
Background: Transforming growth factor (TGF)- is over-expressed in a wide variety of cancers such as lung adenocarcinoma. 
TGF- plays a major role in cancer progression through regulating cancer cell proliferation and remodeling of the tumor 
micro-environment. However, it is still a great challenge to explain the phenotypic eff ects caused by TGF- stimulation and 
the eff ect of TGF- stimulation on tumor micro-environment. 
Objectives: To address this issue, in the present study we used two time-course microarray data in human lung adenocarcinoma 
cells and applied bioinformatics methods to explore the gene regulation network responding to TGF- stimulation in lung 
adenocarcinoma cells. 
Materials and Methods: The time-dependent reverse-engineering method, protein-protein interaction network analyses, 
and calculation of the similarity measures between the links were used to construct gene regulatory network and to extract 
gene clusters.
Results: Utilizing the constructed gene regulation network, we predicted NEFL and LUC7A show the opposite and the same 
change with C21orf90 if HAND2 is knocked-out after treatment with TGF-1 for 4 hours and for 12 hours respectively. 
FGG and HSPC009 are predicted to display the opposite change with NEFL if CSMD1 is knocked out after treatment 
with TGF-1 for 12 hours. Additionally, by integrating two datasets, we specially identifi ed several nested clusters which 
included those genes regulated by TGF- stimulation in lung adenocarcinoma cells. 
Conclusions: Our analysis can help a better understanding regarding how TGF- stimulation causes the expression change 
of a number of the genes and provide a novel insight into TGF- stimulation eff ect on lung adenocarcinoma cells.
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1. Background
Transforming growth factor (TGF)- plays a major role 
in the initiation and progression of cancers. In the earlier 
stages, TGF- works as a tumor suppressor via inhibiting 
cell growth and apoptotic induction in the epithelial cells 
(1). On the contrary, in the later stages, the epithelial cells 
will become refractory to the growth inhibitory eff ect 
of TGF- which acts as a tumor promoter, increasing 
the tumor-promoting activity, cause the invasiveness, 
and metastasis (1, 2). Several previous observations 
have approved that the normal epithelial cells show 
diff erential response to TGF- stimulation as compared 

to the tumor cells (3). In response to TGF- stimulation, 
tumor cells display an increased production of proteases 
and down-regulation of the inhibitors of the proteases, 
whereas this is not observed in the normal cells (4). 
Recent studies have found some novel regulation 
relationships between TGF- and genes in lung tumor 
cells. For example, Wang et al. have found that TGF- 
regulates the proliferation of lung adenocarcinoma 
cells by inhibiting PIK3K3 expression (5). Yu et al. 
unveiled a novel link between TGF- and Rac1. They 
considered the atypical Rac1 activator DOCK4 as a key 
component of the TGF-/Smad pathway that promotes 
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lung adenocarcinoma cell extravasation and metastasis 
(6). Risolino et al. have found that the transcription 
factor PREP1 induces Epithelial–mesenchymal 
transition (EMT) and metastasis by controlling the 
TGF-–SMAD3 pathway in non-small cell lung 
adenocarcinoma (7). However, it is not clear if various 
actions of the TGF- on the normal and lung tumor cells 
are due to diff erential gene regulations. 

We know that gene regulatory networks have an 
important role in each life processes including cell 
diff erentiation, cell metabolism, cell cycle, and signal 
transduction (8). For example, De and Berx have claimed 
that the EMT-associated reprogramming of the cells 
not only suggests that fundamental changes in several 
regulatory networks might occur but also that an intimate 
interplay exists between such networks. Disturbance 
of the controlled epithelial cells’ reproduction balance 
is triggered by altering several layers of regulation 
(9). Meng et al. constructed the lung adenocarcinoma 
related regulatory network using microarray data and 
found that FLI and TAL1 promote TGFBR and KDR 
expression respectively; the result of which is activation 
of the TGF- signaling pathway (10). Genovese et al. 
uncovered a novel regulation of TGF- signaling via 
a Smad4 transcriptomic network by miR-34a through 
constructing a network model based on the complex 
multidimensional cancer genomic data (11). Vilar et al. 
developed a concise computational model of the TGF- 
pathway and showed that the fi rst layer of communication 
with the environment, the ligand-receptor network, is 
not merely a passive transducer of the signals but rather 
embeds properties that make it a signal processing unit 
(12). Therefore, these evidence support the identifi cation 
of the intricate interplay between genes responsible for 
the observed phenotypes based on the gene regulation 
network, and will help to understand how TGF- 
stimulation aff ects the biological change of normal cells 
or tumor cells. 

2. Objectives
In the present study, we used two time-course microarray 
data in human normal lung epithelial cell and lung 
adenocarcinoma cell and applied novel bioinformatics 
methods to explore the gene regulation networks 
associated with TGF- stimulation in two diff erent 
cell lines. We predicted the network change when 
several genes regulated by TGF- are knocked-out. 
Our analysis can help to understand better how TGF-
causes the expression change of other genes and gives 
an insight into TGF- eff ect on lung adenocarcinoma 
cells, as well as the development of the more eff ective 
lung adenocarcinoma treatment strategies.

3. Materials and Methods

3.1. TGF- Regulated Gene Profi ling in the Normal 
Lung Epithelial Cells and Lung Carcinoma Cells

3.1.1. Data Description
To explore the network change when genes regulated 
by TGF- are knocked-out, we selected the gene 
expression profi ling regulated by TGF- in the normal 
lung epithelial cells (HPL1D) and lung carcinoma 
cells (A549). HPL1D and A549 cells were treated with 
TGF-1 for 1, 4, and 12 hours, the total RNAs were 
extracted and were used for microarray using human 
19 k arrays (4). This dataset was downloaded from 
Gene Expression Omnibus database (http://www.ncbi.
nlm.nih.gov/geo/) (accession No. GSE7436). Genes 
which show   log 2 ratios greater than 0.37 (1.3 fold 
induced) or less than -1.5 (0.3 fold induced) at any 
one of the time points are considered as up-regulated 
by TGF- or down-regulated by TGF-, respectively. 
To help observe the data distribution, we used the 
supra-hexagonal map (13) to display the samples’ 
characteristics. The supra-hexagonal map provides a 
choice for calculating the covariance matrix based on 
a variety of diff erent distance metrics. It converts the 
gene-sample matrix into the codebook matrix and genes 
with similar data patterns were taken as the same or 
nearby nodes in the map by applying a self-organizing 
learning algorithm for the symmetric topology of the 
supra-hexagonal map. We observed the obvious gene 
expression diff erence between normal lung epithelial 
cells (HPL1D) and lung carcinoma cells (A549) at 
diff erent time points (supplementary Fig. 1).

3.1.2.  Diff erentially Expressed Genes Filtration under 
Diff erent Time Points 
In this analysis, we used R-bioconductor limma 
package (http://www.bioconductor.org) to select 
diff erentially expressed genes under diff erent time 
points between normal lung epithelial cells (HPL1D) 
and lung carcinoma cells (A549). To select those genes 
that signifi cantly distinguish the normal lung epithelial 
cells from the lung carcinoma cells as well as avoiding 
the constructed network complication which may cause 
the network can not be well explained; therefore, we 
kept the top 20 most signifi cant diff erentially expressed 
genes distinguishing HPL1D from A549 at each time 
point. In addition, we also selected the top 20 ranked 
genes with the global diff erentially expression across 
all time points (supplementary Table 1Table 1). Finally, all of 
the reserved diff erentially expressed genes were used 
for further network construction.
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3.1.3. Construction of the Gene Regulation Network
In the present study, we used the time-dependent 
reverse-engineering method to construct gene 
regulatory network. This method relies on a Lasso 
penalized estimation of the linear regression model 
(14). Suppose the linear regression model is: 
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Where   is a non-negative scalar that determines the 
level of the constraints. Based on this method, the time 
dependent reverse-engineering method for constructing 
gene regulation network was described as followings 
simply (14):
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nitx  is the expression of gene n for individual i at time-
point t. ..
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are the regulators. The linear regression model is 
described as the following equation:

                                                                                    (5)

Where )(nm  is the function that maps gene n to its 
time-cluster and )()( nmnmF   is a T-1 square matrix that 
describes the action of the genes. nnw  is the strength of 
the connection from gene i toward gene j.   is a noise 
vector of length T-1 with 0)( E  and 2)(  Var . The 
Lasso estimate for linear regression is obtained with the 
following formula:

                                                                                    (6)
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scalar that determines the level of the constraints. 
At each step, the estimation of matrices )()( nmnmF   is 
done several times throughout the cross-validation. 
In this analysis, the reserved top ranked diff erentially 
expressed genes were used to construct gene regulation 
network. The Cascade package (15) of R software 
(http://www. r-project.org) was used to implement this 
program.

3.2. TGF- Regulated Gene Expression Profi ling in 
the Lung Carcinoma Cells

3.2.1. Data Description 
To further explore the gene regulation relationships 
associated with TGF- stimulation in the lung carcinoma 
cells, we performed the additional analysis for another 
time course microarray data. We downloaded this 
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Figure 1. The Fold_change (log2ratio) of the HAND2 at three-time points. HAND2 displayed an 
obvious up-regulation trend (log2ratio>0) in the lung carcinoma cell (A549) and down-regulation trend 
(log2ratio<0) in the normal lung epithelial cells (HPL1D).

nnnn

N

n
nmnmn xwFx 


'..'

1'
)()'(.. ˆ~

])ˆ~([minarg)ˆ,ˆ( 2
'..

1'
)()'(

1
..

,1),(
,'1,

'

1
'

n

N

n
wnmnm

N

n
n

TbaRF
NnnRw

xFxFw
nn

Tab
nn













4 Iranian J Biotech. 2017;15(1):e1308 

Hua L. et al.

dataset from Gene Expression Omnibus (accession No. 
GSE17708 (16)). This dataset was obtained from human 
A549 lung adenocarcinoma cells undergoing TGF-
-induced epithelial-mesenchymal transition (EMT). 
A549 lung adenocarcinoma cell line was treated with 5 
ng.mL-1 TGF- for 0, 0.5, 1, 2, 4, 8, 16, 24, and 72 hours 
to induce EMT. Samples were assayed using Aff ymetrix 
HG_U133_plus_2 arrays with 54,675 probe-sets.

3.2.2. Filtration of Diff erentially Expressed Genes at 
Diff erent Time Points 
For GSE17708 dataset, at each time point, excluding 0 
hours, the diff erentially expressed genes were selected 
for their ability that distinguishes the expression at 
this time point from the expression at 0 hour. In the 
previous analysis, the genes with p-value <0.001 and 
>2-fold change at each time point were considered 
as diff erentially expressed genes (17).  We kept these 
genes for further analysis, as well.

3.3. TGF- Associated Gene Clusters Identifi cation 
in Lung Adenocarcinoma Cells; an Integration of the 
Two Datasets
To understand the functional gene clusters (i.e., networks) 
associated with TGF- in lung adenocarcinoma cells, 
we mapped the diff erentially expressed genes extracted 
from the two datasets; A)- the fi ltered diff erentially 
genes for GSE7436 and B)- the fi ltered diff erentially 
expressed genes for GSE17708, to protein–protein 
interaction (PPI) networks using the STRING database 
(http://string-db.org) which is a database of known and 
predicted protein interactions. To avoid those pairs with 
a lower association to the lung adenocarcinoma into the 
analysis, we fi ltered the gene pairs which only include 
those genes related to the lung cancer using Online 
Mendelian Inheritance in Man (OMIM) database (18). 
In the current study, we consider a gene network to be 
a set of closely interrelated links. By calculating the 
similarity measures between links, we can determine 
the expected amount of overlap clusters around a gene. 
A gene belongs to multiple clusters means that this 
gene is important in the gene regulation network. The 
program was implemented with Linkcomm package 
(19) of R software (http://www.r-project.org).

4. Results

4.1. TGF- Regulated Gene Expression Profi ling in 
Normal Lung Epithelial Cells and Lung Carcinoma 
Cells (for GSE7436 Dataset)

4.1.1. Extracting the Signifi cant Diff erentially 

Expressed Gene
For each time point, we selected the top 20 most 
signifi cant diff erentially expressed genes between 
normal lung epithelial cells and lung carcinoma 
cells. We also kept the top 20 ranked genes with the 
global diff erentially expression. Finally, the total 
of 80 diff erentially genes was identifi ed. Among 
the global diff erentially expressed genes, HAND2 
displayed the obvious down-regulation in the normal 
lung epithelial cells after treatment with TGF-1 for 
1 hour (Fig. 1). Although HAND2 did not display an 
obvious up- or down-regulation in the lung carcinoma 
cell at three-time points, the trend of up-regulation 
seems obvious (log2ratio>0). There are some studies 
that have demonstrated HAND2 over-expression in 
the lung squamous cell carcinomas and de-regulated 
in the histological subtypes (4). Recent evidence has 
suggested that HAND2 methylation is a common and 
crucial molecular alteration in several types of cancers, 
and could be employed as a potential biomarker for the 
early detection as well as a predictor of the treatment 
response (20). 

4.1.2. Construction of the Gene Regulation Network 
Associated with TGF- Stimulation
We used the identifi ed 80 diff erentially expressed genes 
to construct gene regulation network associated with the 
TGF- stimulation. Considering that a larger number of 
edges in the network makes it diffi  cult to interpret the 
relationships between genes, therefore, we selected a 
cutoff  to simplify the network. In order to choose the 
best cutoff , we used the evolution method which allows 
us to see the evolution of the network when the cut off  
is growing up. At each step, the positions of the genes 
are re-calculated. The current choice of cutoff  relies 
on a p-value which corresponds to the adequacy of the 
data to a power law distribution. The p-value should 
ensure the scale-freeness of the network is reliable (14, 
21). Finally, a cutoff  of 0.10 was selected to fi lter the 
network (supplementary Fig. 2). The fi ltered network is 
shown in the supplementary Figure 3.

4.1.3. Prediction of Gene Expression Modulations a  fter 
a Knocked-out Experiment
Next, we wanted to predict the changed genes’ 
regulations if expressions of some genes are knocked 
out. We found when HAND2 is knocked-out following 
to the 4 hours treatment with TGF-1, NEFL, and 
LUC7A show the opposite change trend with C21orf90 
which is up-regulated (Fig. 2A). When HAND2 is 
knocked out after treatment with TGF-1 for 12 hours, 
NEFL, LUC7A, C21orf90, and HSPC009 displayed 
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the same change trend (Fig. 2B). Meanwhile, we 
found C21orf90 to show a diff erent expression trend 
after knocking out of HAND2 at diff erent time points. 
Although few studies have confi rmed the direct 
association between C21orf90 and lung carcinoma, the 
expression of C21orf90 was approved to be related to 
the lung parenchyma which is aff ected by the abnormal 
infl ammatory immune response (22). When CSMD1 
was knocked out following to 12 hours of TGF-1, FGG 
and HSPC009 displayed the opposite change compared 
to the NEFL. FGG and HSPC009 were all up-regulated 
noticeably (Fig. 2C). We know that CSMD1 is a tumor 
suppressor, and a previous array-based comparative 
genomic hybridization (aCGH) analysis detected the 
loss of CSMD1 in lung squamous cell carcinomas (23). 
From the analysis, we can observe that knocking-down 
of CSMD1 causes the change in the FGG expression. 
Although the current evidence can not support the 
regulation relationships between CSMD1 and FGG, it 
has been reported that the expression of FGG changed 
during EMT of lung cancer by several genes such as 
FOXA1 knockdown in A549 cells (24). Therefore, 
these potential fi ndings need to be validated by more 
molecular biology experiments in future studies.

4.2. Identifi cation of Gene Clusters Associated with 
TGF- in Lung Adenocarcinoma Cells (Integration of 
Two Datasets)
After 2,714 diff erentially expressed genes which 
include 80 diff erentially expressed genes extracted 
from GSE7436 and 2,634 diff erentially expressed 
genes extracted from GSE17708 were mapped to the 
protein–protein interaction network, 273 gene pairs 
which also include genes related to the lung cancer 
were fi ltered. Then we used Jaccard coeffi  cient to 
cluster links between these genes. When cutting the 
dendrogram at a point (height = 0.5972) where the 
partition density is maximized, 17 gene clusters were 
identifi ed (supplementary Fig. 4). Meanwhile, the 
number of nodes (genes) in the largest gene cluster is 
19. 

We observed 6 genes that belong to more than fi ve 
gene clusters (Fig. 3A and Fig. 3B), including JUN 
(belongs to 9 clusters), VEGFA (belongs to 8 clusters), 
IL6 (belongs to 8 clusters), EGFR (belongs to 7 
clusters), TGFB1 (belongs to 6 clusters), and EGR1 
(belongs to 5 clusters). It is noted that these genes were 
all associated with the TGF- induction and activity in 
the lung cancer. For example, it has been reported that 
TGF- is the major inducer of the interleukin-6 (IL-6) 
and vascular endothelial growth factor (VEGF), and 
the increased production of TGF- is followed by the 

increased IL-6 and VEGF secretion related to tumor 
cell proliferation (25). In addition, Finocchiaro et al. 
have suggested the role of TGFB as a mediator of the 
intrinsic resistance to EGFR tyrosine kinase inhibitors 
in non-small cell lung cancer (NSCLC) patients (26). 
As well, genes that belong to multiple gene clusters 
are possible to be discovered in the sets of genes that 
belong to clusters that are entirely nested within a 
larger cluster of the genes. For example, gene A, B C 
involved in a cluster (green color) are entirely nested 
within the larger cluster including gene A, B, C and D 
(brown color) (Fig. 3C). Therefore, genes involved in 
those nested clusters should be noted for their potential 
interaction eff ect with other genes. In the present study, 
we acquired some nested gene clusters. For example, 
Figure 3D shows the genes involved in the two nested 
gene clusters. We found that JUNB, EGR2, ZFP36, 
IRF1, IRF2, and MYD88 all are involved in the nested 
gene clusters.

4.3. Gene Set Enrichment Analysis (Integration of Two 
Datasets)
To explore the potential biological knowledge of the 
identifi ed gene sets or gene networks, the total of 2,714 
diff erentially expressed genes extracted from the two 
datasets were uploaded to ConceptGen software (16) 
which off ers over 20,000 concepts comprising 14 
diff erent types of biological knowledge for performing 
the enrichment analysis. The signifi cance of the over-
representation is measured by a modifi ed Fisher’s exact 
test (p-value) and q-values which take into account the 
estimated proportion of false positives incurred based 
on p-values. By default, only concepts with q-values < 
0.05 are displayed in this analysis. The results can partly 
refl ect TGF- induction and the complexity of EMT 
process. For example, the protein interactions among 
the diff erentially expressed genes link the TGFB1, 
TGFB2, and TGFB3 interactions directly (Fig. 4A). 
Moreover, we found these diff erentially expressed genes 
set also links JUN interactions. It has been reported that 
dysregulated c-jun expression may be involved in the 
acquisition of anchorage independence in the process 
of human lung carcinogenesis (27). Transcription 
factors interactions among the diff erentially expressed 
genes link the transcription factor Egr-1 and p53 (Fig. 
4B). Previous studies have found that Egr-1 mediates 
the stimulation of collagen transcription elicited by 
TGF-. Also, it was found that TGF- is necessary 
for the development of the pulmonary fi brosis (28). It 
has been reported that TGF- causes a time- and dose-
dependent increase in Egr-1 protein and mRNA levels 
as well as enhancement of the Egr-1 gene transcription 
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Figure 2.The changed gene expressions when special genes are knocked out after treatment with TGF-beta1. (A) The changed 
genes’ regulations when HAND2 is knocked out after treatment with TGF-1 for 4 hours. When HAND2 (colored by green) 
is knocked out, NEFL and LUC7A (colored by pink) show the opposite change trend with C21orf90 (colored by deep blue). 
Meanwhile, C21orf90 is up-regulated (log2ratio>0.37). (B) The changed gene expressions when HAND2 is knocked out 
following to the treatment with TGF-1 for 12 hours. When HAND2 (colored by green) is knocked out, NEFL (colored by 
pink), LUC7A (colored by pink), C21or f90 (colored by red), and HSPC009 (colored by red) display the same changed trend. 
(C) The changed gene expression when CSMD1 is knocked out after  treatment with TGF-1 for 12 hours. When CSMD1 
(colored by green) is knocked out, FGG and HSPC009 (colored by purple) have displayed the opposite change with NEFL 
(colored by pink). Meanwhile, FGG and HSPC009 are all up-regulated markedly (log2ratio>0.37).
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via serum response elements in the normal fi broblasts 
(29). In addition, recent studies have shown that p53 
aff ects TGF- /SMAD3-mediated signaling, cell 
migration, and tumorigenesis. Mutant p53 proteins also 
regulate Nox4-dependent signaling in TGF--mediated 
cell motility (30). Other enrichment analyses such as 
those carried out based on Gene Ontology (GO) or 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
have also resulted in fi nding that these diff erentially 
expressed genes set are related to the TGF- induction 
and activities.

In summary, we observed NEFL and LUC7A show 
an opposite and the same change with C21orf90 if 
HAND2 is knocked-out following to TGF-1 treatment 
for 4 and 12 hours, respectively. In addition, FGG and 
HSPC009 display an opposite change with respect to 
NEFL if CSMD1 is knocked out after treatment with 
TGF-1 for 12 hours. Furthermore, by integrating the 
two datasets, we specifi cally have identifi ed several 
nested clusters which include those genes regulated by 
the TGF- in the lung adenocarcinoma cells.

5. Discussion
It is known that TGF- plays important roles in cancer 
progression, aff ecting both tumor and stromal cells. Gene 
regulatory networks may have a potential infl uence on 
cell diff erentiation and cell metabolism. Most infl uence 
of the TGF- is brought about by regulation of gene 
expression. In the current study, our aim was to explore 
the intricate interplay between genes in response to the 
TGF- stimulation in the lung adenocarcinoma cells. Our 
analysis shows that when a number of genes involved 
in gene regulation network are knocked out, several 
other genes will show up-regulation or down-regulation 
trends. By integrating two time-course microarray data 
in human lung adenocarcinoma cells, we specifi cally 
have identifi ed some nested gene clusters and found 
that TGFB1, EGR1, EGR2, EGFR, IL6, JUN, and 
JUNB all are involved in these clusters. The previous 
evidence has confi rmed the potential regulation role of 
TGFB on these genes, such as EGR1, EGFR, and IL6 
in the lung cancer. Taken together, our analysis can help 
to understand better how TGF- causes changes in the 

Figure 3. Visualization of the linked clusters. (A) Node pies graph. The fraction of the total number of edges that 
a gene has in each cluster is depicted using a pie chart. (B) The cluster membership for genes that belong to the 
most clusters. Colors indicate cluster-specifi c membership. Each color represents a gene cluster. For example, 
JUN, VEGFA, IL6, EGFR, TGFB1, and ERBB2 belong to the fi fth gene cluster. (C) The graph defi nition for the 
nested clusters of genes. (D) Visualization of the two nested gene cluster structures.
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expression of several other genes and gives an insight 
into TGF- eff ect on lung adenocarcinoma cells.

It should point out the limitation of our study. The 
shortcoming of time-course microarray data is the 
low sample size. Although we integrated two datasets 
to implement the analysis in this paper, however, this 
integration is not enough. In the practice, utilizing 
more available time-course datasets and performing 
the synthesized analysis such as Meta-evaluation will 
help to improve the reliability of the results. Moreover, 
our prediction for the expression change of the NEFL, 
LUC7A, C21orf90, FGG, and HSPC009 if HAND2 and 
CSMD1 are knocked-out TGF-1 treatment at diff erent 
time points need to be validated by further molecular 
biology experiments in the future studies. 
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