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Objectives: The effective reproduction number ( R t ) has been critical for assessing the effectiveness of 

countermeasures during the coronavirus disease 2019 (COVID-19) pandemic. Conventional methods using 

reported incidences are unable to provide timely R t data due to the delay from infection to reporting. 

Our study aimed to develop a framework for predicting R t in real time, using timely accessible data —

i.e. human mobility, temperature, and risk awareness. 

Methods: A linear regression model to predict R t was designed and embedded in the renewal process. 

Four prefectures of Japan with high incidences in the first wave were selected for model fitting and val- 

idation. Predictive performance was assessed by comparing the observed and predicted incidences using 

cross-validation, and by testing on a separate dataset in two other prefectures with distinct geographical 

settings from the four studied prefectures. 

Results: The predicted mean values of R t and 95% uncertainty intervals followed the overall trends for 

incidence, while predictive performance was diminished when R t changed abruptly, potentially due to 

superspreading events or when stringent countermeasures were implemented. 

Conclusions: The described model can potentially be used for monitoring the transmission dynamics 

of COVID-19 ahead of the formal estimates, subject to delay, providing essential information for timely 

planning and assessment of countermeasures. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious 

Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The first confirmed case of severe acute respiratory syndrome 

oronavirus 2 (SARS-CoV-2) infection was reported in Japan on Jan- 

ary 15, 2020; since then, the transmission of coronavirus disease 

019 (COVID-19) has continuously affected the entire country. As 

he incidence of COVID-19 began to surge, a state of emergency 

as declared by the national government on April 16, requesting 

he voluntary reduction of physical contact, which likely helped to 

uppress the epidemic ( Jung et al., 2021 ). However, resuming so- 

ioeconomic activities in late May led to a resurgence of cases. Al- 

hough a temporal decline in incidence was observed, the country 

xperienced the third wave from late October 2020. In response, 

refectural governments with a large number of cases requested 
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ars and restaurants to curtail their operational hours from late 

ovember ( Ministry of Health, Labour and Welfare, 2020a ). Despite 

hese measures, the spread of disease continued, leading the na- 

ional government to declare a second state of emergency on Jan- 

ary 7, 2021, asking citizens to refrain from non-essential outings 

 Cabinet Relations Office, 2021 ). 

As part of evaluation of countermeasures, the effective repro- 

uction number ( R t ), defined as the expected number of sec- 

ndary cases arising from a single primary case at calendar time 

, is widely used for monitoring trends in community transmis- 

ion ( Nishiura et al., 2009 ). However, timely and accurate estima- 

ion of R t using incidence data remains challenging. First, to pre- 

isely link the timing of a control measure and resulting changes 

n the transmission trend, it is vital to estimate R t as a function 

f the infection time ( Gostic et al., 2020 ). Since infection times are

arely observed in practice, they need to be estimated while ac- 

ounting for empirical delay distributions. Moreover, the estima- 
iety for Infectious Diseases. This is an open access article under the CC BY-NC-ND 
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ion of R t is further complicated because of right truncation with 

espect to the time interval from infection to reporting. In real- 

ime practice, the number of recent infections is underestimated 

ue to cases that are already infected but not yet reported. Con- 

idering the empirically observed time delay of around 9 days from 

nfection to reporting in Japan, the estimated R t from reported in- 

idences is likely to be biased, at least within 9 days from the lat- 

st reporting date. 

Considering that SARS-CoV-2 transmission is facilitated by 

uman-to-human contact, digital proxies of human mobility pat- 

erns can provide an important route to inferring the directly un- 

bservable transmission patterns as a function of time. Indeed, var- 

ous datasets of mobility patterns have started to become widely 

vailable during the ongoing COVID-19 pandemic, and have been 

sed to monitor the time-dependent patterns of physical distanc- 

ng ( Buckee et al., 2020 ; Kishore et al., 2020 ; Leung et al., 2021 ;

ouvellet et al., 2021 ; Xiong et al., 2020 ). Moreover, published 

tudies have reported that temperature is inversely associated 

ith COVID-19 transmission ( Li et al., 2020 ; Pequeno et al., 2020 ;

i et al., 2020 ; Smith et al., 2021 ; Ujiie et al., 2020 ; Wang et al.,

021 ). These data are often more readily accessible than case 

ounts (which are typically subject to delays of ∼ 9 days), and 

hus may enable near real-time assessment of interventions if they 

an be used to predict R t . Furthermore, quantified risk aware- 

ess can also help to predict more accurate R t values, because 

nduced adherence to personal protective behaviors (e.g. wearing 

 mask or washing hands) can reduce virus transmissions 

 West et al., 2020 ). 

Accumulated evidence suggests that integrating human mobil- 

ty with temperature and risk awareness reflects contact patterns 

s a function of time. Thus, the integrative model could provide 

n opportunity for the timely prediction of R t during the ongoing 

OVID-19 pandemic. Our study aimed to develop a simple statisti- 

al framework to predict values of R t , using key driving factors of 

OVID-19 transmission that can be used before a formal estimate 

elying on reported case counts is available. 

. Methods 

.1. Empirical datasets in Japan 

.1.1. Epidemiological data 

The information on confirmed cases of COVID-19 in six pre- 

ectures in Japan — Tokyo, Osaka, Aichi, Hokkaido, Fukuoka, and 

kinawa — was retrieved from a publicly available data source, 

rom January 16, 2020 through February 15, 2021 ( Ministry of 

ealth, Labour and Welfare, 2020b ). The data for the six prefec- 

ures were categorized into two types: ‘training data’ and ‘test 

ata’. The training data were used for the model training and 

ross-validation, while the test data were from regions not in- 

luded in the training data, and were used to evaluate the pre- 

ictive performance of the trained model in different geographi- 

al settings. To ensure that a sufficient number of cases was in- 

luded in the training data, four prefectures (Tokyo, Osaka, Aichi, 

nd Hokkaido), accounting for more than 200 cases before the 

rst state of emergency, were selected for the training data. The 

est data comprised those for the other two prefectures (Fukuoka 

nd Okinawa), which are geographically distinct from those in the 

raining data. According to the history of travelling abroad within 

 days prior to the illness onset, all cases were classified as either 

mported or domestic. In total, 217 258 confirmed COVID-19 cases, 

ncluding 166 imported cases, were included in the study. Within 

he training data, 32 130 and 150 706 cases were assigned to the 

eriod for model training (‘training period’) and cross-validation 

‘validation period’), respectively, while 22 379 cases were included 

n the test data. 
48 
.1.2. Reconstruction of COVID-19 incidence according to infection 

ime 

Of the 217 258 total cases, were 114 277 (53%) were confirmed 

OVID-19 cases with unknown illness onset dates. Thus, to esti- 

ate R t as a function of infection time, a back-projection was con- 

ucted in two steps. First, the missing illness onset dates for these 

ases were back-projected from the date of laboratory confirma- 

ion, with a right-truncated time interval distribution from illness 

nset to laboratory confirmation, in each prefecture ( Jung et al., 

021 ). Second, infection times were back-projected for all reported 

OVID-19 cases, from either the observed or back-projected illness 

nset date, using the incubation period distribution ( Linton et al., 

021 ). The R package ‘Surveillance’ ( Höhle, 2007 ) was used for 

onparametric back-projection. 

.1.3. Explanatory variable data 

Human mobility patterns and temperatures were hypothesized 

s driving factors for COVID-19 transmission, and so those datasets 

or the abovementioned time period were collected. Google com- 

unity mobility reports (hereafter Google mobility) were used to 

apture the human mobility patterns ( Google, 2021 ). Google mo- 

ility data provide six different categories (‘retail and recreation’, 

grocery and pharmacy’, ‘parks’, ‘transit stations’, ‘workplaces’, and 

residential’) of changes in human mobility, relative to the aver- 

ge for each category on the same day of the week in the pre- 

andemic period (i.e. January 3 to February 6, 2020). Mobility pat- 

erns relating to ‘retail and recreation’ were used in our analyses, 

ased on our domain knowledge that this category likely repre- 

ents mobility in the close-contact settings associated with COVID- 

9 transmission ( Cazelles et al., 2021 ). Daily temperature data were 

etrieved from the Japan Meteorological Agency ( Japan Meteoro- 

ogical Agency, 2021 ) by selecting one representative observatory 

lose to the location of the government office for each prefecture. 

o extract the overall trend for these time-series, without being in- 

uenced by daily noise, both datasets were smoothed by taking a 

-day moving average. 

.2. Model and statistical analysis 

A prediction model for R t , integrating human mobility, tempera- 

ure, and risk awareness, was designed and evaluated using the fol- 

owing steps. First, three candidate regression models were fitted 

o the reconstructed COVID-19 incidences during the training pe- 

iod via the renewal process. The performances of these candidate 

odels were then compared by cross-validation against the esti- 

ated R t from data in the validation period, and the best model 

as selected. Last, the predictive performance of the best-ranked 

odel was evaluated using the separate test data, by comparing 

stimated R t values with the predicted values produced by the 

rained model to determine the applicability of the model to other 

eographic settings. 

.2.1. Model for predicting the effective reproduction number 

Three simple regression models that incorporated different 

ombinations of explanatory factors for COVID-19 transmission 

ere proposed: only Google mobility (Model 1), Google mobility 

nd temperature (Model 2), and Google mobility, temperature, and 

isk awareness over COVID-19 (Model 3). In each model, corre- 

ponding variables were included in a log-linear regression form. 

he R t in the model with all three factors (Model 3) was formu- 

ated as follows: 

 t,i = R 0 ,i exp 

(
a m i ( t ) + b k i ( t ) + c min ( w limit,i , w i ( t ) ) 

)
, (1) 

here R 0 ,i is the baseline effective reproduction number in pre- 

ecture i . R 0 ,i was assumed to be similar for all four prefectures 

f the training data group, following a gamma distribution with a 
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ean R̄ and fixed coefficient of variation (CV) of 0.5 ( Park et al., 

020 ). The value of CV was fixed due to the small number of pre-

ectures, but a varied CV in the range 0.25–1 produced similar re- 

ults. Covariates m i (t) and k i (t) are smoothed values of Google 

obility and temperature at calendar time t and in prefecture 

 , respectively. w i (t) is the degree of risk awareness at calendar 

ime t and in prefecture i ; this was graded by assuming that it 

as linearly associated with the smoothed number of newly re- 

orted COVID-19 cases, following a positive association between 

onfirmed cases and risk perception found in a UK study, using 

ongitudinal data ( Schneider et al., 2021 ). The effect of this vari- 

ble w i (t) was capped at a predefined upper limit ( w limit,i ), corre- 

ponding to the government definition of ‘highest alert level’ inci- 

ence in Japan (i.e. 25 confirmed cases per 100 000 population in a 

eek) ( Cabinet Relations Office, 2020 ). According to the definition, 

 daily number of cases giving an upper limit for each prefecture i 

 w limit,i ) was specified as 497 in Tokyo, 315 in Osaka, 270 in Aichi, 

88 in Hokkaido, 182 in Fukuoka, and 52 in Okinawa. The R t values 

n Models 1 and 2 were specified for models whose coefficients for 

on-included variables in Equation (1) were fixed at 0. 

A likelihood function was constructed for the proposed regres- 

ion models of R t (Models 1–3), based on the renewal process, and 

he corresponding parameters of each regression model were esti- 

ated by fitting them to the COVID-19 incidence during the train- 

ng period. The expected number of daily reported domestic cases 

 domestic,i (t) at calendar time t in a given prefecture i was calcu- 

ated using the equation: 

 

(
c domestic,i ( t ) 

)
= R t,i 

t−1 ∑ 

τ=1 

c total,i ( t − τ ) g ( τ ) 
F i ( T − t ) 

F i ( T − t + τ ) 
, (2) 

here c total,i (t) denotes the total (imported + domestic) daily 

umber of COVID-19 cases at time t reported in prefecture i . 

(·) is the probability mass function (PMF) of generation time 

 Nishiura et al., 2020 ). To account for the right truncation, the cu-

ulative mass function, F i (·) , for the time delay from infection to 

eport was calculated by convoluting the PMF of the incubation pe- 

iod and of the time interval from illness onset to reporting in pre- 

ecture i (see Section 2 - 1-2 ). The training period used covered the

rst pandemic wave in Japan (March 15 to May 1, 2020) and part 

f the second wave (July 15 to August 31, 2020). The intra-wave 

eriod from May 1 to 15 July 15, 2020 was excluded because of 

he low count numbers observed during that period. For parame- 

er estimation, a Poisson likelihood was used: 

 

(
θ ; c domestic,i ( t ) 

)

= 

T ∏ 

t=1 

exp 

(
−E 

(
c domestic,i ( t ) 

))(
E 
(
c domestic,i ( t ) 

))c domestic,i ( t ) 

c domestic,i ( t ) ! 
, (3) 

here the set θ includes all or some of the parameters (i.e., R 0 ,i , 
¯
 , a , b, and c) specific for each of the three proposed models. The

aximum likelihood method was employed, with 95% confidence 

ntervals (CIs) for each parameter derived from 10 0 0 0 samples 

rom a Laplace approximation normal distribution. 

.2.2. Model selection through cross-validation 

To select the best model among those proposed, a cross- 

alidation was conducted by comparing the predicted and es- 

imated ‘ground-truth’ R t during the validation period (from 

eptember 1, 2020 to January 31, 2021) in the four prefectures. 

ach regression model produced predictive R t values for the val- 

dation period using the explanatory variables based on the esti- 

ated parameters in Method 2-2-1 . The R t values estimated from 

ncidence data via the renewal process ( Equation (2) ) were used as 
49 
he ground-truth. R t was estimated as a free time-dependent pa- 

ameter from the COVID-19 incidences during the validation period 

sing the following likelihood function: 

 

(
R t,i ; c domestic,i ( t ) 

)

= 

T ∏ 

t=1 

exp 

(
−E 

(
c domestic,i ( t ) 

))(
E 
(
c domestic,i ( t ) 

))c domestic,i ( t ) 

c domestic,i ( t ) ! 
. (4) 

The 95% CIs were derived using the profile likelihood method. 

onsidering the right-truncation in the recent reported incidences, 

he estimated R t for the latest 15 days (February 1–15, 2020) were 

xcluded from the cross-validation. Furthermore, to smooth out 

brupt fluctuations (e.g. superspreading events) in the estimated 

 t values, a 7-day moving average was taken. Next, a predictive 

erformance of each model (i.e. a comparison between the pre- 

icted and estimated R t during the validation period) was quan- 

itatively assessed using four different measurements: bias, root- 

ean-square error (RMSE), ranked probability score, and Dawid- 

ebastiani score ( Funk et al., 2019 ), and the best model was se- 

ected. In addition, the number of predicted infections using the 

onditional forecasting method (i.e. forecasting a future incidence 

ased on the predicted R t and empirically reported incidences in 

he past) was also compared against the back-projected incidence 

y infection dates. 

.2.3. Evaluation of the predictive performance using the test data 

Lastly, a predictive performance of the finally selected model 

as evaluated using the test data, indicating a potential applica- 

ility of the proposed model to other geographical settings. Ac- 

ordingly, the R t values in two test data prefectures (Fukuoka 

nd Okinawa) were predicted from July 15, 2020 through January 

1, 2021, relying only on the trained model, and were compared 

gainst the estimated R t from the renewal process. In addition, the 

redicted number of infections using the conditional forecasting 

ethod were compared with the empirical data in each of the two 

refectures. 

. Results 

Figure 1 shows the epidemic curve of COVID-19 by reporting 

ate in the four selected training data prefectures, along with the 

ime trend of Google mobility and temperature. Substantial reduc- 

ions in Google-based mobility were observed in all regions during 

he first and second state of emergency, consistent with only small 

umbers of reported cases by the end of the declaration. The hu- 

an mobility patterns tended to show abrupt increases on consec- 

tive national holidays and, accordingly, the number of reported 

ases increased slightly after roughly 9 days, consistent with the 

mpirical time delay from infection to reporting in Japan. 

Table 1 shows the estimated parameters from the data in the 

raining period and summarizes the predictive performance of pro- 

osed models during the validation period. Among the three mod- 

ls, the model that incorporated Google mobility, temperature, and 

isk awareness (Model 3) was selected as the best model, based 

n the Dawid-Sebastiani score, while the model that accounted for 

nly Google mobility (Model 1) showed the best performance with 

egard to RMSE, bias, and ranked probability score. The predicted 

ime trend of R t using Model 1 (an almost linear trend close to the 

alue of 1; Figure S1) was less informative compared with Model 3, 

ndicating that Model 1 would be not suitable for time trend anal- 

sis. Thus, Model 3 was selected as the best model. Using Model 3, 

he baseline value R 0 ,i was estimated at 4.40 (95% CI 4.07–4.73) for 

okyo, 2.85 (95% CI 2.62–3.07) for Osaka, 2.20 (95% CI 2.02–2.38) 

or Aichi, and 1.99 (95% CI: 1.84–2.15) for Hokkaido. The regres- 

ion coefficient accounting for Google mobility was estimated to 
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Figure 1. Epidemiological curves for COVID-19 by date of report, along with trends of Google mobility and temperature in Tokyo, Osaka, Aichi, and Hokkaido, Japan. 

The number of COVID-19 cases by date of report (yellow bars) from March 15, 2020 to January 12, 2021 in the four training data prefectures of Japan: (A) Tokyo, (B) 

Osaka, (C) Aichi, and (D) Hokkaido. Red lines indicate trends of changes in human mobility patterns (the ‘retail and recreation’ category in Google community mobility 

reports) compared with those in the pre-pandemic period (January 3 to February 6, 2020). Blue lines show trends for the daily temperature in each region; both mobility 

and temperature were smoothed using 7-day moving averages. In each figure, two red-shaded areas indicate the time periods for the first and second nationwide states 

of emergency, respectively, while purple-shaded areas show the time periods when stringent restrictions on bars and restaurants were implemented by each prefectural 

government right before the second state of emergency. 

Table 1 

Summary of the estimated parameters and predictive performances of the proposed models 

Model Parameter Value Bias RMSE Ranked probability score Dawid-Sebastiani score 

Model 1 R 0 (Tokyo) 1.74 (1.66–1.82) 0.28 1.65 168.94 479 953 

R 0 (Osaka) 1.37 (1.32–1.41) 

R 0 (Aichi) 1.15 (1.11–1.19) 

R 0 (Hokkaido) 1.33 (1.25–1.41) 

Google mobility 0.02 (0.01–0.02) 

Model 2 R 0 (Tokyo) 4.39 (4.05–4.72) - 

1.06 

2.29 264.41 328 849 

R 0 (Osaka) 3.23 (3.02–3.44) 

R 0 (Aichi) 2.59 (2.43–2.75) 

R 0 (Hokkaido) 2.09 (1.95–2.23) 

Google mobility 0.03 (0.03–0.03) 

Temperature −0.03 ( −0.03 to −0.03) 

Model 3 R 0 (Tokyo) 4.40 (4.07–4.73) 0.55 1.77 171.60 147 027 

R 0 (Osaka) 2.85 (2.62–3.08) 

R 0 (Aichi) 2.20 (2.02–2.38) 

R 0 (Hokkaido) 1.99 (1.84–2.15) 

Google mobility 0.03 (0.03–0.03) 

Temperature −0.02 ( −0.02 to −0.01) 

Risk awareness −0.12 ( −0.15 to −0.10) 

Model 1: Google mobility; Model 2: Google mobility and temperature; Model 3: Google mobility, temperature, and risk awareness; RMSE: 

root-mean-square error 

Each value describes the estimated parameters of three different models and their 95% confidence intervals derived by maximum like- 

lihood estimation and Laplace approximation normal distribution. Predictive performances of each model were compared using three 

measures (root-mean-square error, ranked probability score, and Dawid-Sebastiani score) and by summing estimates of four regions in 

Japan (prefectures for the training data — Osaka, Tokyo, Aichi, and Hokkaido). 

50 
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Figure 2. Comparison of estimated and predicted effective reproduction numbers for COVID-19, using the model accounting for Google mobility, temperature, and risk 

awareness. 

Comparison between the estimated and predicted effective reproduction numbers ( R t ) for COVID-19. The model (Model 3; considering Google mobility, temperature, and risk 

awareness of COVID-19) was applied to the four training data prefectures of Japan: (A) Tokyo, (B) Osaka, (C) Aichi, and (D) Hokkaido. Yellow bars represent reconstructed 

numbers of COVID-19 cases by infection time; grey bars show the number of predicted incidences using the conditional forecasting method. Blue lines and shaded areas 

indicate the estimated R t values and their 95% confidence intervals using the renewal process and profile likelihood, while purple lines and shaded areas indicate the 

predicted R t values and their 95% confidence intervals derived from the Laplace approximation normal distribution. Red shaded areas indicate the training period (i.e. March 

15 to May 1, 2020 and July 15 to August 31, 2020) used for estimating the parameters of the model. 
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e 0.03 per percentage point (95% CI 0.03–0.03), while tempera- 

ure and risk awareness were negatively associated with estimated 

oefficients of −0.02 per degree Celsius (95% CI −0.02 to −0.01) 

nd −0.12 per 100 reported cases (95% CI −0.15 to −0.10), respec- 

ively. All coefficients were statistically significant. 

Figure 2 shows the comparison of estimated and predicted R t 
or the four training data prefectures, using the best-ranked Model 

. Although the model was fitted to cases over a relatively short 

eriod of time, the predicted values and 95% CIs captured the tem- 

oral patterns of the estimated R t in all the prefectures well, show- 

ng clear signs of R t rising above 1 at the beginning of the second 

nd third waves of the epidemic. However, with the implementa- 

ion of stringent countermeasures (e.g. requesting reduced opening 

ours for night-life spots) from November 2020, the predicted R t 
howed larger deviations from the estimated values, suggesting a 

iminished predictive performance. The predicted R t values using 

odel 1 (Figure S1) and Model 2 (Figure S2) were less consistent 

ith the estimated R t . 

Figure 3 shows the test performance of the best model (Model 

), by comparing the estimated and predicted R t in Fukuoka and 

kinawa (test data). With the default value of R 0 ,i offset to 2.50, 

he inferred values of R t were consistent with the overall trend of 

he ground-truth R t values, indicating the applicability of the pro- 

osed model to other geographical settings. 
51 
. Discussion 

Our study proposed a simple regression model for predict- 

ng the real-time R t of COVID-19, accounting for human mobility, 

emperature, and risk awareness. Our analysis suggested that the 

uman mobility pattern was positively associated with COVID-19 

ransmission, while temperature and risk awareness were nega- 

ively associated. 

These findings indicate that the reduction in socioeconomic 

ctivities and increased level of risk awareness may be linked 

o a reduction in transmission, highlighting the potential of so- 

ial distancing interventions and risk communication for control- 

ing the COVID-19 epidemic ( Anderson et al., 2020 ; Heydari et al., 

021 ). The inverse association between temperature and COVID- 

9 transmission was also in line with other published papers 

 Li et al., 2020 ; Ma et al., 2021 ; Smith et al., 2021 ). This find-

ng could be explained by two possible mechanisms. First, cold 

emperature induces behavioral changes and increases indoor con- 

act, which is associated with the transmission risk of SARS-CoV- 

 ( McClymont and Hu, 2021 ). Second, the virus enjoys greater 

urvivability in cold environments ( Riddell et al., 2020 ), as has 

een the case for other human coronaviruses ( Chan et al., 2011 ; 

an Doremalen et al., 2013 ). Although the cumulative number of 

eported cases during the summer season was higher than that 
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Figure 3. Comparison of estimated and predicted effective reproduction numbers for COVID-19, using the best model and two other geographic settings (test data) in Japan 

(A–B) The number of COVID-19 cases by date of report (yellow bars) from March 15, 2020 to January 12, 2021 in two of the test data prefectures: (A) Fukuoka and (B) 

Okinawa. Red lines indicate trends of changes in human mobility patterns (the ‘retail and recreation’ category in Google community mobility reports) and the green lines 

show trends in daily temperatures for each region. Both mobility and temperature were smoothed using 7-day moving averages. (C–D) Comparison between the estimated 

and predicted effective reproduction number ( R t ) for COVID-19, using the best model (Model 3; considering Google mobility, temperature, and risk awareness) and the test 

data: (C) Fukuoka and (D) Okinawa. Yellow bars represent reconstructed numbers of COVID-19 cases by infection time; grey bars show the number of predicted incidences 

using the conditional forecasting method. Blue lines and shaded areas indicate the estimated R t values and their 95% confidence intervals, using the renewal process and 

profile likelihood, while purple lines and shaded areas are the predicted R t values and their 95% confidence intervals from the best model and its estimated parameters. 
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f the winter season in 2020 ( Figure 1 ), this observation should 

e approached with a caution, considering the mixture of multiple 

actors, including the increase in physical contact after the lifting 

f the initial population-wide restrictions). Indeed, the majority of 

nfections in the summer season were reported to be associated 

ith night/town activities ( Ministry of Health, Labour and Welfare, 

020c ). 

Values of R t predicted by the simple linear regression model 

tted to the very limited data points aligned well with the esti- 

ates empirically obtained from the time series of COVID-19 in- 

idence, showing a clear emerging signal ( R t > 1) for the second 

nd third waves in Japan. This performance of the proposed model 

uggests that our framework can provide a plausible proxy of the 

atest R t for COVID-19, using readily accessible data, which con- 

entional methods relying on reported incidences are not able to 

enerate in a timely manner, due to the inherent delays. Timely 

ssessment of R t is essential to inform public health policies, for 

xample those aiming to bring the epidemic under control before 

he hospital and intensive care unit occupancies reach full capac- 

ty. Although abrupt changes in R t values — presumably induced by 

emporary local surges of cases (e.g. clusters in hospitals and nurs- 

ng homes) — could not be fully captured by the proposed model, 

t was still able to provide a timely signal of changes in R t before
he formal estimates become available. a
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Despite the overall good performance of the proposed model, 

ur framework over- or underestimated R t when stringent inter- 

entions (e.g. reduced opening hours for restaurants and bars from 

ovember 2020) were in place. Although the inclusion of mobil- 

ty patterns associated with retail and recreation, to represent the 

hysical mixing in high-risk settings, was considered a reasonable 

hoice, such data — with limited temporal and spatial resolution —

ay not fully reflect the detailed social contact patterns. 

It has been suggested that the transmission of COVID-19 in- 

olves substantial individual variations, characterized by a highly 

ispersed offspring distribution ( Endo et al., 2020 ). Thus, stringent 

ontrol measures were imposed, primarily on settings regarded 

s high risk (e.g. nightclubs, bars, and restaurants). The resulting 

hanges in detailed contact patterns in those places may not have 

een fully reflected by the simple summary data for human mobil- 

ty. Moreover, the digital proxies for human mobility patterns were 

uggested to be not very informative regarding changes in densi- 

ies of individuals within high-risk places; this metric may play a 

rucial role in SARS-CoV-2 transmission ( Chang et al., 2021 ). These 

imitations of the mobility data may account for the temporary de- 

iations in the prediction. 

Our study had some additional limitations. First, the relation- 

hip between the number of COVID-19 cases and the degree of risk 

wareness may change in the long run. Indeed, a decrease in ad- 
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erence to non-pharmaceutical interventions was reported in the 

SA from April to November, 2020 ( Crane et al., 2021 ), in spite of

he continuously increasing number of reported COVID-19 cases. 

econd, the upper limit for the effect of risk awareness was rather 

rbitrarily chosen, and not necessarily theoretically justified. It was 

ssumed that risk awareness affects the transmission risk via per- 

onal behavioral changes that are not reflected in the changes in 

obility (e.g. wearing a mask or avoiding crowded places during 

utside visits). It is likely that there is a certain limit to the risk 

eduction achieved by such behavioral changes, which we incorpo- 

ated in our model as a prespecified cap. Third, with the roll-out 

f COVID-19 vaccines, the proposed model might become insuffi- 

ient for predicting R t , due to the herd immunity effect conferred 

y vaccination. Lastly, more accurate prediction may require an ex- 

ended model that accounts for age-stratified transmission dynam- 

cs (e.g. age-specific susceptibility), along with age-specific mobil- 

ty patterns. 

. Conclusion 

Our study suggests that human mobility, temperature, and risk 

wareness can be integrated into the renewal process to provide 

imely predictions of the effective reproduction number during the 

ngoing COVID-19 transmission — i.e. ahead of the formal empir- 

cal estimates, which are subject to delays. This would generate 

ssential information for timely planning and assessment of epi- 

emic control measures. 
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