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ABSTRACT
BACKGROUND: Aberrant dopamine neuron activity is attributable to hyperactivity in hippocampal subfields driving a
pathological increase in dopamine neuron activity, which is positively correlated with psychosis in humans. Evidence
indicates that hippocampal hyperactivity is due to loss of intrinsic GABAergic (gamma-aminobutyric acidergic) in-
hibition. We have previously demonstrated that hippocampal GABAergic neurotransmission can be modulated by
targeting a5-GABAA receptors, which are preferentially expressed in hippocampal regions. Positive and negative
allosteric modulators of a5-GABAA receptors (a5-PAMs and a5-NAMs) elicit effects on hippocampal-dependent
behaviors. We posited that the selective manipulation of hippocampal inhibition, using a5-PAMs or a5-NAMs,
would modulate dopamine activity in control rats. Further, a5-PAMs would reverse aberrant dopamine neuron
activity in a rodent model with schizophrenia-related pathophysiologies (methylazoxymethanol acetate [MAM] model).
METHODS: We performed in vivo extracellular recordings of ventral tegmental area dopamine neurons in anes-
thetized rats to compare the effects of two novel, selective a5-PAMs (GL-II-73, MP-III-022), a nonselective a-PAM
(midazolam), and two selective a5-NAMs (L-655,708, TB 21007) in control and MAM-treated male Sprague Dawley
rats (n = 5–9).
RESULTS: Systemic or intracranial administration of selective a5-GABAA receptor modulators regulated dopamine
activity. Specifically, both a5-NAMs increased dopamine neuron activity in control rats, whereas GL-II-73, MP-III-
022, and L-655,708 attenuated aberrant dopamine neuron activity in MAM-treated rats, an effect mediated by the
ventral hippocampus.
CONCLUSIONS: This study demonstrated that a5-GABAA receptor modulation can regulate dopamine neuron
activity under control or abnormal activity, providing additional evidence that a5-PAMs and a5-NAMs may have
therapeutic applications in psychosis and other psychiatric diseases where aberrant hippocampal activity is present.

https://doi.org/10.1016/j.bpsgos.2021.12.010
The pathophysiology of schizophrenia is complex. It has long
been hypothesized that positive symptoms (i.e., hallucinations
and delusions) are mediated by hyperactivity of the mesolimbic
dopamine system (1,2); however, no overt histopathology has
been identified in dopamine neurons. Thus, aberrant dopamine
system function is likely a consequence of disruptions in up-
stream brain regions. The hippocampus regulates the activity
of dopamine neurons, its structure and function are altered in
schizophrenia (3–7), and positive symptoms are correlated with
heightened baseline hippocampal activity (3,7,8), together
promoting the hippocampus as a putative region mediating
aberrant dopamine activity in schizophrenia.

Rodent studies have repeatedly demonstrated that hippo-
campal hyperactivity drives aberrant dopamine system func-
tion via a multisynaptic pathway consisting of the nucleus
accumbens, ventral pallidum, and ventral tegmental area (VTA)
(9–13). Further, reversing aberrant hippocampal activity using
pharmacological (14), neurosurgical, and cell-based
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approaches in rodent models is successful at restoring
dopamine system function as well as behavioral correlates of
positive, negative, and cognitive symptoms (11–13,15,16).
Together, hippocampal hyperactivity may play a crucial role in
the pathophysiology of schizophrenia, such that decreasing
hippocampal activity may be a beneficial treatment.

Hippocampal hyperactivity is observed in individuals with
schizophrenia as well as in rodent models and is thought to
result from deficits in GABAergic (gamma-aminobutyric acid-
ergic) inhibition (11,12,17,18). Postmortem studies from pa-
tients with schizophrenia report a loss of specific GABAergic
interneuron subtypes in the hippocampus (19,20). These in-
terneurons regulate hippocampal activity, such that decreases
in interneuron function led to aberrant pyramidal cell firing
(18,21,22) and uncoordinated activity (23,24). Prenatal expo-
sure to methylazoxymethanol acetate (MAM) is frequently used
in rodents to induce anatomical, physiological, and behavioral
deficits that model those observed in schizophrenia (25,26). A
ociety of Biological Psychiatry. This is an open access article under the
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selective loss of hippocampal interneuron subtypes and cor-
responding hippocampal hyperactivity are observed in the
MAM model (11,12,24), which can be reversed by trans-
planting into the hippocampus parvalbumin and somatostatin
interneurons, derived from embryonic stem cells or fetal
interneuron precursor cells (12,16). Thus, augmenting hippo-
campal interneuron function may represent a novel therapeutic
modality for the symptoms of schizophrenia.

GABAergic control of hippocampal pyramidal neurons
occurs via GABAA receptors (GABAARs) and GABAB receptors
(GABABRs). GABAARs are pentameric, ionotropic chloride
channels typically containing a combination of two a, two b,
and one g subunit (27). The subunit composition of GABAARs
lends to unique expression patterns, with those containing the
a5 subunit being highly expressed in the hippocampus,
expressed to a much lesser extent in the cortex, and very
minimally expressed in subcortical regions (28,29). The
enriched distribution of a5-GABAARs in the hippocampus
makes them an ideal target for the selective manipulation of
hippocampal activity. Previous studies have demonstrated that
knockdown of the a5-GABAARs in the hippocampus can
produce deficits in behaviors associated with positive symp-
toms of schizophrenia, including latent inhibition and prepulse
inhibition of startle (30,31). Conversely, overexpression of the
a5 subunit of the GABAA receptor in the ventral hippocampus
(vHipp) not only restores dopamine system function in MAM-
treated rats, but also alleviates deficits in cognitive flexibility
(32). Further, systemic injection of a positive allosteric modu-
lator selective for the a5 subunit of the GABAA receptor (a5-
PAM) (SH-053-20F-R-CH3) was effective at normalizing
dopamine neuron activity and improved dopamine-dependent
behaviors in MAM-treated rats (14,33). Although SH-053-20F-
R-CH3 appears to provide the therapeutic benefit of reducing
psychotic-like symptoms (14), it impaired performance in a
hippocampal-dependent cognitive task and failed to alleviate
deficits in social interaction (33). Here, we tested two novel
selective a5-PAMs, GL-II-73 and MP-III-022. GL-II-73 has
recently been developed and displays pro-cognitive, anxio-
lytic, and antidepressant-like effects in stressed and old mice
(34), suggesting that GL-II-73 differs from other a5-PAMs. MP-
III-022 has been shown to exert dose-dependent effects on
cognition and social memory (35). Thus, GL-II-73 and MP-III-
022 may be beneficial in treating the negative and cognitive
symptom domains of schizophrenia, although their effects on
dopamine system function have yet to be determined.

Negative allosteric modulators of a5-GABAARs (a5-NAMs)
were originally developed to serve as cognitive enhancers;
however, recent studies have demonstrated multiple uses for
these compounds. Specifically, a5-NAMs can improve per-
formance in hippocampal-dependent cognitive tasks (36–39)
and exert potent antidepressant-like efficacy in a variety of
behavioral assessments (40–42). Pathological decreases in
dopamine neuron population activity likely contribute to
depressive-like symptoms (43). This idea is supported by the
observation that the rapid-acting antidepressant, ketamine,
can acutely restore dopamine neuron activity and synaptic
plasticity in the hippocampus in a rodent model of helpless-
ness (44). Therefore, it stands that increasing hippocampal
activity with an a5-NAM may normalize dopamine system
function in models used to study depression.
Biological Psychiatry: Glob
We posited that a5-PAMs and a5-NAMs modulate dopa-
mine neuron activity through their activity on a5-GABAARs in
the hippocampus (Figure 1). Here, we performed in vivo
extracellular recordings of dopamine neurons in the VTA to
investigate the effects of both systemic administration and
direct intrahippocampal microinjection of two novel selective
a5-PAMs (GL-II-73 and MP-III-022), a nonselective a-PAM
(midazolam), and two selective a5-NAMs (L-655,708 and TB
21007) in saline-treated control rats and MAM-treated rats.
Gaining a better understanding of how a5-GABAA receptor
modulation can regulate dopamine neuron activity is war-
ranted, as such compounds have multiple potential therapeutic
applications, including in schizophrenia and other psychiatric
diseases where aberrant hippocampal activity is present.

METHODS AND MATERIALS

All experiments were performed in accordance with the
guidelines outlined in the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and were approved by
the Institutional Animal Care and the Use Committee of UT
Health San Antonio.

Animals

To generate rodents displaying circuit-level alterations relevant
to psychosis, we administered MAM as previously described
(25,26). In brief, timed pregnant female Sprague Dawley rats
were obtained from Envigo on gestational day 16 and injected
with MAM (22 mg/kg diluted in saline via intraperitoneal route)
or saline (1 mL/kg via intraperitoneal route) on gestational day
17. Male pups were weaned on postnatal day 21 and housed
with littermates in groups of two or three. All experiments were
performed on multiple litters of MAM- and saline-treated rats
during adulthood (.8 weeks old; approximately 250–400 g).
Male Sprague Dawley rats (.12 weeks old; 350–450 g) were
obtained from Envigo and used to perform studies with phar-
macological hyperactivation of the vHipp and respective con-
trol rats. The doses of PAMs and NAMs used for systemic
administration were 1 mg/kg for midazolam , 10 mg/kg for GL-
II-73 and MP-III-022, 3 mg/kg for L-655,708, and 0.3 mg/kg for
TB 21007 and were administered approximately 20 minutes
before in vivo electrophysiology. Doses were chosen based on
previously published literature using these compounds
(34,40,45,46).

Intrahippocampal Microinjections

Rats were anesthetized with chloral hydrate via intraperitoneal
injection before placement in a stereotaxic apparatus (Kopf). A
core body temperature of 37 �C was maintained. This anes-
thetic (chloral hydrate) was used for examination of dopamine
neuron physiology, as it does not significantly alter dopamine
activity when compared to conscious rats (47). Supplemental
anesthesia was administered as required to maintain sup-
pression of the limb withdrawal reflex. Before dopamine
neuron electrophysiology, untreated male Sprague Dawley rats
were unilaterally injected into the vHipp (anteroposterior 15.3
mm and mediolateral 65.3 mm from bregma;
dorsoventral 27.0 mm ventral of the brain surface) with vehicle
(0.5 mL Dulbecco’s phosphate-buffered saline) or NMDA (0.75
mg/0.5 mL), followed by an a5 modulator (GL-II-73, MP-III-022,
al Open Science January 2023; 3:78–86 www.sobp.org/GOS 79

http://www.sobp.org/GOS


Figure 1. Under normal conditions, the VP exerts
tonic inhibitory control of VTA dopamine neurons.
Our hypothesis suggested that in the MAM model,
increased hippocampal activity drives the NAc,
which in turn inhibits the tonic activity of the VP. This
results in a loss of GABAergic transmission from the
VP to the VTA, which causes an increase in dopa-
mine neuron population activity. NAMs of the a5
receptor cause an increase in hippocampal activity
and mimic what is observed in models that display
psychosis-related pathologies. In contrast, PAMs of
the a5-GABAA receptor decrease aberrant vHipp
activity, thus restoring dopamine system function in
models with hippocampal hyperactivity and
dopamine system dysfunction. GABAergic, gamma-
aminobutyric acidergic; MAM, methylazox-
ymethanol acetate; NAc, nucleus accumbens; NAM,
negative allosteric modulator; PAM, positive allo-
steric modulator; vHipp, ventral hippocampal; VP,
ventral pallidum; VTA, ventral tegmental area.
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midazolam, L-655,708, TB 21007; 0.75 mL of 100 ng/mL) or
vehicle (0.5 mL; 50% dimethyl sulfoxide in distilled water or 1%
Tween 80 [Sigma-Aldrich], 14% propylene glycol, and 85%
distilled water) at a rate of approximately 0.5 mL/min. A subset
of MAM- and saline-treated rats received an intra-vHipp in-
jection of an a5 modulator or vehicle. Intra-vHipp injections
specifically target the ventral CA1/subiculum region of the
vHipp, as this region strongly regulates the mesolimbic
dopamine system (48,49). Doses were based on pharmacoki-
netic data obtained with GL-II-73 (34). Dopamine neuron
electrophysiology was performed starting approximately 20
minutes after microinjection. Hippocampal microinjections and
dopamine recordings were performed bilaterally to minimize
the number of experimental animals used.

Dopamine Neuron Electrophysiology

Extracellular glass microelectrodes (impedance 6–10 MU) were
lowered into the VTA (anteroposterior 25.3 mm and medio-
lateral 60.6 mm from bregma; dorsoventral 26.5 to 29.0 mm
ventral of the brain surface). Six to 9 vertical passes were made
throughout the cell body region of the VTA. Spontaneously
active dopamine neurons were identified using the following
previously established criteria (50): 1) action potential duration
.2 ms and 2) frequency between 0.5 and 15 Hz. The following
three parameters of dopamine activity were measured: 1)
population activity (the number of spontaneously active
dopamine neurons encountered per track); 2) basal firing rate;
3) the proportion of action potentials occurring in bursts
(defined as the incidence of spikes with ,80 ms between
them; termination of the burst is defined by .180 ms between
80 Biological Psychiatry: Global Open Science January 2023; 3:78–86
spikes). The same vehicle control rats were used in the PAM
and NAM analyses.

Histological Verification

To verify electrode and cannula placement, rats were rapidly
decapitated at completion of all experiments. Brains were
extracted, fixed for at least 24 hours (4% formaldehyde in
saline), and cryoprotected (10% w/v sucrose in phosphate-
buffered saline) until saturated. Brains were coronally
sectioned (25 mm) using a cryostat (Leica BioSystems). Sec-
tions containing electrode or cannula tracks were mounted
onto gelatin-chrome alum-coated slides, stained with neutral
red (0.1%) and thionin acetate (0.01%) and cover slipped with
DPX Mountant (Sigma-Aldrich) for histochemical confirmation
within the VTA (electrode) (Figure 2A) or vHipp (cannula)
(Figure 2B) with reference to a stereotaxic atlas (51).

Statistical Analysis

Data are represented as the mean 6 SEM with n values rep-
resenting the number of animals per experimental group unless
otherwise stated. Statistical analyses were performed using
SigmaPlot (Systat Software Inc.). Electrophysiological data
were analyzed by two-way analysis of variance (strain 3

treatment) followed by the Holm-Sidak post hoc test. Signifi-
cance was determined at p , .05.

Materials

MAM was purchased from MRIGlobal. Proprietary com-
pounds, MP-III-022 and GL-II-73, were generated by the Uni-
versity of Wisconsin in Milwaukee and supplied by the
www.sobp.org/GOS
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Figure 2. (A) Representative brain slice with an electrode track (arrows) in
the ventral tegmental area (left) and corresponding schematic of the brain
section (right). Gray boxes indicate the area where cannula and electrode
tracks were observed. (B) Representative brain slice with a cannula track
(arrow) in the ventral hippocampus (left) and corresponding schematic of the
brain section (right).
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Campbell Family Mental Health Research Institute, Centre for
Addiction and Mental Health. L-655,708 and TB 21007 were
purchased from Tocris. Midazolam hydrochloride was ob-
tained from Akorn, Inc. Chloral hydrate, NMDA, propylene
glycol, and dimethyl sulfoxide were obtained from Sigma-
Aldrich.
RESULTS

Systemic Administration of a5-PAMs and a5-NAMs
Exerts Differential Effects on Dopamine Neuron
Population Activity in MAM-Treated Rats

Rodent models used to study schizophrenia-related pathol-
ogies consistently display aberrant dopamine system function
(9,10,12,52). As expected, we observed a significant increase,
about a doubling, in dopamine neuron population activity
(strain: F1,20 = 101.511, p , .001; treatment: F3,50 = 4.123, p =
.012; interaction: F3,50 = 5.538, p = .003) in MAM-treated
vehicle rats (n = 7, 1.97 6 0.14) compared with saline-
treated vehicle rats (n = 9, 0.94 6 0.05; t = 7.53, p , .001)
(Figure 3A). In saline-treated rats, systemic administration with
a5-PAMs GL-II-73 (n = 6, 1.05 6 0.06) and MP-III-022 (n = 6,
Biological Psychiatry: Glob
1.066 0.08) andwith the nonselective a-PAMmidazolam (n = 6,
1.00 6 0.04) failed to alter population activity (Figure 3A), firing
rate (Figure S1A), or bursting (Figure S1B). Aberrant population
activity in MAM-treated rats was significantly decreased by
systemic injection of MP-III-022 (n = 6, 1.296 0.08; t = 4.67, p,

.001); however, GL-II-73 (n = 6, 1.96 6 0.18) and midazolam
(n = 6, 1.87 6 0.13) had no effect (Figure 3A). No differences
were observed in average firing rate and burst firing pattern
between any of the groups treated with a5-PAMs.

Conversely, the a5-NAM, L-655,708, increased population
activity (strain: F1,39 = 4.352, p = .045; interaction: F2,39 =
27.244, p , .001) in saline-treated rats (n = 6, 1.71 6 0.16; t =
4.61, p , .001) and restored normal dopamine system function
in MAM-treated rats (n = 6, 1.00 6 0.06; t = 5.78, p , .001)
(Figure 3B). Systemic administration of the a5-NAM, TB 21007,
had no effect in saline-treated rats (n = 6, 1.24 6 0.15), but
attenuated activity in MAM-treated rats (n = 6, 1.56 6 0.13; t =
2.48, p = .018). a5-NAMs did not alter firing rate or bursting in
saline-treated rats; however, burst firing was significantly
increased in MAM-treated rats (Figure S1C, D).

Intra-vHipp Microinjections of a5-PAMs and a5-
NAMs Exert Effects Downstream on Dopamine
Neuron Population in Saline- and MAM-Treated
Rats

Saline-treated rats receiving intra-vHipp vehicle displayed a
population activity of 1.01 6 0.05 (n = 6), whereas MAM-
treated rats receiving vehicle had a significantly higher popu-
lation activity of 1.98 6 0.12 (n = 6; t = 7.76, p , .001; strain:
F1,42 = 48.211, p , .001; treatment: F3,42 = 6.379, p = .001;
interaction: F3,42 = 10.446, p , .001) (Figure 4A). Direct intra-
vHipp microinjections of a5-PAMs had no effect in saline-
treated rats (GL-II-73: n = 5, 1.14 6 0.06; MP-III-022: n = 6,
1.06 6 0.06; midazolam: n = 5, 1.02 6 0.13), consistent with
systemic administration; however, GL-II-73 completely
reversed the elevated population activity in MAM-treated rats
(GL-II-73: n = 5, 1.10 6 0.12; t = 6.681; p , .001) (Figure 4A).
To a smaller extent, MP-III-022 and midazolam also signifi-
cantly attenuated the population activity in MAM-treated rats
(MP-III-022: n = 5, 1.64 6 0.12; t = 2.597, p = .04; midazolam:
n = 5, 1.37 6 0.13; t = 4.664, p , .001). Only relatively small
effectswere observed on firing rate andbursting (Figure S2A,C).

Intra-vHipp microinjection of a5-NAMs (treatment: F1,31 =
3.424, p = .048; interaction: F5,74 = 31.362; p , .001)
(Figure 4B) elicited a significant increase in population activity
in saline-treated rats (L-655,708: n = 5, 1.66 6 0.14; t = 4.514,
p , .001; TB 21007: n = 5, 1.61 6 0.09; t = 4.193, p , .001).
Both a5-NAMs produced a significant reduction, albeit to a
different extent, in population activity of MAM-treated rats (L-
655,708: n = 5, 1.03 6 0.12; t = 6.553, p , .001; TB 21007: n =
5, 1.64 6 0.09; t = 2.368, p = .026). Only relatively small effects
were observed on firing rate and bursting (Figure S2B, D).

Intra-vHipp Administration of a5-PAMs and a5-
NAMs Alters Dopamine System Function After
Pharmacological Activation of vHipp

Using a model of pharmacological hyperactivation of the
vHipp, via infusion of NMDA, we observed a significant
al Open Science January 2023; 3:78–86 www.sobp.org/GOS 81
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Figure 3. Dopamine neuron population activity
can be modulated by systemic administration of
positive and negative allosteric modulators of a5-
GABAA receptors. (A) Population activity (average
number of spontaneously active dopamine neurons
per electrode track) is significantly higher in MAM-
treated rats, which is reversed by systemic admin-
istration of the selective a5-GABAA positive allosteric
modulator, MP-III-022. (B) Systemic administration
of the a5-GABAA negative allosteric modulator, L-
655,708, restored normal dopamine system function
in MAM-treated rats and increased dopamine activity

in saline-treated rats. In contrast, the a5-GABAA negative allosteric modulator, TB 21007, had no effect in saline-treated rats and only attenuated population
activity in MAM-treated rats. *p , .05 denotes significance from respective saline-treated control; ***p , .05 denotes significance from MAM-treated vehicle
group; **p , .05 denotes significance from saline-treated vehicle group. GABAA, gamma-aminobutyric acid A; MAM, methylazoxymethanol acetate; MZ,
midazolam.
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increase in dopamine neuron activity (n = 6, 2.03 6 0.18; t =
5.55, p , .001) (Figure 5A) compared with vehicle (n = 6, 1.04
6 0.10; strain: F1,47 = 3.869, p = .056; treatment: F3,47 = 4.967,
p = .005; interaction: F3,47 = 18.594, p, .001). GL-II-73 caused
a significant increase in population activity in vehicle rats (n = 6,
1.786 0.12; t = 4.12, p , .001); that was not observed with MP-
III-022 (n = 6, 1.08 6 0.07) or midazolam (n = 6, 0.94 6 0.06).
Further, both GL-II-73 (n = 6, 0.976 0.03; t = 5.94, p, .001) and
MP-III-022 (n = 6, 1.08 6 0.08; t = 5.35, p , .001) completely
reversed the increase in population activity observed following
NMDA activation of the vHipp, whereas midazolam had a
modest effect (n = 6, 1.47 6 0.24; t = 3.17, p = .012).

No significant differences were observed following either
a5-NAM in vehicle rats (L-655,708: n = 6, 1.38 6 0.11; TB
21007: n = 6, 1.51 6 0.14; strain: F1,35 = 5.733, p = .023;
treatment: F2,35 = 4.247, p = .024; interaction F2,35 = 8.474, p =
.001) (Figure 5B). L-655,708 caused a significant decrease in
population activity (n = 6, 1.03 6 0.09; t = 4.357, p , .001)
following NMDA-induced activation of the vHipp, but no
change was observed after administration of TB 21007 (n = 6,
1.82 6 0.28) (Figure 5B). No differences in firing rate or burst
firing were observed (Figure S3).
DISCUSSION

There is increasing evidence that aberrant dopamine system
function observed in individuals with schizophrenia may be
secondary to hippocampal hyperactivity (8). Also, preclinical
studies demonstrate the ability of the vHipp to modulate the
activity of dopamine neurons in rodent models (9,12,53).
GABAA negative allosteric modulators, L-655,708 and TB 21007. Further, dopam
and population activity was attenuated following TB 21007. *p , .05 denotes si
icance from MAM-treated vehicle group; **p , .05 denotes significance from
methylazoxymethanol acetate; MZ, midazolam.
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Therefore, exploring targets within the hippocampus may
represent innovative and efficacious approaches for the
treatment of schizophrenia and provide an effective treatment
without the side effects observed with conventional antipsy-
chotics (54). Here, we provide evidence that selective phar-
macological modulation of vHipp activity, using novel selective
a5-GABAA receptor modulators, can reduce aberrant dopa-
mine neuron activity observed in a model used to study
schizophrenia-related pathologies.

Previous studies have demonstrated schizophrenia-like
deficits following knockdown of a5-GABAARs, specifically in
the hippocampus (30,31), whereas overexpression of the
GABAA receptor a5 subunit can reverse deficits in dopamine
system function commonly observed in rodent models used to
study schizophrenia-related pathologies (32). Previous studies
showed that systemic injection of the selective a5-PAM, SH-
053-20F-R-CH3, normalized dopamine system function and
improved dopamine-dependent behaviors; however, it was
ineffective at resolving behaviors associated with negative
symptoms and cognitive deficits (14). In contrast, the selective
a5-PAM used in the present study, GL-II-73, has been
established as an anxiolytic, antidepressant, and pro-cognitive
compound, thus demonstrating therapeutic potential for the
treatment of negative symptoms and cognitive decline asso-
ciated with schizophrenia (34). As shown in this study, when
administered directly into the vHipp, GL-II-73 can reverse
aberrant VTA dopamine neuron activity implicated in schizo-
phrenia (1,2).

MAM-treated rats exhibit anatomical, physiological, and
behavioral deficits consistent with those observed in
Figure 4. Direct intra–ventral hippocampal
administration of positive and negative allosteric
modulators of a5-GABAA receptors can attenuate
dopamine neuron population activity in MAM-treated
rats. (A) The a5-GABAA positive allosteric modulator,
GL-II-73, completely restored dopamine system
function, while MP-III-022 and MZ only attenuated
activity in MAM-treated rats, with no effects in saline-
treated rats. (B) Saline-treated rats displayed a sig-
nificant increase in population activity following
intra–ventral hippocampal administration of both a5-

ine system function was restored in MAM-treated rats following L-655,708,
gnificance from respective saline-treated control; ***p , .05 denotes signif-
saline-treated vehicle group. GABAA, gamma-aminobutyric acid A; MAM,

www.sobp.org/GOS
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Figure 5. (A) Rats with NMDA-induced hippo-
campal hyperactivity displayed a significant increase
in dopamine neuron population activity, which was
reversed by intra–ventral hippocampal administra-
tion of the specific a5-GABAA positive allosteric
modulators, GL-II-73 and MP-III-022, and attenuated
by MZ. Intra–ventral hippocampal GL-II-73 adminis-
tration caused a significant increase in population
activity in vehicle-treated control rats. (B) The a5-
GABAA negative allosteric modulator, L-655,708,
restored dopamine system function in rats with

NMDA-induced hippocampal hyperactivity. *p , .05 denotes significance from respective saline-treated control; ***p , .05 denotes significance from MAM-
treated vehicle group; **p , .05 denotes significance from saline-treated vehicle group. GABAA, gamma-aminobutyric acid A; MAM, methylazoxymethanol
acetate; MZ, midazolam.
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schizophrenia. In these rats, systemic administration of the
selective a5-PAM, GL-II-73, did not change dopamine neuron
population activity, although MP-III-022 successfully restored
dopamine system function. By contrast, after intra-vHipp
administration, both GL-II-73 and MP-III-022 were able to
modulate dopamine neuron population activity. The difference
in effect of GL-II-73 following these two routes of administra-
tion is likely associated with its pharmacokinetic profile. GL-II-
73 undergoes significant first-pass metabolism in rats (data not
shown), resulting in insufficient brain concentrations to pro-
duce a detectable effect on population activity. This is specific
for rats, as previously published literature demonstrated ef-
fects of GL-II-73 in mice when administered systemically (34).
Intra-vHipp administration of both GL-II-73 and MP-III-022
reduced the elevated dopamine neuron population activity in
MAM-treated rats; however, only GL-II-73 restored dopamine
neuron population activity back to control levels, whereas
MP-III-022 attenuated it. We suspect the difference in the
magnitude of the effect between the a5-selective GABAA

receptor PAMs stems from their differential affinities for the a5
subunit. MP-III-022 has a greater binding affinity and functional
potentiation efficacy at a5-GABAA receptor compared with
GL-II-73 but displays an inverted U–shaped dose response
relationship (35), which could underlie the results detailed here.
In addition, midazolam, a nonspecific a-PAM, was able to
attenuate elevated population activity only when given directly
into the vHipp and had no effect when administered systemi-
cally. Given the widespread effects of benzodiazepines, it is
possible that activation of non-a5 receptors opposes the
beneficial effects of activation of a5-GABAARs and could
reflect differences between synaptic and extrasynaptic
GABAARs (55,56). Indeed, the dichotomy between extra-
synaptic and synaptic GABAARs has been highlighted in pre-
vious studies, in which overexpression of extrasynaptic (a5)
receptors in the vHipp restored dopamine system function in
MAM-treated rats, whereas overexpression of synaptic (a1)
receptors did not (32). Interestingly, a5-GABAARs themselves
have been found in the synapse (55,56), and recent work has
demonstrated that the localization of a5-GABAARs is dynamic,
such that changes in neuronal activity can cause receptors to
shift between the synaptic and extrasynaptic spaces, altering
their contribution to tonic and phasic inhibition (57).

Interestingly, a5-NAMs have been shown to produce similar
behavioral effects (i.e., pro-cognitive and antidepressant-like)
to those observed with a5-PAMs under different experi-
mental conditions (34,40,41,58). Specifically, a5-PAMs
Biological Psychiatry: Glob
produce antidepressant-like effects acutely, whereas the effect
of a5-NAMs appear at 24 hours following administration. The
reason for this is that a5 modulators restore the excitatory
signal-to-noise ratio, albeit by different mechanisms. The a5-
PAMs are thought to decrease noise, while the disinhibition
produced by a5-NAMs leads to a glutamatergic surge and an
augmented signal. Both can support appropriate processing of
information, leading to improvements in behavior and reduced
symptoms (59). It has been suggested that a delicate balance
of excitation and inhibition is necessary for optimal signal
transduction and that alterations to a5-GABAA receptor
signaling in either direction may negatively impact cognition
(59). Therefore, depending on the pathology, either an NAM or
a PAM may be the most appropriate therapeutic intervention to
influence dopamine neuron activity. Indeed, in conditions of
hippocampal hyperfunction such as schizophrenia (8,9), a PAM
may be warranted, whereas under conditions of dopamine
hypofunction [e.g., depression (60,61)], an NAM may be a more
effective therapeutic to exert vHipp control over dopamine
neuron activity in the VTA. However, depression is also asso-
ciated with reduced cortical inhibition, in which case a5-PAMs
seem to provide more beneficial effects than a5-NAMs, in
particular on cognition (59), so the contributions of both PAMs
and NAMs in complex disease remain to be clarified. As a5-
NAMs can increase activity in the hippocampus (40), and
activation of the hippocampus is associated with increased
dopamine neuron population activity (9–13), we reasoned that
a5-NAMs should increase dopamine neuron population ac-
tivity in control rats. Indeed, when given either systemically or
intra-vHipp, L-655,708 increased dopamine neuron population
activity in saline-treated control rats, providing further evidence
that activation of the vHipp can drive the increases in dopa-
mine neuron population activity. Further, L-655,708, but not TB
21007, decreased population activity in MAM-treated rats. It is
unclear why L-655,708 would reverse aberrant dopamine
neuron activity in MAM-treated rats, while increasing it in
saline-treated rats.

Given the potential for other disruptions associated with
prenatal MAM treatment [for review, see (26)], we employed a
simplified model where vHipp activity was enhanced phar-
macologically by direct microinjection of NMDA into the
vHipp. Consistent with previous reports (48), intra-vHipp
NMDA administration caused a significant increase in popu-
lation activity, similar to observations in MAM-treated rats (9).
As expected, intra-vHipp administration of a5-NAMs
increased dopamine neuron population activity in control
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rats receiving intra-vHipp vehicle, albeit to a lesser extent than
seen in the control rats for the MAM experiments. This is likely
associated with the multiple injections into the vHipp, i.e.,
both NMDA and the a5-NAMs. In NMDA-treated rats, L-
655,708 decreased population activity. No significant effects
were present with TB 21007 administration. This mirrored our
results in MAM-treated rats, suggesting that in conditions of
vHipp hyperactivity, L-655,708, but not TB 21007, is able to
restore dopamine system function. The ability of L-655,708 to
reverse aberrant dopamine neuron activity was unexpected,
but may be due to inherent differences between L-655,708
and TB 21007. L-655,708 has much higher selectivity for a5-
GABAA receptor over other GABAARs in terms of affinity
compared with TB 21007 (50–100 times and 10 times,
respectively). Despite this difference in affinity, TB 21007 is
still functionally selective for a5-GABAARs based on efficacy
(46). L-655,708 and TB 21007 have also been shown to
differentially prefer certain a5-GABAAR isoforms based on b
subunit composition (62). It is possible that in the context of
high hippocampal activity, as seen in MAM-treated or intra-
vHipp NMDA-treated rats, these otherwise subtle differences
are accentuated, leading to the unanticipated effects of L-
655,708 in these groups. The important point then is that as a
class of drugs, individual a5-NAMs may not all act the same
way.

The potential beneficial effects of a5-PAMs seen in MAM-
treated rats were also examined in the NMDA-induced model
of hippocampal hyperactivity. These data replicated data
observed in MAM-treated rats where intra-vHipp GL-II-73 and
MP-III-022 completely reversed aberrant dopamine neuron
population activity and midazolam partially restored dopamine
system function. These results reinforce the idea that selec-
tively augmenting a5-GABAA receptor activity in the vHipp can
reverse aberrant dopamine neuron activity associated with
hippocampal activation. Surprisingly, GL-II-73 caused a sig-
nificant increase in population activity in vehicle-treated rats.
While this effect was robust, we believe it to be spurious, as
intra-vHipp injection of GL-II-73 did not increase population
activity in control rats in our earlier experiment.

In summary, we have demonstrated that pharmacological
manipulation of activity in the vHipp with a5-PAMs and a5-
NAMs differentially modulates dopamine neuron population
activity in the VTA. Specifically, under conditions of hippo-
campal hyperactivity, aberrant dopamine system function can
be reversed by the administration of a5-PAMs. By demon-
strating that multiple a5-PAMs can reverse aberrant dopamine
neuron activity, this study provides evidence for potential
antipsychotic properties of this class of compounds. Further-
more, it adds schizophrenia as well as other conditions in
which hippocampal hyperactivity is present to the growing list
of psychiatric disorders for which these compounds may have
therapeutic utility. Moreover, a5-PAMs offer added benefit
over traditional anxiolytic medications (nonspecific GABAAR
PAMs), as their preference for a5 minimizes the undesired side
effect of sedation, typically associated with the a1 subunit (63).
Specifically, the a5-PAM GL-II-73 can reverse pathological
increases in dopamine neuron population activity in the MAM
model as well as stress-associated cognitive deficits, anxiety,
and some depressive-like behaviors (34), suggesting that this
compound may address affective and cognitive deficits
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observed in schizophrenia in addition to dopamine dysfunc-
tion. Indeed, future studies will test the utility of a5-PAMs in
other rodent models that display psychosis-related pathol-
ogies. Furthermore, we have demonstrated that a5-NAMs can
significantly increase baseline dopamine neuron activity in
control rats suggesting that these might be a therapeutic
approach for conditions associated with dopamine hypo-
function. Taken together, we have demonstrated robust hip-
pocampal modulation of dopamine system function by a5-
GABAA receptor allosteric modulators, which may provide a
beneficial approach for the treatment of several psychiatric
disorders.
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