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Metastasis is the ultimate consequence of cancer progression and the cause of patients’ 
death across different cancer types. Patients with initial diagnosis of distant disease have 
a worst 5-year survival compared to patients with localized disease. Therapies that target 
primary tumors fail to eradicate distant dissemination of cancer. Recently, immunothera-
pies have improved the survival of patients with metastatic disease, such as melanoma 
and lung cancer. However, only a fraction of patients responds to immunotherapy 
modalities that target the host immune system. The need to identify new druggable 
targets that inhibit or prevent metastasis is, therefore, much needed. Tetraspanins have 
emerged as key players in regulating cell migration, invasion, and metastasis. By serving 
as molecular adaptors that cluster adhesion receptors, signaling molecules, and cell 
surface receptors; tetraspanins are involved in all steps of the metastatic cascade. They 
regulate cell proliferation, participate in EMT transition, modulate integrin-mediated cell 
adhesion, and participate in angiogenesis and invasion processes. Tetraspanins have 
also been shown to modulate metastasis indirectly through exosomes and by regulating 
cellular interactions in the immune system. Importantly, targeting individual tetraspanin 
with antibodies has impacted tumor progression. This review will focus on the contribu-
tion of tetraspanins to the metastatic process and their potential as therapeutic tumor 
targets.
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inTRODUCTiOn

Malignant transformation of healthy tissues gives rise to cancer, this disease affects millions of people 
worldwide. Moreover, metastases; the dissemination of cancer cells is still the greatest cause of death. 
Patients diagnosed with localized disease have a better 5-year survival than patients with distant 
disease at the time of diagnosis (1). Therefore, treatments that prevent or diminish metastatic lesions 
are much needed, such as identifying new druggable targets involved in the metastatic cascade.

Monoclonal antibodies (mAbs) are the preferred immunotherapeutic tools to either target the 
host immune system or to target the tumor (2). The most common tumor targets are cell surface 
molecules, such as EGFR, HER2, Mesothelin, CD19, or CD20 whose cell membrane localization, 
and sometimes tumor-specific expression, or overexpression in comparison to healthy tissues, 
makes them suitable for antibody-based therapy (2). More recent approaches to immunotherapy of 
cancer do not target antigens expressed on tumor cells—they unleash the host immune checkpoint 
blockade, and have improved the survival of patients with metastatic cancers (3).
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Tetraspanins are a family of conserved proteins in eukaryotic 
cells that spans the membrane four times. In humans, 33 members 
have been identified with different tissue distribution. Expression 
of some tetraspanins such as CD37 and CD53 is restricted to 
hematopoietic cells, whereas others, such as CD9, CD81, and 
CD151 are more broadly expressed. Tetraspanins serve as mem-
brane scaffolds that bring together surface molecules, such as 
integrins and cell-specific receptors, additional growing evidence 
shows that engagement of tetraspanins leads to recruiting signal-
ing molecules thereby activating downstream pathways (4). This 
plethora of interacting partners allows tetraspanins to function 
in different cellular processes under physiological conditions but 
also in disease. Multiple studies have shown that tetraspanins 
regulate tumor growth, cell adhesion, invasion, and migration of 
tumor cells, reviewed in Ref. (5, 6). Importantly, targeting some 
tetraspanins with mAbs has proven to be efficient in eliminating 
tumor cells and in preventing metastasis in preclinical models 
(7). Here, we will give an overview of tetraspanins as prognostic 
markers in tumors, their role in invasion and metastasis, and 
discuss recent studies aimed at antibody-based targeting of these 
molecules in cancer.

TeTRASPAninS AS PROGnOSTiC 
MARKeRS OF CAnCeR PROGReSSiOn

Among the human tetraspanins, Tspan8 and 12, CD9, CD37, 
CD63, CD81, CD82, and CD151 play a role in cancer progression 
(5, 6). Down or upregulation of these tetraspanins on tumors has 
been correlated with either good or bad prognosis in different 
types of cancers. Historically, several tetraspanins were identified 
by studies that compared normal and malignant tissues. Tspan8 
was originally identified as a tumor-associated antigen by an 
antibody (CO-029) (8), CD63 by a melanoma-associated antigen 
(ME491) (9), CD151 was re-identified by an antimetastatic anti-
body (10), and CD82/KAI1 as a metastasis suppressor gene (11).

More recent studies have demonstrated that loss of CD82/
KAI1 expression is correlated with poor prognosis of several 
cancers, reviewed in Ref. (12). Interestingly, presence of a spe-
cific splice variant of CD82 that removes exon 7 increases tumor 
progression and invasion (13). Similarly, loss of CD37 expression 
in patients with diffuse large B-cell lymphoma showed significant 
correlation with decreased survival after R-CHOP therapy (14). 
And lack of CD37 in mice increased the development of germinal 
center derived B cell lymphomas (15).

By contrast, CD151 is expressed in different types of cancer 
and high expression correlates with poor prognosis (16). It 
is of note that expression of CD151 in the host contributes to 
cancer progression—CD151 knockout (KO) mice have fewer 
skin, melanoma, lung, and prostate cancers than their wild 
type (WT) counterparts (17–20). Similarly, upregulated CD81 
expression in melanoma was found to contribute to an enhanced 
metastatic phenotype (21, 22). Additionally, expression of CD81 
in the host contributes to tumor progression; CD81KO mice 
have fewer metastases of breast and lung tumors in syngeneic 
mouse models (23). Importantly, expression of CD81 in immune 
suppressive cells contributes to tumor progression (24). A recent 

study showed that expression of CD151 in human is associated 
with a hyper-proliferative T  cell phenotype (25), it would be 
interesting to know if CD151 expressed in mouse immune cells 
plays a role in tumor progression. Tspan8 is another tetraspanin 
whose upregulation is correlated with ovarian cancer progres-
sion (26). More recently, the presence of Tspan8 mRNA in the 
blood was shown to be a sensitive marker for colorectal cancer 
detection (27). Reduced CD9 expression has been correlated with 
poor prognosis in several types of cancers, including melanoma, 
lung, breast, colon, prostate, pancreatic ovarian, and prostate, 
reviewed in Ref. (28). However, this is not the case for esophageal 
squamous cell carcinomas that express higher CD9 levels than 
normal esophageal tissues (29). Lack of CD9 in mice that develop 
spontaneous prostate cancer mirrors the former human studies, 
namely, CD9 deficiency increased liver metastases, although  
it had no effect on onset of primary tumors, nor on lung metas-
tases (30).

Thus, tetraspanins are important players during cancer pro-
gression, some tetraspanins are upregulated in certain cancer 
types while others are downregulated. Clearly, tetraspanins have 
been used as prognostic markers in cancer.

inTeRACTiOnS OF TeTRASPAninS  
wiTH PARTneR PROTeinS ReGULATe 
invASiOn AnD MeTASTASiS

We now know that tetraspanin-enriched microdomains (TEMs) 
incorporate partner proteins, such as integrins, cell surface 
receptors, and metalloproteases (MMPs) that contribute to cel-
lular invasion and metastasis (Figure 1). Biochemically, very few 
of these complexes are held together when solubilized by harsh 
detergents, the majority only withstand mild detergents (31). 
The association of CD151 with laminin-binding integrins α3β1, 
α6β1, and α6β4 (32) is strong, stoichiometric, and occurs early in 
biosynthesis (33). Silencing CD151 in epithelial carcinoma cells 
disrupts α3β1 association with TEMS and impairs cell migration 
(34). In addition, CD151 ablation reduces cell migration, inva-
sion, spreading, and signaling in an integrin-dependent manner 
(35). CD9/CD81 also regulate α3β1 integrin, loss of these two 
tetraspanins impairs breast cancer spreading, motility, and dis-
rupts its association with PKCα in a CD151-independent manner 
(36). Tspan8 was also shown to modulate invasion of melanoma 
in vitro and in vivo through a β1 integrin by affecting integrin-
linked kinase signaling and its downstream target AKT (37).

While integrins serve as receptors to extracellular matrix 
(ECM) components, matrix metalloproteinases (MMPs) degrade 
ECM components. Several tetraspanins associate with MMP-14 
(MT1-MMP) during biosynthesis and prevent its degradation 
enabling cell surface expression. And this association also involves 
another known tetraspanin partner, EWI-2 (38). However, a 
knockdown of a single tetraspanin, such as CD9 or CD81 had 
no effect on MMP-14-dependent fibronectin degradation, but a 
CD9/CD81 double knockdown clearly affected degradation (39). 
Interestingly, overexpression of CD81 in a human melanoma 
cell line upregulated MT1-MMP expression and activity with a 
consequent increased invasion and metastases in vitro and in vivo 
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FiGURe 1 | Tetraspanins modulate invasion and metastases by regulating the activity of their partners. (A) Tetraspanins form stable lateral association with  
integrins in tetraspanin-enriched microdomains (TEMS) favoring spreading, cell adhesion, and migration through the extracellular matrix (ECM); on the other hand, 
(B) tetraspanins regulate ECM degradation during cell invasion by modulating expression and activity of metalloproteases, such as MMP-2, MMP-9, and MMP-14. 
(C) The TspanC8 subgroup is known to promote trafficking and cell localization of ADAM10 and its sheddase activity thereby regulating substrates, such as NOTCH 
receptor, to favor epithelial to mesenchymal transition (EMT). (D) Association of CD9/CD81 with EWI-2 affects TGFβ signaling modulating EMT, invasion, and 
metastases of melanoma.
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(21). Similarly, overexpression of CD9 on fibrosarcoma cells 
increased MMP-9 production and activity, resulting in a more 
invasive phenotype in vitro (40); however, transfection of CD9 
into small cell lung cancer cells inhibited transcription of MMP-2 
and MMP-14 (41). CD151 was shown to be a link between MMP-
14 and integrin α3β1 (42); and to mediate tumor progression by 
affecting expression and function of MMP-9 in hepatocellular 
carcinoma (43), melanoma (44), and pancreatic adeno carcinoma 
(43, 45). Finally, silencing CD63 reduced the levels of β-catenin 
protein and its downstream target MMP-2 inhibiting metastatic 
lung colonization of ovarian and melanoma tumors (46).

A disintegrin and metalloproteases (ADAMs) also interact 
with tetraspanins (47). ADAMs are a family of proteases, classi-
fied as sheddases because they can cleave extracellular portions 
of transmembrane proteins regulating cell functions such as 
cell invasion and motility. The tetraspanin subgroup TspanC8 
(Tspan 5, 10, 14, 15, 17, and 33) mediates trafficking, maturation, 
and compartmentalization of ADAM10, thereby influencing its 
function (48, 49). Interestingly, TspanC8 members expressed 
in Drosophila and C. elegans were found to regulate ADAM10 
levels and to modulate Notch functions that promote epithelial to 
mesenchymal transition (EMT) in cancer cells (50, 51). Another 
tetraspanin family member, Tetraspanin-8, is also linked to cancer 
progression by inducing ADAM12 upregulation in esophageal 
carcinoma promoting metastases (52).

Transforming growth factor β (TGF-β1) is also regulated by 
specific tetraspanins. It was shown that absence of CD151 in 
breast cancer cells affected the compartmentalization of TGFβ 

receptor 1 thereby disturbing TGF-β1-induced activation of p38, 
which correlated with reduced lung adhesion and decreased 
metastases (53). Similarly, CD9/CD81 were shown to regulate 
TGF-β1 signaling in melanoma by providing critical support for 
TGFβR2- TGFβR1 association, which in turns favors EMT-like 
changes, invasion, and metastases (22). However, TGF-β1 signal-
ing is negatively regulated by EWI-motif containing protein 2 
(EWI-2), which when present, sequesters CD9/CD81 thereby 
dissociating EWI-2 interaction with TGF receptors (22). Indeed, 
lack of EWI-2 in melanoma cells was associated with increased 
invasion and metastasis in vitro and in vivo (12).

Tetraspanins clearly regulate tumor progression at differ-
ent levels by interacting with a plethora of partners, which are 
implicated in tumor initiation, promotion of an EMT phenotype, 
invasion, and migration that ultimately lead to metastasis. To 
better understand the mechanisms of how individual tetraspanin 
members and their partners contribute to cancer progression 
in  vivo, numerous in  vitro studies have used specific anti-
tetraspanins mAbs.

TARGeTinG TeTRASPAninS wiTH mAbs

At the cellular level, mAbs that target individual tetraspanin 
members have been used to study signaling pathways, to disrupt 
molecular associations, to analyze the dynamics of cell surface 
partitioning, and to probe the tetraspanin web (54). Because 
tetraspanins regulate cell adhesion, invasion, and metastases, a 
strategy that prevents any of these cell functions seems reasonable 
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FiGURe 2 | Targeting tetraspanins at different stages of tumor progression. (A) Anti-CD9 antibodies have been shown to inhibit proliferation of human gastric 
tumors (B) anti-Tspan8 and anti-CD151 antibodies which inhibit adhesion, migration, and extravasation of tumor cells in different types of cancer in vitro and in vivo. 
(C) Anti-CD37 antibodies eliminates circulating chronic lymphocytic leukemia cells by recruiting and activating the immune system, (D) anti-CD9 and anti-CD63 
antibodies block exosomes and enhance their clearance from circulation through macrophage-dependent mechanisms.
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(Figure 2). Indeed, several anti-tetraspanins’ mAbs inhibit tumor 
cell invasion and migration (7, 55). However, not all antibodies that 
target the same individual tetraspanin share the same properties, 
suggesting that engagement of specific epitopes in the tetraspanin 
molecule could result in different outcomes. Thus, an anti-CD9 
mAb (PAINS-13) that disrupts the association of CD9 with β1 
integrin (56) inhibited the growth of a human colon carcinoma 
cell line xenograft more effectively than another anti-CD9 mAb 
(VJI/20) or integrin mAbs (57). Yet, all tested anti-CD9 mAbs 
(VJI/10, VJI/20, and GR2110) inhibited the trans-endothelial 
migration of melanoma cells (58). An additional anti-CD9 anti-
body (ABL6) (59) induced apoptosis (60) and reduced the growth 
of a human gastric cancer cell line in a xenograft model (61).

The disruption of the interaction with integrins has been stud-
ied even in more details for anti-CD151 mAbs whose epitope map 
to the QRD sequence in the large extracellular loop (LEL) (33). 
Anti-CD151 mAbs that disrupt the interaction with integrins 
prevent prostate cancer metastases, in contrast to anti-CD151 
mAbs that bind to integrin-associated CD151 (62–64). Indeed, 
anti-CD151 mAb (1A5) blocked metastases in SCID mice bearing 
Hep-3 tumors by inhibiting invasion and migration, although the 
antibody did not inhibit primary tumor growth (65). However, 
a study using a different monoclonal antibody (SFA1-2B4) that 
co-immunoprecipitated CD151 with α3β1 integrin prevented 
lung metastases of human colon cancer and fibrosarcoma cell 
lines (66). TEMs in endothelial cell junctions include CD151, 
CD81, and CD9, a study comparing migration of endothelial cells 
demonstrated that anti-CD151 and CD81, as well as anti-integrin 
mAbs inhibited migration (67).

More recent studies have shown that mAb targeting Tspan8 
(Ts29.2) inhibited the growth of two human colorectal cancer cell 
lines when injected into nude mice, interestingly the antibody 
did not induce direct toxicity nor the inhibition of the previously 
reported angiogenic properties of Tspan8 (68). Moreover, a mAb 

reacting with the LEL of Tspan8 inhibited tumor invasion in vitro 
and diminished incidence of ovarian metastases in vivo (26, 69). 
Recently, a radiolabeled anti-Tspan8 mAb, labeled with lute-
tium-177 was effective against colorectal cancer in a xenograft 
model, showing a significantly reduced tumor growth (70).

Taken together, anti-tetraspanin mAbs have shown significant 
anti-tumor effects in vitro and in mouse models, but because of 
expression in both tumor and host, off-target effects are still of 
major concerns. Strategies to reduce the risk of off-target effects 
could include the use of bispecific mAbs that target both the 
individual tetraspanin and its interacting partner, for example, 
CD81/CD19 in B cells.

eXPLOiTinG TeTRASPAnin FUnCTiOn 
FOR iMMUnOTHeRAPY
Indeed, a bispecific antibody was engineered to target CD63 on 
one arm thereby enabling efficient internalization of an anti-
HER2 arm that targets the tumor (71). This bispecific construct 
allows targeting a drug-conjugated tumor binding-antigen, 
HER2, to the lysosomal pathway by CD63. This novel approach 
resulted in an improved survival and delayed tumor growth in a 
xenograft model of ovarian cancer. Mice treated with the bispe-
cific bsHER2xCD63-Duostatin-3 conjugate increased HER2 
internalization, this effect was not observed with the monova-
lent antibodies targeting only HER2 or CD63. This interesting 
approach of exploiting CD63 for cancer immunotherapy is 
based on its role in intracellular trafficking and abundance in 
exosomes (72).

Targeting tetraspanins in exosomes for cargo delivery has 
been reviewed extensively (5, 73). Exosomes gained attention 
due to their important function during cellular communication, 
in addition to tetraspanins they contain a variety of different 
molecules; receptors, integrins, lipids, mRNAs, and miRNA, 
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all of which have an effect in their target cells (74). Importantly 
exosomes released from cancer cells have been shown to sup-
port metastases. Thus, blocking exosomes from tumor cells with 
antibodies could be used as a therapeutic strategy to prevent 
metastases, as shown for cancer stem cells (75). Although 
tetraspanins (i.e., Tspan8, CD81, and CD63) were originally 
used as exosome markers it is now clear that they play an active 
role in exosome cargo-loading and delivery (5, 73). Proteomic 
analysis using tetraspanins c-terminal domains to pull-down 
interacting proteins showed a significant overlap with proteins 
found in exosomes, suggesting that tetraspanins might regulate 
protein cargo (76). In addition, it has been shown that several 
tetraspanins regulate protein trafficking to the membrane and 
intracellular compartments of several receptors (48, 49). Indeed, 
deleting CD81 revealed a differential protein cargo in exosomes 
lacking CD81 (76). Moreover, deleting CD81 in endothelial-
producing exosome cells but not tetraspanins CD63 or CD82 
reduced breast cancer motility and metastasis (77). It is, there-
fore, likely that individual tetraspanins might regulate protein 
loading in exosomes, and that such specificity could potentially 
be exploited to confer selective exosome cargo and/or delivery. 
For example, the preferential interaction of Tspan8 with α4β4 
in exosomes (78). Such preferential interaction could render 
uptake-specificity of exosome by endothelial and pancreatic 
cells, and possibly facilitate the use of exosomes for drug deli-
very, reviewed in Ref. (79).

Proteomic profiling of extracellular vesicles of 60 cancer cell 
lines (NCI-60) revealed CD81 expression in all 60, while CD9 
and CD63 were expressed in about 40 of these cell lines (80). 
Moreover, clinically relevant exosomes isolated with anti-CD9 
or anti-CD63 antibodies and then detected with anti-HER2 
revealed a 14–35% tumor-specific exosomes from breast cancer 
patient serums, which potentially could be used as non-invasive 
diagnostic method or even used to detect disease progression 
(81). A study that used anti-CD9 and anti-CD63 antibodies to 
deplete tumor-derived exosomes in a xenograft model showed 
a significant reduction in metastases to different organs but had 
no effect on growth of primary tumors (82). That study showed 
that exosome depletion from blood was macrophage-mediated. 
However, in a xenograft model only the tumor tetraspanins are 
targeted by the antibodies, whereas in human the targeted tetras-
panins are expressed both in the host and in the tumors.

FROM BenCH TO BeDSiDe

Several tetraspanins used as therapeutic targets show promise in 
preclinical models of tumor progression and metastases (7, 28, 
55, 83). However, CD37 is the only tetraspanin target that has 
moved forward into the clinic (84). CD37 is predominantly and 
abundantly expressed on mature B cell malignancies, but not on 
solid tumors. B cells serve as especially suitable targets for immu-
notherapy because of the ability of the antibodies to mediate both 
direct and indirect immune responses. This therapy is a promis-
ing tool, especially in those cases where other immunotherapies 
have failed. Different anti-CD37 antibodies that better mediate 
antibody-dependent cell cytotoxicity, improve complement acti-
vation, or are conjugated to a cytotoxic drugs (83), have recruited 
patients to clinical trials (clinicalTrials.gov).

COnCLUDinG ReMARKS

Tetraspanins regulate cancer progression and metastases; yet, 
their broad tissue distribution presents an impediment for can-
cer immunotherapy, due to possible off-target effects. However, 
with current exponential advances in immunotherapy, these 
limitations could be overcome. Examples include bispecific anti-
bodies that confer tumor selectivity or shielding antibodies with 
tumor-specific proteases (85). Lastly, understanding the function 
of tetraspanins and their molecular partners, both in the tumor 
and in the host, will ultimately develop new therapies for cancer 
treatment.
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