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ABSTRACT Horizontal transfer of genetic materials between virus and host has
been frequently identified. Three rice planthoppers, Laodelphax striatellus, Nilapar-
vata lugens, and Sogatella furcifera, are agriculturally important insects because they
are destructive rice pests and also the vector of a number of phytopathogenic vi-
ruses. In this study, we discovered that a small region (~300 nucleotides [nt]) of the
genome of invertebrate iridescent virus 6 (IIV-6; genus Iridovirus, family Iridoviridae), a
giant DNA virus that infects invertebrates but is not known to infect planthoppers, is
highly homologous to the sequences present in high copy numbers in these three
planthopper genomes. These sequences are related to the short interspersed nuclear
elements (SINEs), a class of non-long terminal repeat (LTR) retrotransposons (retro-
posons), suggesting a horizontal transfer event of a transposable element from the
rice planthopper genome to the IIV-6 genome. In addition, a number of planthopper
transcripts mapped to these rice planthopper SINE-like sequences (RPSISs) were
identified and appear to be transcriptionally regulated along the different develop-
mental stages of planthoppers. Small RNAs derived from these RPSISs are predomi-
nantly 26 to 28 nt long, which is a typical characteristic of PIWI-interacting RNAs.
Phylogenetic analysis suggests that 1IV-6 acquires a SINE-like retrotransposon from S.
furcifera after the evolutionary divergence of the three rice planthoppers. This study
provides further examples of the horizontal transfer of an insect transposon to virus
and suggests the association of rice planthoppers with iridoviruses in the past or
present.

IMPORTANCE This study provides an example of the horizontal transfer event from
a rice planthopper genome to an IIV-6 genome. A small region of the IIV-6 genome
(~300 nt) is highly homologous to the sequences presented in high copy numbers
of three rice planthopper genomes that are related to the SINEs, a class of retro-
posons. The expression of these planthopper SINE-like sequences was confirmed,
and corresponding Piwi-interacting RNA-like small RNAs were identified and compre-
hensively characterized. Phylogenetic analysis suggests that the giant invertebrate
iridovirus 1IV-6 obtains this SINE-related sequence from Sogatella furcifera through a
horizontal transfer event in the past. To the best of our knowledge, this is the first
report of a horizontal transfer event between a planthopper and a giant DNA virus
and also is the first evidence for the eukaryotic origin of genetic material in iridovi-
ruses.

KEYWORDS horizontal transfer, invertebrate iridescent virus 6, iridovirus, rice
planthoppers, SINE, transposable element, piRNAs
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orizontal transfer (HT) of genetic material has been increasingly discovered be-

tween different viruses and their eukaryotic hosts, and it shapes the evolution of
the viruses and their hosts (1). During long evolution of the virus-host relationship, HT
events can occur in two opposite ways: from host to virus or from virus to host. For
host-to-virus HT, the viral genome can acquire various host genes, such as ubiquitin (2),
chloroplast protein (3), and heat shock protein (4), during evolution. Giant viruses or
nucleocytoplasmic large DNA viruses have a very large linear or circular genomic
double-stranded DNA (dsDNA) molecule between 100 kb (such as some phycodnavi-
ruses and iridoviruses) and 2.5 Mb (such as pandoraviruses). It has been reported that
giant viruses contain high proportions (at least 10%) of host-derived genes, and some
of these genes are key factors for viral pathogenesis (5-7). For the virus-to-host
direction, viruses hijack many of the host cellular functions to facilitate their own
replication, and the sequences of many viruses have occasionally been integrated into
host chromosomes during these interactions, a process called endogenization (8).
These integrated viral sequences, which may be whole or partial, are referred to as
endogenous viral elements (EVEs) (9). With the sequencing of many eukaryotic ge-
nomes and advances in bioinformatics, many EVEs derived from retroviral or nonret-
roviral viruses have been discovered in a variety of eukaryotes (10). Since EVEs are
integrated into the germ line and are vertically inherited in their hosts, they serve as
viral imprints (fossils) and provide unprecedented opportunities to explore the evolu-
tion of viruses and their interactions with various hosts (8). Recent studies have also
shown that EVEs derived from nonretroviral viruses can act as templates for the
production of PIWIl-interacting RNAs (piRNAs; 24 to 32 nucleotides [nt] in length), a
small RNA class that was associated with Piwi-subfamily proteins, which might play
essential roles in antiviral immunity of the mosquito Aedes aegypti, thereby providing
a memory reservoir of past immunity events (9, 11, 12).

Besides HT events between different viruses and their eukaryotic hosts, eukaryote-
to-eukaryote HT are also prevalent in nature (13). Recent studies indicated that most of
the eukaryote-to-eukaryote HTs are related to transposable elements (TE), and viruses
are major vectors of HT between eukaryotes (14). Piskurek et al. (15) reported that
poxviruses (family Poxviridae) are possible vectors for HT of retroposons (a class of
non-long terminal repeat [LTR] retrotransposon, subfamilies of short interspersed ele-
ments, or SINEs) from reptiles to mammals. Another example is that baculovirus
(Autographa californica multiple nucleopolyhedrovirus, family Baculoviridae) infection
facilitates HT of two transposable elements from cabbage looper (Trichoplusia ni)
between several sympatric moth species (16). With the large amounts of new genomes
and short read archives deposited in public databases, more virus-mediated eukaryote-
to-eukaryote HT will no doubt be revealed and contribute to our understanding of
mechanisms underlying HT between eukaryotes.

The small brown planthopper (SBPH; Laodelphax striatellus), brown planthopper
(BPH; Nilaparvata lugens), and white-backed planthopper (WBPH; Sogatella furcifera),
generally called rice planthoppers, belong to family Delphacidae (order Hemiptera) and
are three of the most destructive insect pests of rice in tropical and temperate regions
of Asia (17). In addition to direct feeding damage, they act as efficient vectors of plant
viruses and phytoplasmas, including at least 18 important phytopathogenic rice viruses,
some of which replicate in their vector as well as in the host plant, such as Rice
black-streaked dwarf virus (RBSDV, a reovirus) and Rice stripe tenuivirus (RSV, a tenuivi-
rus) for L. striatellus (18, 19), Rice ragged stunt virus (a reovirus) and Rice grassy stunt virus
(a tenuivirus) for N. lugens (20), and Southern rice black-streaked dwarf virus (SRBSDV, a
reovirus) for S. furcifera (21). Insect-specific viruses are also commonly reported in rice
planthoppers, including Himetobi P virus (HiPV), a picorna-like virus that infects the
three rice planthoppers asymptomatically with high frequency (22, 23). There has been
little reported work on HT in rice planthoppers, except for the identification of nudivirus
(family Nudiviridae, closely related to polydnavirus)-like sequences in the N. lugens
genome. Nudivirus sequences were widely found in the scaffolds or contigs of the N.
lugens genome, and these viral sequences were reported to be expressed in different
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tissues of the insect. However, although the rod-shaped nudivirus virions were not
detected in various insect tissues by electron microscopy, the current evidence does
not rule out the possibility that these integrated viral sequences are free virus in N.
lugens rather than ancient viral relics (24).

Chilo iridescent virus is classified as Invertebrate iridescent virus 6 (lIV-6), the type
species of the genus Iridovirus, family Iridoviridae (25). It was originally isolated from
diseased larvae of the rice stem borer (Chilo suppressalis) and has been used as the
standard model for studies on invertebrate iridoviruses (26, 27). Although 1IV-6 can
infect more than 100 insect species belonging to at least six orders, including Hemiptera
(leafhoppers) (27, 28), it has never been reported to infect planthoppers. Because the
virus causes limited mortality to insects and has a large genome, it has received little
research attention (29). Its dsDNA genome has 212,482 bp and contains 468 open
reading frames (ORFs) (30, 31). Although the viruses in the family Iridoviridae have
relatively large genome sizes, iridoviruses seem to be less prone to lateral gene
exchange with their host than other giant viruses, such as poxviruses (family Poxviridae)
and a marseillevirus (family Marseilleviridae) (6). In addition, eukaryotic class Il DNA
transposons (miniature inverted-repeat transposable elements, or MITEs) were recently
identified in the genomes of iridoviruses (Invertebrate iridescent virus 9, 1IV-9, and
Invertebrate iridescent virus 22, 1IV-22), indicating that these viruses act as vectors for HT
of transposable elements between host species (32). Nevertheless, the origins of these
transposons in the genome of iridoviruses are still unclear.

In this study, potential HT events of genetic material between three rice planthop-
pers and virus genomes were investigated. Interestingly, a small region of the IIV-6
genome (~300nt) is highly homologous to the sequences present in high copy
numbers in rice planthopper genomes that have a sequence relatedness to SINE
retroposons. Phylogenic analysis indicated that this SINE-like element is transferred
from the planthopper to the IIV-6 genome in the past after the evolutionary divergence
of the three rice planthoppers.

RESULTS AND DISCUSSION

Identification of VLSs in the genomes of three rice planthoppers. The availability
of recently published genomes of L. striatellus, N. lugens, and S. furcifera provides
resources to identify virus-like sequences (VLSs) in rice planthoppers (33-35). By
homology search using planthopper genomes to NCBI virus RefSegs, 1,699, 5,422, and
4,038 VLSs were discovered in the genomes of L. striatellus, N. lugens, and S. furcifera,
respectively (see File S1 in the supplemental material). Interestingly, all identified VLSs
were homologous to viruses that have never been reported to infect planthoppers, and
none of these viruses were from known planthopper-transmitted rice viruses (such as
RSV and RBSDV) or insect-specific viruses (such as HiPV). This contrasts with recent
results showing that the genome of mosquitos (major vectors of flaviviruses such as
yellow fever virus and dengue virus) contains endogenous flaviviral elements (36-38).
Although the VLSs that we identified are similar to those of viruses that are not known
to infect rice planthoppers, they might have infected planthoppers in the past and
provide persistent viral fossil evidence in the host genome.

Iridovirus-like sequence that is homologous to the sequences with high copy
numbers in rice planthopper genomes. Intriguingly, we found that the vast majority
of VLSs in planthoppers were homologous to a region in the IIV-6 (an iridovirus)
genome. The percentages of VLSs that are homologous to the IIV-6 sequence were
97.76%, 92.23%, and 98.41% in L. striatellus, N. lugens, and S. furcifera, respectively. The
genomes of the three planthoppers next were searched against the IIV-6 genome
(NC_003038.1) to confirm the presence of VLSs that are homologous to IIV-6 (File S2).
Our results indicated that 1.54% of L. striatellus contigs (587/38,193), 5.34% of N. lugens
scaffolds (2,485/46,559), and 4.85% of S. furcifera scaffolds (991/20,450) contain at least
one sequence homologous to IIV-6 with significant matches (Table 1). The top 20
contigs/scaffolds that contain the highest numbers of homologous sequences in the
three rice planthoppers are shown in Fig. 1A. IIV-6 has a large genome, and the first (so
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TABLE 1 Summary of IIV6-LS identified in three planthopper genomes?

Journal of Virology

No. of matched IIV-6 ORFs

Total no. of No. (%) of 1IV6-LS  No. (%) of 1IV6-LS 1IV-6 genome  containing lIV6-LS Orientation
Species scaffold/contigs matched redundant matched unique regions mapped region

Avg no. of
matched IIV6-LS
(sense/antisense) per scaffold/contig

L. striatellus 38,193 1,686 (4.41) 587 (1.54) 157,843-158,135 353L, 354L
N. lugens 46,559 5,031 (10.81) 2,485 (5.34) 157,851-158,142 353L, 354L
S. furcifera 20,450 3,986 (19.49) 991 (4.85) 157,844-158,137 353L, 354L

835/851
2,579/2,452
1,932/2,054

2.872
2.024
4.022

I+ I+ 1+

3.508
1.748
6.791

allV6-LS, 1IV6-like sequences.

far the only) complete genome was sequenced in 2001 (30). It is 212,482 bp long and
has 468 predicted ORFs (30). Surprisingly, mapping results indicated that all of the
discovered homologous sequences (1,686 for L. striatellus, 5,031 for N. lugens, and 3,986
for S. furcifera), except one of N. lugens in scaffold 137, mapped to a short region
(~300 nt) from nt 157,843 to 158,142 nt of the viral genome that covered most regions
of ORF 353L, the intergenic region, and parts of ORF 354L (here this region is referred
to as 1IV6_300) (Fig. 1B). ORFs 353L and 354L are both on the complimentary strand of
the IIV-6 genome; ORF 354L encodes a protein with a predicted L-lactate dehydroge-
nase active site domain, while the function of 353L is currently unknown (30). The
majority of the homologous sequences were only 100 to ~200 bp long, and their
integrations are almost equal in both directions (Table 1 and Fig. 1B). To experimentally
validate the presence of the homologous sequences, five sequences from different
contigs/scaffolds (approximately 700 bp) of each of the three planthoppers were
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FIG 1 Identification of sequences homologous to 1IV6_300 sequence (RPSISs) in three planthopper genomes. (A) Bar plots showing the number of RPSISs within
contigs/scaffolds (top 20) of three planthopper genomes. (B) Coverage plots of RPSISs mapped to the region between the ORFs 353L and 354L of the IIV-6
genome. Each line represents a single RPSIS, and its length and position denote the region of the indicated ORF to which its sequence is mapped. Red lines
indicated RPSISs mapped to the R (+) strand of V-6, and blue lines represents those to the L (—) strand. (C) Genomic PCR detection of five randomly selected

contigs/scaffolds containing RPSISs in three planthopper genomes.
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randomly selected and amplified by PCR. Amplification products with the expected
sizes were obtained from all of the selected contigs/scaffolds, and Sanger sequencing
of the purified DNA products confirmed their identity (Fig. 1C). Although IIV-6 has a
broad host range and can infect more than 100 insect species (27), to the best of our
knowledge, this is the first report of an HT event of the genetic material between IIV-6
and a eukaryotic host.

1IV6_300 sequence is a predicted transposable element of rice planthoppers.
Transposable elements are the major components of eukaryotic genomes and account
for approximately 25.7%, 38.9%, and 32.6% of sequences in the genomes of L. striatel-
lus, N. lugens, and S. furcifera, respectively (33-35). Transposable elements are pieces of
DNA that are able to jump from one locus to another in the genome of their host, and
the majority of HT events reported until now are the transfers of transposable elements
(14). Due to the high copy numbers of the sequences that are homologous to the
IIV6_300 sequence in the planthopper genomes, these sequences, including a 500-nt
extension in both 5’ and 3’ termini, were analyzed for the presence of transposable
element motifs using CENSOR (39). The analysis indicated that they contain the
conserved SINE3-1_TC motif, which is also present in the 1IV6_300 sequence (Fig. 1B).
Thus, they may be short interspersed nuclear elements (SINEs), which is a class of
non-LTR retrotransposon (retroposon) present in various eukaryotic genomes. Note
that we did not find the rice planthopper SINE-like sequences (RPSISs) in the genome
of the rice stem borer, the known host of [IV-6. Taken together, these observations
suggest that IIV-6 probably obtained a transposable element from a planthopper
through an HT event. In the case of other iridoviruses, 1IV-9 and IIV-22 were predicted
to contain eukaryotic DNA transposon MITEs, which might result from HT (32), but the
origins of the predicted eukaryotic MITEs are still unclear.

Transcription and integration profile of RPSISs in rice planthoppers. The com-
plete genome of IIV-6 was used as a database and searched with the newly reassem-
bled transcriptomes of the three planthoppers. A total of 19, 24, and 178 planthopper
transcripts containing RPSISs were found in L. striatellus, N. lugens, and S. furcifera,
respectively, indicating that some of the RPSISs are transcribed in planthoppers (Tables
2 and 3 and Table S1). As shown in Fig. 2, some RPSISs were distributed in the
transcribed regions of planthopper genes with various predicted functions, such as
glycine hydroxymethyltransferase and ubiquitin-conjugating enzyme in L. striatellus,
methyltransferase and electron transfer flavoprotein in N. lugens, and tyrosine-protein
kinase and glucose dehydrogenase in S. furcifera. Planthopper transcripts contain
RPSISs derived from both strands (Fig. 2). In addition, five RPSISs from each planthopper
were randomly selected and analyzed by reverse transcription-PCR (RT-PCR) (Fig. 3A),
followed by Sanger sequencing. The positions of the primer sets are indicated by red
arrows below the transcripts (Fig. 2). The result confirmed that RPSISs are indeed
expressed in planthoppers rather than contaminant sequences from incidental exog-
enous sources.

Notably, none of the RPSISs were integrated into the coding regions of predicted
planthopper genes (Fig. 2). This may be because the disruption of the coding genes
leads to detrimental effects on the insects. A previous study showed that transposable
elements in the genome can be expressed at low levels and can play important roles
in the regulation of gene expression (40, 41). Whether the RPSISs inserted into plan-
thopper genomes have similar transposon-like functions as the regulators of gene
expression in rice planthoppers needs further investigation.

To investigate the expression profile of RPSIS loci at different planthopper devel-
opmental stages, seven RPSISs of N. lugens were selected for RT-quantitative PCR (qPCR)
analysis. There were relatively low expression levels in eggs or first-instar nymphs
(except transcript TCONS_00024158) and markedly high expression in late-instar
nymphs and adults (Fig. 3B). This result shows that RPSISs containing transcriptions are
differently regulated during the different developmental stages of N. lugens.
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Characteristics of RPSIS-derived small RNAs. The canonical function of the piRNA
pathway is in defense against transposable elements and to protect the integrity of the
genome in both germ line and gonadal somatic cells of animal species (42). Recent
results in mosquitos suggest that piRNAs can also be produced by endogenous
flaviviral elements and play a role in insect antiviral immunity (12, 38). Thus, it is
interesting to investigate whether RPSIS loci produce small RNAs. Nine publicly avail-
able small RNA libraries of three planthoppers were mapped to the complete genome
of [IV-6 (NC_003038.1). Of the small RNA reads that mapped to the 1IV-6 genome, 70.5%
to 93.2% of the unique small RNA reads and 64.8% to 96.8% of redundant reads
mapped to the 1IV6_300 sequence, which indicates the accumulation of small RNAs
derived from RPSIS loci (Table 4).

More RPSIS-derived small RNAs were identified in S. furcifera than in the other two
planthoppers (Table 4), perhaps because of the closer relationship of RPSISs in S.
furcifera with the reference exogenous lIV-6 (see Fig. 5). Since there are some sequence
variations among RPSISs from the three rice planthoppers and exogenous IIV-6, and for
a better understanding of the production of RPSIS-derived small RNAs, small RNA
libraries of LS_VF (L. striatellus), NL_CX (N. lugens), and SF_VF (S. furcifera) were further
mapped to three randomly selected RPSIS-containing transcripts from corresponding
planthoppers. As expected, more small RNAs derived from RPSIS loci were identified by
this method (Table 4). Evidently, small RNAs were specifically mapped to RPSIS regions
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FIG 3 Expression of planthopper RPSISs. (A) RT-PCR detection of planthopper transcripts containing RPSISs. (B) Expression of RPSISs at different developmental
stages of N. lugens. The 18S gene of N. lugens was used as an internal control for normalization. Error bars represent the standard deviations using three

replicates.

except for the TCONS_00020430 transcript (Fig. 4A). Obvious small RNA hotspots were
observed, and these were usually identified in both strands (Fig. 4A). Interestingly,
RPSIS-derived small RNAs are predominantly 26 to 28 nt, followed by a 21- to 23-nt
peak, although TCONS_00020430 has a clear 22-nt peak (Fig. 4B). However, a 26- to
28-nt small RNA peak was observed in TCONS_00020430 if only the RPSIS region of
the transcript was mapped (data not shown), suggesting that the abundant small
RNAs with a length of 21 to 23 nt are mainly derived from different regions of the
transcript.

The production of piRNAs (a class of the small RNAs) from endogenous viral
elements was recently reported from mosquitos; these were antisense strand and could
target cognate viral RNA (11, 12, 38). Previous studies indicated that the piRNA pathway
plays an essential role in antiviral defense of mosquitos but not of other insects, such
as a fly (Drosophila spp.) (43). Another study demonstrated that exogenous [IV-6, as a
dsDNA virus, triggers an RNA interference-based antiviral defense mechanism in Dro-
sophila with the generation of virus-derived small interfering RNA in a DICER2 (RNase
Il enzyme)-dependent manner (44). From our results, small RNAs derived from
RPSIS loci were predominantly 26 to 28 nt long, which is a typical characteristic of
piRNAs (24 to 32 nt) (45). We therefore extracted RPSIS-derived small RNAs with
lengths of 26 to 28 nt for further sequence logo analysis (https://weblogo.berkeley
.edu/logo.cgi). However, this analysis did not identify another typical characteristic of
piRNAs, namely, a strong U bias at the 5’ terminus or enrichment of A at nt 10 (42 and
data not shown). It is remains unclear whether RPSIS-derived small RNAs function in the
piRNA pathway against transposons. It will also be interesting to further investigate
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TABLE 4 Numbers of reads of small RNAs of three planthoppers mapped to 1IV-6 genome (allowing 1 mismatch)

Journal of Virology

Unique reads

Redundant reads

Species and small RNA Mapped to 1IV-6 Mapped to 11IV6_300 Mapped to 11IV-6 Mapped to
libraries® mapped to 1IV-6 genome genome (total no.) [no. (%)] genome (total no.) 1IV6_300 [no. (%)]
L. striatellus
LS_VF 89 68 (76.4) 105 76 (72.4)
LS_RB 72 59 (81.9) 86 71 (82.6)
LS_RSV 71 61 (85.9) 101 91 (90.1)
LS_DI 60 49 (81.7) 69 58 (84.1)
N. lugens
NL_CC 133 118 (88.7) 193 177 (91.7)
NL_CX 105 74 (70.5) 162 105 (64.8)
NL_CY 71 61 (85.9) 94 81 (86.2)
S. furcifera
SF_VF 924 861 (93.2) 2,951 2,857 (96.8)
SF_SRB 823 766 (93.1) 2,694 2,592 (96.2)

alLS_VF, virus-free adults of L. striatellus; LS_RB, adults of L. striatellus infected with RBSDV; LS_RSV, adults of L. striatellus infected with RSV; LS_DI, adults of L. striatellus
with mixed infection of RBSDV and RSV; NL_CC, female adults of N. lugens; NL_CX, male adults of N. lugens; NL_CY, last-instar female nymph of N. lugens; SF_VF,

virus-free adults of S. furcifera; SF_SRB, adults of S. furcifera infected with SRBSDV.

whether RPSIS-derived small RNAs could mediate antiviral defense against IIV-6 infec-
tion.

Phylogenetic relationship of 1IV6_300 and RPSISs. A phylogenetic tree was
constructed based on the RPSISs using the maximum likelihood method. Evidently,
RPSISs were grouped according to the insect species with strong bootstrap support
(Fig. 5). 1IV6_300 sequence is clustered with RPSISs of S. furcifera, indicating that
IIV-6 obtained a SINE-like transposable element from S. furcifera in the past after the
evolutionary divergence of the three rice planthoppers. Note that we could not find
any homologous sequence to RPSISs in other viruses deposited in the public
database. Considering that IIV-6 is a giant DNA virus that commonly obtains genetic
material from the host, it is very likely that the transposable element is transferred
from a planthopper host to the 1IV-6 genome. It will be interesting to investigate the
possible HT of RPSISs between eukaryotic organisms involving virus vectors, as
recently reported for other viruses and hosts (14-16).

In conclusion, our investigation on possible occurrences of HT between rice plan-
thoppers and viruses leads to the finding of newly identified retroposon-like elements
that transfer to an iridovirus. To the best of our knowledge, this is the first report of a
potential HT event between a planthopper and a giant DNA virus and also the first
evidence for the eukaryotic origin of genetic material in iridoviruses. The results of this
study will further contribute to our understanding of HT events between viruses and
their eukaryotic hosts.

MATERIALS AND METHODS

Insect cultures. Populations of three planthoppers (L. striatellus, N. lugens, and S. furcifera) that were
not carrying the known rice viruses were reared on susceptible rice seedlings (cv. Wuyujing no. 3) in
climate-controlled rooms at 26°C = 1°C, with a photoperiod of 16 h of light and 8 h of darkness and
70% * 10% relative humidity.

VLSs in three rice planthopper genomes. The assembled genomes of L. striatellus, N. lugens, and
S. furcifera were retrieved from Gigadb and the NCBI reference genome database (33-35). These
genomes were searched against NCBI virus RefSeqs (ftp://ftp.ncbi.nlm.nih.gov/refseq/release/viral) using
a BLASTN algorithm with a cutoff E value of =10-5. The detected virus-like sequences (VLSs) are listed
in File S1 in the supplemental material. Since most of the planthopper VLSs (>90%) were mapped to a
restricted region (~300nt) of IIV-6 (1IV6_300), the three planthopper genomes were then searched
directly against the IIV-6 genome (NC_003038.1) to identify the IIV-6-like nucleotide sequences (se-
quences homologous to 1IV6_300) in planthoppers. BLAST results are listed in File S2. In addition,
contig/scaffold regions of planthoppers that mapped to [IV-6 were further extracted and extended 500
bases at both 5’ and 3’ termini (to the end of the termini) and used for the identification of potential
transposable elements with CENSOR (https://www.girinst.org/censor/index.php).

1IV6_300-like sequences containing transcripts identified from reassembled rice planthopper
transcriptomes. Transcriptome raw data were downloaded from the NCBI Sequence Read Archive (SRA)
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FIG 4 Production of small RNAs derived from RPSIS loci in planthoppers. (A) Mapping of small RNAs (18 to 30 nt) to the planthopper transcripts
containing RPSISs. Red and blue colors indicate small RNAs derived from the sense and antisense strands, respectively, of planthopper transcripts.

(Continued on next page)
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database for L. striatellus (SRX2013762), N. lugens (SRX023419), and S. furcifera (SRX104935). The filtered
transcriptome raw reads were then aligned against their corresponding genomes using Tophat2 (http://
ccb.jhu.edu/software/tophat/index.shtml) and reassembled using Cufflinks (http://cole-trapnell-lab
.github.io/cufflinks/). The newly reassembled transcripts of the three planthoppers are available upon
request. The assembled transcriptomes were also searched again against the [IV-6 genome
(NC_003038.1) using BLASTN (E value of =10~°) to identify the transcripts containing the 1IV6_300-like
sequence (rice planthopper SINE-like sequences, or RPSISs). The identified planthopper transcripts were
then searched against NCBI NR (NCBI nonredundant protein sequences) and NT (nucleotide sequences)
databases for annotation. The results are listed in Table 2 (L. striatellus), Table 3 (N. lugens), and Table S1
(S. furcifera). Furthermore, to determine the accurate location of the RPSIS within the planthopper
transcripts and genome, the planthopper transcripts containing RPSISs were used as a query to search
against the genome of the three planthoppers using BLASTN (E value of =10-1°9), and the results are
available upon request.

Detection of planthopper scaffolds/contigs containing RPSISs. Genomic DNAs were extracted
from the three planthoppers using an insect DNA extraction kit (Omega, USA) following the manufac-
turer’s instructions. Five scaffold/contig sequences (partial, ~500 to ~700 bp, containing RPSISs) from
each planthopper were randomly selected to verify the presence of RPSISs. The PCR products of each
sample were purified, ligated into the pMD18-T vector (TaKaRa, China), and sequenced (Tsingke, China).
The primer sets used for genome amplification are listed in Table 5.

Detection of planthopper transcripts containing RPSIS. Total RNAs were extracted from the three
planthoppers using TRIzol reagent (Invitrogen, USA). The purified RNAs were mixed with genomic DNA
remover (Toyobo, Japan) and used for RT-PCR. cDNA was synthesized using HiScript Il reverse transcrip-
tion (Vazyme, China) according to the manufacturer’s instructions. Five partial transcripts (approximately
500 bases) containing RPSISs from each planthopper were randomly selected to confirm the expression
of RPSISs. The PCR products of each sample were also sequenced as described above. The positions of
the primer sets used to amplify the transcripts are shown by red arrows in Fig. 2, and the primer
sequences are listed in Table 5.

Expression analysis of RPSISs containing RNAs in N. Jugens. To determine the expression of
RPSISs containing transcripts in N. lugens at different developmental stages, samples from eggs,
first-instar nymphs, second- and third-instar nymphs, fourth- and fifth-instar nymphs, and female and
male adults were collected for RNA extraction. Equal quantities of total RNA from each sample were
used for cDNA synthesis, as described earlier. Primer sets specific for the seven transcripts containing
RPSIS were used for RT-qPCR using the 18S rRNA of N. lugens as an internal reference gene. The
primer sequences are listed in Table 5. Three independent biological replicates were used in this
experiment.

Small RNA analysis derived from RPSIS loci. To investigate the possible presence of small RNAs
derived from RPSIS loci, nine publicly available small RNA libraries of three rice planthoppers were
retrieved. Four L. striatellus libraries were downloaded from the NCBI SRA database: LS_VF (virus-free
adults, SRA no. SRX255768), LS_RB (adults infected with RBSDV, SRA no. SRX255770), LS_RSV (adults
infected with RSV, SRA no. SRX255771), and LS_DI (adults with mixed infections of RBSDV and RSV, SRA
no. SRX255769). Three N. lugens libraries were kindly provided by Yongjun Lin, Huazhong Agricultural
University (46): NL_CC (female adults), NL_CX (male adults), and NL_CY (last-instar female nymph). Two
S. furcifera libraries were downloaded from the NCBI SRA database: SF_VF (virus-free adults, SRA no.
SRX1544811) and SF_SRB (adults infected with SRBSDV, SRA no. SRX1546399). These 9 small RNA libraries
were first mapped to the genome of 1IV-6 (NC_003038.1), and then 3 small RNA libraries (LS_VF, NL_CX,
and SF_VF) were further mapped to three randomly selected transcripts containing RPSISs (>100 bases)
from each planthopper.

For small RNA bioinformatics analysis, preliminary treatment of the raw data was performed as
described previously (47). In brief, small RNAs with lengths of 18 to 30 nt were extracted and collapsed
for downstream analysis after 3" adaptor removal and treatment of low-quality and junk sequences. The
treated small RNAs of each library were mapped to the IIV-6 genome (NC_003038.1) using Bowtie
software (http://bowtie-bio.sourceforge.net/index.shtml), allowing for one mismatch to identify RPSIS-
derived small RNAs. In addition, to confirm the presence of RPSIS small RNA within planthopper
transcripts, three planthopper small RNA libraries (LS_VF, NL_CX, and SF_VF) were mapped to three
randomly selected transcripts (containing RPSISs) from each planthopper. The subsequent analyses were
performed using custom Perl scripts and Linux bash scripts.

Phylogenetic analysis of RPSISs. Relatively long RPSISs (the L strand) from each planthopper were
selected and aligned in ClustalW implemented in MEGA (version 6) (48), followed by manual editing.
Planthopper sequences mapped to a region from nt 158120 to 157874 of the IIV-6 genome (the region
of ORFs 353L and 354L of 1IV6_300) were used for phylogenetic analysis considering the length
concordant to the aligned RPSISs. The only one exogenous 1IV-6 (IIV6_300) with the corresponding range
and orientation available at present was included in this analysis. Phylogenetic analysis was carried out

FIG 4 Legend (Continued)

Journal of Virology

Schematic representation below each plot shows the organization of the transcripts and the position of small RNAs in the transcripts. Green lines with
arrows indicate planthopper transcripts. Green boxes represent the predicted ORF within insect transcripts. Red and blue boxes represent the transcripts
of RPSISs with R and L strands, respectively. One mismatch was allowed during small RNA mapping. (B) Size distribution of small RNAs derived from
the RPSIS loci mapped to planthopper transcripts, corresponding to the mapping shown in panel A. LS_VF, virus-free adults of L. striatellus. NL_CX, male

adults of N. lugens. SF_VF, virus-free adults of S. furcifera.
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FIG 5 Phylogenetic analysis of RPSISs (L strand) in three planthoppers using the maximum likelihood
algorithm. Numbers at each branch node represent the values calculated by bootstrap analysis (1,000
replications; only values of >50 are shown). Exogenous IIV-6 (IV6_300, with the corresponding range and

orientation) is indicated with red font.

March 2019 Volume 93 Issue 6 e01516-18 jviasm.org 13


https://jvi.asm.org

Yang et al.

TABLE 5 Primer sets used in this study

Journal of Virology

Primer name

Primer sequence (5'-3')

Ls-DNA-Contig8-1
Ls-DNA-Contig1-2
Ls-DNA-Contig157-1
Ls-DNA-Contig0-1
Ls-DNA-Contig30-1
NI-DNA-Scaffold4554-1
NI-DNA-Scaffold2050-1
NI-DNA-Scaffold6-12
NI-DNA-Scaffold727-2
NI-DNA-Scaffold1287-11
Sf-DNA-Scaffold20-60
Sf-DNA-Scaffold24-9
Sf-DNA-Scaffold8-1
Sf-DNA-Scaffold15-1
Sf-DNA-Scaffold17-1
Ls-Transcripts-TCONS_00026424
Ls-Transcripts-TCONS_00008260
Ls-Transcripts-TCONS_00002613
Ls-Transcripts-TCONS_00025666
Ls-Transcripts-TCONS_00003466
NI-Transcripts-TCONS_00024158
NI-Transcripts-TCONS_00022544
NI-Transcripts-TCONS_00017127
NI-Transcripts-TCONS_00014979
NI-Transcripts-TCONS_00006635
Sf-Transcripts-TCONS_00023659
Sf-Transcripts-TCONS_00026590
Sf-Transcripts-TCONS_00031118
Sf-Transcripts-TCONS_00036274
Sf-Transcripts-TCONS_00006341
qPCR-NI-18S
qPCR-NI-TCONS_00024158
qPCR-NI-TCONS_00022544
qPCR-NI-TCONS_00017127
qPCR-NI-TCONS_00016885
qPCR-NI-TCONS_00014979
qPCR-NI-TCONS_00014262
qPCR-NI-TCONS_00006635

F, TCAATTGATGCTCAATCAACTTCG; R, TGGGTTTTCATTAATAGAGCGAGT
F, ACTCCAATTGTCTCTGCTTACA; R, TCATATTTGGTGAAGTCTCCTCA

F, GTTAGTTGCCAACCAGCCTA; R, GTGATAACGGTCTTTCCCCG

F, CGAAGCTGTTGCACACAATC; R, CGTTACTGGTACTTTCCCAGA

F, GAGGTATCGCGCTACTCTTTTT; R, TCATGGTATCTGCCCTGCCT

F, GTGATGAGTGGAAGAAGGTGA; R, CGTTCATACACTCTTACCCGA

F, AAGCTAAGCGTAATTTGGGC; R, CCTCTACATTTATCAGGAAATACGC

F, TACCGGTATCAGCAGTCATCT; R, GACTTGTTCTGGCCTTGTCG

F, GATTGATGTGTCCATTTTCGGG; R, GAACCTGAGCAGAGTAAGTCG

F, GGGAAACGTAAAATCGGCGT; R, ATTTTGAGTTTAAGCCACCAGC

F, CCACTGGCGGTGGAATTATTTTAT; R, CAGTAGGCTGTTTGTGTTTCAT

F, TGCCTCGATCTGGAAGTACA; R, GCCTGTTAAGCTAACTTTGTGG

F, GATTCTTGTGAGCCCAGTGAG; R, CTTCACAAGTGAGCTTTAAGGGG

F, CTTCTGGGGAAAACTGGAGC; R, TGTTAAATTGATGTGGAAAGCAAA

F, ACATCATTCTGGCACTCTTTTTCA; R, AAATTATTCCCCCTGACATTCATTT
F, GAATATGTGTCTGGCATTCCTCA; R, CCAAGCGCTCGTCACTTATC

F, ACAGAAAGCAACTGAGGTGTAACG; R, ACCTGAGCCTTTGGCTTGTG

F, TGCTTGAGATAATCCGGCTG; R, TCAAGCCTGATGTTTGATGGG

F, ACCCTCATCGTCACTCACATGC; R, GCGCATGCGTCAACGAAAAA

F, TCCTCTGGTAGGAGGTTGCC; R, AGGAACACCTGAAGCATCAAC

F, CGACAAATCGTGTAGTCGCT; R, TCTTCGACTCAATTTTCGGGA

F, CTACAATGTTATTATAGGAGCCGTG; R, TTTTCTCTGGCTCAGTCTCTTAATC
F, ACTGGAAAGTTTTGATACTGTTTCT; R, CAGACAACTGTGGCTGCTAT

F, TGTTGTAACTCATCAAACAGTGG; R, AAACCATTTATATCACAGATAGCCT
F, CCCACATTTGAAAGTGATCATAGC; R, AAGAACAACGACAACAATTATGGAT
F, GACCGACGGCTTAACGTGT; R, CCGTTCGAGAGTGACAGCAG

F, GGGGATCTCGAAACCGTCCA; R, TACTCCAGCTCGGTGAATATTGG

F, TGAGCGTGCTCTGACATGGA; R, GACTTTGGTTTTTCGGCGCTT

F, TACAGCGGTTGTGGTCCGT; R, AAGCCGGCCAAGTCGGA

F, TGTCAGGTTTACCGTTCAGAC; R, AGGCATACTCCAGAGATAACCAA

F, GTAACCCGCTGAACCTCG; R, GTCCGAAGACCTCACTAAATCA

F, ATAATAATATTGGGTGACATGGCTG; R, TGAGTCTCTATCGATTTTCTTGTTG
F, CAATGTTATTATAGGAGCCGTGAGT; R, TGTCAGAGTTTTCAGGTCGCA

F, CCCGACTGCCTGAAAAACAG; R, GTTATCAGACAACTGTGGCTGC

F, TGGGTTGATTCATCTTCGAGTT; R, CGCCAAGGCTGCCTAAAAAG

F, AAGCTATCGCGTTTGTAAAGCTG; R, TTTGCCAAGCTGTGAACACTC

F, TGCTTCCATTCCATTCAAGCG; R, TTGCTGCGTCCAATTTGTGG

F, GGCGACGTTGGCACATTAGC; R, ATGGACACGTTAAGCCGTCG

using MEGA 6, and the tree was generated using the maximum likelihood algorithm (1,000 bootstrap
replications) (48).
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