in human
genome, and new gene interactions implicated in medical
treatment. We have been able to identify binding specifici-
ties of 200 human TF's that possess no experimental motifs.
Excluding ZF family, the predicted motifs combined with
Taipale data covers the majority of human TFs. To reveal
unknown ZF specificities, different procedures may be con-
sidered. Strategies based on amino acid-nucleotide contact
energies allow to predict ZF specificities, but, existing ap-
proaches need to address the mechanism of ZF-DNA inter-
actions when large number of ZF domains are presented in
a protein. Noticeably, many ZFs include 5 up to 30 binding
domains. Experimental determinations of specificities for
additional ZF proteins with novel binding domains should
be given the highest priority as they will provide not only di-
rect knowledge on those proteins but also new training data
to extend DBDSim predictions.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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