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Surveillance is integral for the targeted and effective function of integrated vector management. However, 
the scale of surveillance efforts can be prohibitive on manpower, given the large number of traps set, col-
lected, processed, and enumerated. For many public health agencies, the sheer effort of weekly trapping, 
combined with the processing of numerous traps, is a major capacity challenge. To reduce employee fatigue 
and increase throughput, estimation methods are used in a diagnostic capacity to determine threshold num-
bers of mosquitoes (Diptera: Culicidae) for operational decision-making. Historically, volume and mass meas-
ures correlated to a known number of mosquitoes are the oldest and most widely used within mosquito 
control programs. Image processing methods using digital counting software, such as ImageJ, have not been 
tested rigorously in the context of high throughput usage experienced in mosquito operations. We stress-
tested volume, mass, and image processing methods using sample calibrations from early in the year and ap-
plied them throughout a mosquito active season. We additionally tested resilience with samples that had been 
frozen, desiccated, old, or from an excessively large trap collection. Furthermore, we compared magnitudes of 
error after intentionally deviating from best practices. In all cases, mass and volume encountered significant 
errors. In contrast, the digitized-optical counting method was resilient to going long periods of use without 
recalibrating, handling different species compositions, and processing aged or damaged samples. If a program 
has limited logistical power, the aforementioned image-processing method confers the best balance of accu-
racy and expediency for time-sensitive workloads and efficient operational decision making.
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Resumen

La vigilancia es funda mental para el funcionamiento específico y eficaz de los sistemas integrados de 
vigilancia de vectores gestión. Sin embargo, la escala de los esfuerzos de vigilancia puede ser prohibitiva en 
términos de personal, una gran cantidad de trampas colocadas, recolectadas, procesadas y enumeradas. Para 
muchas agencias de salud pública, el gran esfuerzo de captura semanal, combinado con el procesamiento 
de trampas numerosas, es un gran desafío de capacidad. Para reducir la fatiga de los empleados y aumentar 
el rendimiento, se utilizan métodos de estimación en una capacidad diagnóstico para determinar el número 
umbral de mosquitos (Diptera: Culicidae) para la toma de decisiones operativas. Históricamente, las 
medidas de volumen y masa correlacionados con un número conocido de mosquitos son los más antiguos 
y los más utilizados dentro programas de control de mosquitos. Métodos de procesamiento de imágenes 
mediante software de conteo digital, como ImageJ, no se han probado rigurosamente en el contexto de uso 
de alto rendimiento experimentado en operaciones con mosquitos. Probamos métodos de volumen, masa 
y procesamiento de imágenes, utilizando calibraciones de muestra del principio del año y se aplicaron du-
rante toda la temporada de actividad de los mosquitos. También probamos la resiliencia con muestras que 
habían sido congeladas, desecadas, viejas o de una colección de trampas excesivamente grande. Además, 
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comparamos las magnitudes de error después de desviarse intencionalmente de las prácticas mejores. En 
todos los casos, la masa y el volumen se encontraron niveles de error significativos. Por el contrario, el método 
de conteo óptico digitalizado fue resistente a períodos largos de uso sin recalibrar, uso con composiciones de 
especies diferentes y procesar viejas o dañadas muestras. Si un programa tiene un poder logístico limitado, 
el método de procesamiento de imágenes antes mencionado ofrece el mejor equilibrio entre precisión y 
conveniencia para cargas de trabajo sensibles al tiempo y toma de decisiones operativas eficientes.

Introduction

Surveillance is a vital process of longitudinal data collection (Petrić 
et al. 2014, Aryaprema et al. 2023) that establishes an empirical 
understanding of mosquito abundance, diversity, and dispersion 
characteristics (Yang et al. 2009, Chen et al. 2011, Drakou et al. 
2020). Time-sensitive data of sufficient density is required to esti-
mate risk and plan interventions to protect public health (Farajollahi 
et al. 2009, Yang et al. 2009, Drakou et al. 2020). The urgency of 
decision-making is further amplified when dealing with rapidly 
proliferating mosquito populations (Crepeau et al. 2013, Drakou et 
al. 2020) and outbreaks of mosquito-borne pathogens, particularly 
West Nile virus from Culex spp. and imported cases such as dengue 
or Zika virus that can be vectored by invasive Aedes spp. (Connelly 
et al. 2020, Yee et al. 2022). Ultimately, this requires dealing with 
large volumes of sample material and having good standard oper-
ating procedures that allow for data collections to remain consistent 
over time (Reisen et al. 1983, 2000, Unlu and Farajollahi 2012, 
Jaworski et al. 2019). Unfortunately, a program can quickly experi-
ence stress fractures in operational protocols at the scale needed for 
public health vector surveillance (Farajollahi et al. 2009, Chen et al. 
2011, Crepeau et al. 2013).

Using the Salt Lake City Mosquito Abatement District 
(SLCMAD) as an example, monitoring of roughly 285 km2 in high 
elevation, arid, sagebrush floodplains approaching the Great Salt 
Lake is conducted twice-weekly at over 40 surveillance sites. If data 
are enumerated same-day for the dates of trap collection, this only 
affords a half-day at best for sorting, counting, and speciation to 
inform management decisions during the subsequent evening of op-
erations. The reality is that limited capacity, even in well-established 
programs (Crepeau et al. 2013, Aryaprema et al. 2023), forfeits the 
ideal of exact, fast, and consistent data. Implementing vetted diag-
nostic protocols compromises on this pitfall by reducing the burden 
of the workload, and improving the rapidity and cost-effectiveness 
of data collection (Jaworksi et al. 2019). For example, sub-sampling 
total collections for speciation and then extrapolating that count on 
species data can still allow reliable inference on mosquito bionomics 
as long as there is an understanding of sources of error (Jaworski et 
al. 2019).

Some common methods for rapidly enumerating mosquito 
collections include taking mass readings (Steiger et al. 2016), using 
volumetric measurements (Smith et al. 2010), extrapolating off 
surface area (Rey et al. 2006), image processing to acquire a semi-
automated optical count (Mains et al. 2008, Kesavaraju and Dickson 
2012), and even hybrid methods combining multiple approaches 
(Henderson et al. 2006, Schäfer et al. 2008). However, humidity 
fluctuations, environmental desiccation, and mosquito popula-
tion age structure can jeopardize the reliability of mass readings 
(Kesavaraju and Dickson 2012). While differential body size, either 
because of species differences or rearing factors (Schneider et al. 
2011), can also skew both volumetric and mass-based estimations.

There have been excellent analyses vetting the error rates of these 
methods across conventional use (Jaworski et al. 2019). However, 

the error rates within any of these protocols are recursive to the end-
user and sample quality. There are several notable risks that com-
promise the data and invalidate longitudinal, or even cross-agency, 
comparison. Are estimations consistent across the physical condi-
tion of the sample? Do they skew with varying species composition? 
Does the error amplify within singularly large trap collections? If 
a program had limited logistical power, which method confers the 
best balance of accuracy and throughput? In an effort to build upon 
existing work comparing estimation methods (Jaworski et al. 2019), 
we performed an operationally relevant assessment on the resilience 
of mass, volumetric, and optical-counting methods against non-ideal 
sample conditions.

Materials and Methods

Mosquitoes were collected during 24-h trap cycles twice a week 
using pressure-regulated CO2 baited at 300 ml/min, or ~50 g/h of 
the mass of liquid CO2 loaded into the cylinders, and CDC-style 3D 
printed Salt Lake City Traps (SLCT) (Bibbs et al. 2024). Collections 
ranged across an established surveillance network, spanning urban/
residential tracts, rural wetland, and industrial transition zones. The 
26-wk data collection period of twice-weekly trapping was split into 
the first 13 wk and latter 13 wk due to species composition shifts in 
the area. A total of 72 trapping events were used for assessments, 
with a pooled mosquito total of over 520,000 individual mosquitoes 
used in the study. Upon return to the laboratory for processing, 
mosquitoes were chilled at −80 °C for 20 min and then filtered 
over a fiberglass window screen (Clear Advantage, Saint-Gobain 
ADFORS, Grand Island, NY) to allow pass through of biting midges 
and other small non-target insects (Fig. 1A). Large non-targets, such 
as Chironomid midges and large-bodied flies, were removed by 
hand. Cleaned samples were then set aside for same-day processing 
with one of 4 handling methods.

Traps used for the study were initially hand counted and 
identified to species using morphological keys (Darsie and Ward 
2005) to obtain the entire species composition and abundance. This 
value was used as the absolute numerical target for the other esti-
mation methods to determine error. Volumetric measurements were 
taken in a 250-ml graduated cylinder in a maximum up to no more 
than 90% of the total volume of the cylinder. Cylinders were gently 
tapped 5 times on the counter-top to settle the contents for meas-
urement. The measure was taken with mosquito bodies, not wings 
or legs, clearing the measure line (Fig. 1B). For mass measurements, 
a plastic weigh boat was tared on a digital scale (Horizon SF-400D, 
Westlake Tactical, Bridgeville, PA) and filled no more than half the 
total volume with mosquitoes. The mass reading, in grams, was 
recorded for the contents (Fig. 1C). In both volumetric and mass 
measurements, the process was repeated 3 times each, with the desig-
nated score for that trap being the average of the 3 readings. If more 
than one mean measurement was required to exhaust the number of 
mosquitoes, then the means were summed for the final value.

For the digitized counting system, a computer was connected to a 
digital SLR camera (EOS Rebel T1i, Canon U.S.A., Inc., Huntington, 
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NY) with a standard range of 18 to 55 mm lens set to 34 mm op-
tical zoom. The face of the lens was suspended 73.5 cm above the 
benchtop (Fig. 1D). The bench was illuminated using a 6-piece LED 
string light setup (12-inch bars at 31 watts, Litever, Guangdong, 
China) casting 2,000 lumens at a color temperature of 5,000 K. 
The camera was operated with on-board live view shoot software 
that was pre-installed from the camera. Trap contents were emptied 
onto a white photo-developing tray (20.32 × 3 × 25.4 cm; CescoH; 
B&HPhoto Video, New York City, NY) and centered in the frame 
with no black space visible from the digital viewer. Mosquitoes were 
evenly distributed across the viewing frame to create as many breaks 
in contrast around individual mosquitoes as possible; for the size of 
the tray, this was best at around 30 to 45 ml of mosquitoes spread 
around the tray. The final count was summed from the collective 
of all required pictures to exhaust the trap contents, which was de-
rived from ImageJ (Rasband, W.S. ImageJ, U.S. National Institutes of 
Health, Bethesda, MD) loaded with a macro following the processes 
of Mains et al. (2008) with the adaptations by Kesavaraju and 
Dickson (2012):

run(“8-bit”);
setThreshold(0, 50);
run(“Convert to Mask”);
run(“Analyze Particles…” , “size=38-infinity circu-

larity=0.00-1.00 show=Nothing exclude clear summarize”);
close();
Each method was calibrated at the beginning and end of the 

26-wk study using the naturally occurring trap contents from 
SLCMAD. This was derived from 3 trap sites collecting ~1,000 
mosquitoes, 3 sites collecting ~2,000 mosquitoes, and 3 final sites 
collecting ~5,000 mosquitoes per collection event. A mean numer-
ical value was correlated per ml (volumetric) or per gram (mass) 
using the hand counts and total volume/mass of the corresponding 
1,000/2,000/5,000 mosquito samples. For the digital count, this 
functioned as a validation step of what the macro generated for 
body counts, whereby the deviation from the total hand count was 
enumerated. However, the camera system could not be recalibrated 
per se without changing the macro programming, which was not the 
focus of this study. The initial calibrations were used to estimate the 
collections of mosquitoes during the active season 6 times each in  
the former and latter 13-wk intervals, allowing natural changes to 
species composition to be a source of error. The values determined 
with the high throughput methods were verified against a hand count 
of the entire contents of the same trap. Error was then determined 

in the deviation from hand counts. The calibration process was re-
peated with the same number of trap collections and number of 
mosquitoes at the end of the study to compare to the first calibration.

Resiliency Measures
For each method, the stress tolerance of each method was meas-
ured with specific clerical errors or deviations from an acceptable 
protocol that we expected to be commonplace. The logic stems 
from cultural/within-task decision making inherent to all of these 
methods that can change details of performance. Examples could be 
between experienced staff and trainees, or between naturally careful 
practitioners and rushed/careless practitioners. Trap contents used 
for this evaluation were from the beginning of season, chronolog-
ically when pre-season calibrations were made. Therefore, initial 
calibrations were used to infer errors from estimates versus actual 
counts. For volume, a series of 3 samples at 1,000 mosquitoes, 2,000 
mosquitoes, and 5,000 mosquitoes were measured normally (3-point 
mean for each quantity) and then compared to the same procedure 
but with mosquitoes forcefully packed into the weigh boat in the 
entirety of the sample instead of naturally settling, even if it means 
taking the mass on a partial trap collection. For volumetric, the same 
sample sizes were used to take measures on a sample tapped 5 times 
versus a sample that was untapped and loose. For the camera, the 
viewer was overcrowded intentionally using batches of mosquitoes 
from 45 to 225 ml of mosquitoes (45-ml increments). Each 45-ml 
increment encapsulated ~1,000 mosquitoes, given the normal diver-
sity, body size, and environment where this study was carried out. 
But that volume will result in more or less mosquitoes depending on 
body size. These were repeated across 3 trap sites. This was to de-
termine the progressive error/loss of trust in the system as the image 
becomes over crowded. As before, all metrics were compared to 
verified hand counts of the same samples.

Additionally, mosquitoes of varying handling conditions were 
set aside from early season, when calibrations were made and ex-
pected to be most accurate. These groups were fresh collections 
within 30 min of processing from the field, mosquitoes stored in a 
household freezer for 5 d, mosquitoes stored in a household freezer 
for 60 d, mosquitoes allowed to desiccate on the bench top for 5 
d, and mosquitoes allowed to desiccate on the benchtop for 60 d. 
This was to simulate non-ideal sample processing situations, such 
as during supplemental investigations that are conducted with less 
priority than operational surveillance or when work staff is limited. 
An additional single-point stress test was done on a one-night trap 

Fig. 1. Processing methods used in study, to include (A) universally filtering and cleaning up samples to be mosquito-exclusive. (B) Mass estimations and (C) 
volumetric estimations were compared to (D) a digitized optical-counting method using ImageJ with high-contrast pictures.
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collection exceeding 35,000 mosquitoes. The single-trap burden was 
used to evaluate how error scales with outliers.

Data Analysis
For all categories of testing, the dependent variable was the resulting 
mean percentage error of an estimation method as determined from 
a hand-count on the same sample. Calibrations for pre- and post- 
season were compared via paired t-test. A 2-way ANOVA with inter-
action was performed to analyze the effect bracketed 13-wk periods 
(independent variable 1) of the estimation method (independent 
variable 2) and on the mean percent error. Comparisons estima-
tion method (independent variable 1) with fresh, frozen, desiccated, 
and large trap collection samples (independent variable 2) also 
were analyzed with 2-way ANOVA with interaction, whereby the 
effect of estimation method and sample condition was determined 
on the mean percent error of sample counts. Data collections on 
user-error protocol deviations were analyzed with 2-sample t-tests 
(Welch’s test) between the normal (group 1) and non-ideal condi-
tion (group 2) for volume and mass. The mean magnitude of error 
for overcrowded imaging conditions were analyzed with 1-way 
ANOVA/Tukey HSD, with discreet volumes ranging 45 to 225 ml 
(independent variable). All statistical analyses were conducted using 
R v. 4.2.0 (R Core Team 2022).

Results

Initial calibrations of methods averaged out to 20.2 mosquitoes per 
milliliter and 509.5 mosquitoes per gram. Image processing was 
validated to be 1.4% error from actual counts. The mosquito com-
position of the trap collections used for these was proportionally bi-
ased towards Aedes dorsalis (Meigen) (Diptera: Culicidae) and Culex 
tarsalis Coquillett (Diptera: Culicidae), with some blended represen-
tation from Culiseta inornata (Williston) (Diptera: Culicidae), Cx. 
erythrothorax Dyar, and Cx. pipiens L. As the season progressed, 
water availability and season change drove down diversity and trap 
collections tended to be mostly monotypic for either Ae. dorsalis, Cx. 
erythrothorax, or Cx. tarsalis. During post season re-calibration, the 
numerical correlate for the estimation methods shifted significantly 

to 23.5 mosquitoes per milliliter (t8 = 4.58, P = 0.002) and 407.26 
mosquitoes per gram (t8 = -5.37, P < 0.001). The digital counting 
system remained at 1.3% error.

This early versus late season difference in the reliability of esti-
mation methods was reflected in the seasonal trap counts using only 
the initial calibrated values. When grouping seasonal timeframes to 
1 to 13-wk interval or the 14 to 26-wk interval, all methods had less 
than 2% total error in estimation from hand counts during the first 
block of the season (Fig. 2), since the calibrated measures were using 
the same mosquito compositions as was typical for the early block 
of the season. A significant interaction was found between the esti-
mation method and the seasonal timeframe (F2,30 = 4.25, P = 0.024), 
with the estimation methods becoming more error prone in the latter 
half of the season. Generally, all methods tended to undercount a 
little by default. However, errors skewed dramatically with the sea-
sonal progression when mixed collections started to become mon-
otypic Culex spp. or Aedes spp. (F2,30 = 4.06, P = 0.028). The latter 
half of the season yielded significantly higher magnitudes of error 
(Fig. 2), with volumetric methods dramatically underestimating 
sample counts (P = 0.01) and mass significantly overestimating 
sample counts (P < 0.001). Although estimation error from the dig-
ital counting system averaged ~4% or less, it was consistent between 
the two halves of the seasonal collections.

When testing error from poor user implementation (Fig. 3A), 
mass measures were not significantly affected by overpacking the 
scale weigh boat (t = -1.36, df = 2.22, P = 0.295). Volume meas-
ures significantly overestimated the totals (t = 4.02, df = 2.15, 
P = 0.05) when mosquitoes were not tapped, since the measure 
would have been artificially occupying more space in the cyl-
inder. For the digital counting system (Fig. 3B), error resulting in 
undercounting of mosquitoes essentially doubled in total error 
for every 45-ml of mosquitoes overcrowding the viewing frame 
(F4,10 = 34.87, P < 0.001). Predictably, each subsequent overload 
of the imaging system was significantly more error prone, with 
the progression of error from high error to low error reflecting 
225 > 180 > 135 > 90 > 45 ml.

When handling varying sample qualities (Fig. 4), estimation 
methods were increasingly more error-prone with declining sample 

Fig. 2. Comparisons of error magnitude when using pre-season calibrations of volume, mass, or digital estimation methods and applying them to wild collections 
from the field through a season interval of 1 to 13 wk (left) and 14 to 26 wk with the same set of calibrations. I-bars denote the standard error of the mean. 
Diamonds indicate significant increase in error over the prior 13-wk interval within the same method. Different symbols (hollow or filled) indicate separate pair-
wise analyses.
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qualities (F10,36 = 23.54, P < 0.001). The effect of sample degrada-
tion was more detrimental than necessarily the counting method 
(F5,36 = 48.93, P < 0.001), as fresh samples (P = 0.96) and those 

frozen within the last 5 days (P = 0.53) had an insignificant loss 
in accuracy. That said, the digitized system did not experience sig-
nificant changes in error rate across any sample condition (Fig. 4), 

Fig. 3. (A) Error was compared between normally executed and intentionally mishandled samples, using untapped volume, taking mass from an over-packed, 
compressed pile in a weigh boat (as opposed to loosely packed). Diamonds indicate significant increase in error as compared to data from a normally executed 
protocol. (B) Intentionally overcrowded image processor using escalating volumes of mosquitoes. Letters (a-e, low to high) denote significant differences in 
the amount of error between the volumes used for imaging. (C) Visual of an ideal image processing frame at 45 ml aliquot, corresponding to ~1,000 individual 
mosquitoes in this study. D) Visual of an overcrowded image processing frame from a 135 ml aliquot of mosquitoes, corresponding to > 3,000 individual 
mosquitoes in this study. I-bars denote standard error of the mean, with bars above or below the 0-axis representing overestimation or underestimation of 
mosquitoes, respectively.

Fig. 4. Non-ideal sample conditions were evaluated with each method, to include samples from cold storage, neglected samples that had air dried, and overa-
bundance from singularly large trap collections. The error shown in the bar graphs was derived from comparing the deviation of the method from a hand count 
on the same sample. I-bars denote standard error of the mean for the bars shown. Letters indicate significant difference between groups based on absolute 
deviation from the 0-axis, with bars above or below the 0-axis representing overestimation or underestimation of mosquitoes, respectively.
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unlike with volume and mass (F2,36 = 41.85, P < 0.001). When hand-
ling 60-d frozen samples volume and mass had similar underestima-
tion of counts (P = 0.0075). Air-dried samples more severely affected 
mass, with 5-d desiccated samples (P = 0.0045) and 60-d desiccated 
samples (P < 0.001) resulting in as much as 20% to 30% under-
estimation from actual counts (Fig. 4). The singularly large sample 
was 39,972 mosquitoes collected in June, with 96% of the contents 
comprised of Ae. dorsalis. In this case, volume was significantly 
underestimated (P < 0.001) and mass significantly overestimated 
sample size (P < 0.001) (Fig. 4). However, the scaling of their per-
centage of errors is also useful to consider (Fig. 5), with the mean of 
3 repeated attempts on the whole sample returning volume (off by 
2,000) and imaging counts (off by 400) more similar to the actual 
count. Meanwhile, the mass method overestimated the count by an 
additional 10,000 mosquitoes (Fig. 5).

Discussion

The imaging platform using ImageJ was consistently resilient 
against changes in species composition, sample age, sample integ-
rity, and large collection numbers. Our interpretation, based on 
the development by Kesavaraju and Dickson (2012); the capacity 
testing by Jaworski et al. (2019) in a disparate environment of 
the upper Rhine Valley, Germany; and our current results in the 
arid scrublands of the central United States, leads us to conclude 
that the image processing appears to be resilient to different spe-
cies compositions and environmental conditions without explic-
itly modifying the code for the geography of usage. This is in part 
because ImageJ is not actually identifying the species; rather it is 
just taking a body count. Identification and taxonomic work still 
need to be conducted independently, which is a drawback of all 
the methods used in this study. This method only failed egregiously 
when the camera view was overcrowded, an expected outcome 
given the capacity of this process. This translates to a maximum 
processing speed for a large number of traps, since programs are in-
herently limited by how many pictures they have to take to exhaust 
sample workflow. Hypothetically, if it takes 1 min to take one pic-
ture of ~1,000 mosquitoes of average size, and the trap contents 
require 10 pictures, we estimate that a minimum time of 10 min 
may be dedicated to the entire trap.

In that regard, mass and volumetric methods can be the most time 
efficient in the short term, since measuring 100 to 5,000 + mosquitoes 
would effectively require the same amount of time per trap. 
However, both mass and volumetric methods were error prone in 
most situations, with slight variation in the merits. Deviations were 
worst with small-sized mosquitoes, like Cx. erythrothorax, since the 
early season calibrations would have included heavier-bodied species 
like Ae. dorsalis. When methods were recalibrated on the same traps 
from late season, they were back to within acceptable tolerances. 
As a result, it is essential in the protocol with the volumetric and 
mass methods to recalibrate your number correlations to milliliter 
or grams frequently during the season. Such concerns also pertain 
to long-term storage (freezing) before processing, desiccation stress 
from dry environments or neglect, or even simply changes in mos-
quito body sizes, as these will all skew volume and mass estima-
tion methods. Therefore, programmatic use of mass or volumetric 
methods will ideally require working with fresh samples, preferably 
in storage no longer than 1 wk, since error already begins to show 
within 5 d. For a high throughput program, this should not hinder 
processing. However, there will be increased risk when retroactively 
counting a sample that was not initially prioritized, or recounting old 
samples if there may have been an error in the first data collection.

This discrepancy also highlights the need for broader awareness 
of how methods may interact with species-specific traits and environ-
mental factors. For example, if a program were to be facing surveil-
lance burden for Aedes aegypti (L.), they may need to have a much 
higher density of traps to accurately monitor potential risk (Coalson 
et al. 2023). Furthermore, phenotypic plasticity with rearing factors, 
particularly larval crowding, can yield wide ranges of adult body 
size within the same species (Janousek and Olson 2006, Schneider 
et al. 2011), which then manifest in geographically contingent sur-
veillance networks (Janousek and Olson 2006, Chaiphongpachara 
et al. 2018). With the aforementioned concerns, pre- and post-
season mosquito body size may not even be correlated, even when 
discussing the same species throughout the season. In addition, “hot 
spots” of variation may occur concurrently (Janousek and Olson 
2006, Chaiphongpachara et al. 2018, Coalson et al. 2023), stressing 
the accuracy of various methods, particularly mass and volume, 
which may need to be recalibrated per trap on every individual col-
lection event in such an extreme case. In these circumstances, a hy-
brid approach may be best, whereby the tendency for error from 

Fig. 5. The effect size of the error from each method was visualized by showing the actual count of a large trap as determined by hand versus the mean estima-
tion after 3 separate measurement instances for the respective methods on the x-axis. I-bars denote standard error of the mean for the bars shown.
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certain methods can ameliorate the total loss of accuracy that may 
be encountered by each method alone (Henderson et al. 2006, 
Janousek and Olson 2006, Schäfer et al. 2008).

However, not all methods can hybridize safely. Measuring on 
surface area has the same sources of error as with volume but just 
in 2 dimensions. Taking a mass reading from the mosquitoes used 
for surface area (Henderson et al. 2006) is layering the aforemen-
tioned confounders together. Digitally implemented optical-counting 
techniques are somewhat different from surface area calculations 
(Mains et al. 2008, Kesavaraju and Dickson 2012) and do not rely 
on mosquitoes occupying a given amount of space on a piece of 
paper (Henderson et al. 2006, Rey et al. 2006). Instead, they use 
visual contrast to identify individual mosquitoes for automated 
counting (Mains et al. 2008, Kesavaraju and Dickson 2012). Because 
of this, error rates can be lower across different compositions and 
time periods of mosquito collections. The digitized-optical counting 
method is correspondingly resilient to going long periods of use 
without the need for recalibration, since the parameters are defined 
by macro code. There is also an added benefit of being easier to repro-
duce and compare both internally and across agencies. Nevertheless, 
overcrowding is a realistic issue for the user and should be limited 
to 45 ml of mosquito bodies (regardless of species, condition, or 
environment), per image. In our study that corresponds to ~1,000 
mosquitoes, but this correlated number will fluctuate as mosquito 
bodies get smaller or larger, respectively. Effectively, that determines 
that the image processing is most effective as a hybrid with volu-
metric methods controlling how crowded the pictures become.

An often-overlooked variable is that, when running an opera-
tional program, managers will encounter (or experience) poor mo-
tivation or have operators with low technical training. The natural 
variability in the end-user compliance within daily operations can 
unknowingly compromise your methods for mosquito surveillance. 
Our study does not examine all possible user-handling scenarios. Due 
to limitations in scope, we hope that decision-makers for operational 
programs will recognize that these are real concerns, and use our in-
formation from what we envisioned to be the easiest and most likely 
pitfalls where an operator may employ a “shortcut” to the protocol 
to save time and effort. The damage from error, such as not tapping 
down your mosquito bodies for volumetric measurement, extends 
most significantly to longitudinal data as being unreliable. But even in 
the short term, overestimating mosquito numbers may lead to more 
adulticide treatments than is required, resulting in increased cost and 
labor. Or, if underestimating mosquito counts, a program may not 
effectively and efficiently intervene when they should. When hand-
ling large collections, the error was magnified considerably, leading 
to misrepresenting counts by as much as ± 10,000 mosquitoes. We 
should also consider that this error was using relatively monotypic 
collections with simple changes during the season. But if working 
with sudden changes in diversity, such as floodwater mosquitoes 
emerging after storms (Kirik et al. 2021) or land use gradients (Young 
et al. 2021), a program may have wholly unreliable data across large 
land areas during critical decision-making periods for weather re-
sponse or sudden anthropogenic changes.

The image processing protocol is not an exception to poor 
method execution. However, it does require less maintenance and is 
not prone to many naturally occurring sources of error for a techni-
cian. This allows for more effective hybridization of methods, such as 
being able to take a raw count from ImageJ and using a sub-sample 
within reasonable tolerances (Jaworski et al. 2019) to extrapolate 
species data. This is less confounded than using mass or volume be-
cause an actual numerical count has been performed by a computer. 
As opposed to the number itself being extrapolated (Henderson et al. 

2006, Rey et al. 2006, Schäfer et al. 2008, Smith et al. 2010, Steiger et 
al. 2016) in addition to a secondary extrapolation by sub-sampling 
a representative proportion (Jaworski et al. 2019). In the future, it is 
possible artificial intelligence integration can improve the resolution 
of image processing methods to compensate for crowding issues and 
general inconsistency in body size. Furthermore, machine learning 
hybrids with sample counting functions might eliminate the need for 
the additional sub-sample in order to identify species with as high 
of efficiency as the counting alone. Even without these technological 
advancements, image processing to count for operational mosquito 
surveillance, as well as general exploration of hybridizing methods, 
could benefit from expanded use, replication, and reporting in many 
areas of the world to build consensus on efficient techniques.

To summarize in one place, all of the mass, volume, and image 
processing are accurate when sticking with fresh samples, or those 
only frozen for up to 5 d. However, both volume and mass break 
down in accuracy with severely desiccated samples and those from 
extended cold storage when they were not calibrated specifically on 
those sample conditions. Additionally, volume and mass should be 
recalibrated for their proxy of count whenever species composition 
shifts, or ideally for every sample count. Whereas the camera system 
does not necessitate changes to its macro when species composition, 
and corresponding morphological variation, changes. In contrast, 
the camera method is time-limited, with a per-picture processing 
time that may multiplicatively increase the delay to estimate large 
amounts of mosquitoes. More importantly, the operator cannot cut 
corners in that situation by simply adding multiplicatively more 
mosquitoes into the viewing frame for the camera, or else the system 
will severely underestimate the counts. Despite these drawbacks, 
the benefit of reduced maintenance throughout the year and the re-
silience to unpredictable sample conditions leads us to believe the 
digitized system is a reasonable compromise on time management 
and the long-term accuracy of data collection to improve public 
health protection efforts.
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