
Phosphodiesterase 10A Upregulation Contributes to
Pulmonary Vascular Remodeling
Xia Tian1, Christina Vroom1, Hossein Ardeschir Ghofrani1, Norbert Weissmann1, Ewa Bieniek1, Friedrich

Grimminger1, Werner Seeger1,2, Ralph Theo Schermuly1,2, Soni Savai Pullamsetti1,2*

1 Medical Clinic II/V, University Hospital, Giessen, Germany, 2 Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany

Abstract

Phosphodiesterases (PDEs) modulate the cellular proliferation involved in the pathophysiology of pulmonary hypertension
(PH) by hydrolyzing cAMP and cGMP. The present study was designed to determine whether any of the recently identified
PDEs (PDE7-PDE11) contribute to progressive pulmonary vascular remodeling in PH. All in vitro experiments were
performed with lung tissue or pulmonary arterial smooth muscle cells (PASMCs) obtained from control rats or
monocrotaline (MCT)-induced pulmonary hypertensive (MCT-PH) rats, and we examined the effects of the PDE10 inhibitor
papaverine (Pap) and specific small interfering RNA (siRNA). In addition, papaverine was administrated to MCT-induced PH
rats from day 21 to day 35 by continuous intravenous infusion to examine the in vivo effects of PDE10A inhibition. We found
that PDE10A was predominantly present in the lung vasculature, and the mRNA, protein, and activity levels of PDE10A were
all significantly increased in MCT PASMCs compared with control PASMCs. Papaverine and PDE10A siRNA induced an
accumulation of intracellular cAMP, activated cAMP response element binding protein and attenuated PASMC proliferation.
Intravenous infusion of papaverine in MCT-PH rats resulted in a 40%–50% attenuation of the effects on pulmonary
hypertensive hemodynamic parameters and pulmonary vascular remodeling. The present study is the first to demonstrate a
central role of PDE10A in progressive pulmonary vascular remodeling, and the results suggest a novel therapeutic approach
for the treatment of PH.

Citation: Tian X, Vroom C, Ghofrani HA, Weissmann N, Bieniek E, et al. (2011) Phosphodiesterase 10A Upregulation Contributes to Pulmonary Vascular
Remodeling. PLoS ONE 6(4): e18136. doi:10.1371/journal.pone.0018136

Editor: Wael El-Rifai, Vanderbilt University Medical Center, United States of America

Received September 7, 2010; Accepted February 26, 2011; Published April 11, 2011

Copyright: � 2011 Tian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 547 ‘‘Kardiopulmonales Gefäßsystem’’, Projekt C6 and
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Introduction

Pulmonary arterial hypertension (PAH) is a fatal disease

characterized by progressively elevated pulmonary vascular

resistance, which results from vasoconstriction, vascular remodel-

ing and in situ thrombosis. These events lead to right ventricular

hypertrophy and right heart failure [1]. All cell types of the vessel

wall, including pulmonary arterial smooth muscle cells (PASMCs),

endothelial cells and adventitial fibroblasts, are involved in this

remodeling process [2]. Although the underlying mechanisms of

pulmonary vascular remodeling in PAH are not completely

understood, therapies targeting reduced prostacyclin synthesis,

increased endothelin signaling and increased cyclic nucleotide

phosphodiesterase (PDE) levels have been approved for the

treatment of PAH [3–5].

Phosphodiesterases comprise a family of 11 isoforms (PDE1-

PDE11) that each have different capacities for hydrolyzing cAMP,

cGMP, or both. Because cAMP and cGMP are ubiquitous second

messengers, PDEs are involved in many important signaling

pathways that regulate proliferation, migration, and differentiation

[6,7]. Current evidence suggests that individual isozymes modulate

distinct regulatory pathways in the cell, which are mainly

determined by their sub-cellular localization [7]. PDE1A has been

reported to translocate to the nucleus in synthetic proliferating

vascular smooth muscle cells (SMCs) [8]. In addition, sub-isoforms

of PDE4 have been shown to have diverse functions in subcellular

pools of cAMP that result from compartmentalization [9].

Interestingly, the expression and activities of PDEs have been

reported to be altered in both experimental and human PAH [10].

Expression profiling of single members of the PDE superfamily in

healthy and remodeled pulmonary vasculature revealed that the

PDE1, PDE3 and PDE5 isoforms are differentially regulated [11–

13]. In preclinical and clinical studies, we have shown that the

inhibition of PDE1 by 8-methoxymethyl-IBMX (8MM-IBMX)

[11] and PDE5 by sildenafil [4,12] stabilizes second messenger

signaling and regulates vascular remodeling, vascular tone and

optimization of gas exchange. Moreover, in monocrotaline

(MCT)-induced PH (MCT-PH) rats, inhibition of PDE3 and

PDE4 has been shown to partly reverse the pathological inward

remodeling of PAH [14,15].

The roles of the recently identified PDEs (PDE7-PDE11) in

PAH are complicated and not well understood. Among them,

PDE7 and PDE8 are cAMP-specific, PDE9 is cGMP-specific, and

PDE10A and PDE11 are dual-substrate PDEs [16]. The cellular-

and subcellular-specific distribution and substrate specificity of

these newly identified PDEs may provide important insights into

the pathology and pathophysiology of PAH.

The aim of the present study was to characterize the expression

pattern of newly identified PDEs (PDE7-PDE11) in lung tissue and

primary PASMCs from control and MCT-PH rats to identify

PLoS ONE | www.plosone.org 1 April 2011 | Volume 6 | Issue 4 | e18136



potential therapeutic targets in the PDE family that are involved in

the pathogenesis of PAH. Because the results showed a significant

increase of PDE10A in the pulmonary hypertensive vasculature,

we addressed the specific contribution of PDE10A to the vascular

remodeling in PAH by employing small interfering RNA (siRNA)

or an inhibitor in our in vitro and in vivo studies.

Methods

Patients
Human lung tissue was obtained from 4 donors and 4 patients

with idiopathic PAH (IPAH) who underwent lung transplantation.

The study protocol for human tissue donation was approved by

the ethics committee (Ethik Kommission am Fachbereich

Humanmedizin der Justus Liebig Universität Giessen) of the

University Hospital Giessen (Giessen, Germany) in accordance

with national law and ‘‘Good Clinical Practice/International

Conference on Harmonisation’’ guidelines (AZ 31/93). Written

informed consent was obtained from each individual patient or the

patient’s next of kin.

Animals
Adult male Sprague Dawley rats (250–300 g in body weight;

Charles River Laboratories, Germany) were randomized for a

subcutaneous injection of saline or 60 mg/kg MCT (Sigma-Aldrich)

to induce pulmonary hypertension (PH) [17]. Both the University

Animal Care Committee and the Federal Authorities for Animal

Research of the Regierungspräsidium Giessen (Hessen, Germany)

approved the study protocols (AZ GI 20/10 Nr. 52/2009).

Surgical preparation and hemodynamic measurement
The animals were classified into the following three groups: 1)

rats injected with saline (Control, n = 9); 2) MCT-injected rats

subjected to mini-pump implantation from day 21 to day 35 with

saline (MCT [35 d], n = 8) or 3) MCT-injected rats subjected to

mini-pump implantation from day 21 to day 35 with 1 mg/kg/min

papaverine (Sigma-Aldrich) (MCT [35 d]/papaverine, n = 8). 3

weeks after MCT injection, rats were subjected to treatment for 2

weeks by implantation of osmotic mini-pumps (Alzet Model

2ML2, Durect). On day 21, after the rats were anesthetized, a

mini-pump filled with 2 ml of saline or papaverine (5 mg/ml) was

implanted in the dorsal subcutaneous region under sterile

conditions, and a tunneled catheter (PE 50 tubing) was inserted

into the left jugular vein. After wounds were closed with sutures,

the rats were recovered from anesthesia by an intraperitoneal

injection of naloxone and atipazemole (50 and 100 mg/kg,

respectively). At the end of the treatment, the rats were

anesthetized with an intraperitoneal injection of ketamine

(9 mg/kg body mass) and medetomidine (100 mg/kg body mass),

which was followed by an intramuscular injection of heparin

(50 IU/kg body mass) to measure the hemodynamic parameters.

The rats were then tracheotomized and ventilated at a frequency

of 60 breaths/min with positive end expiratory pressure at 1 cm

H2O. To measure right ventricular pressure, a right heart PE 50

catheter was inserted through the right jugular vein, and a

polyethylene catheter was inserted into the left carotid artery to

measure arterial pressure. After measurements, the left lung was

fixed for histology in 3% paraformaldehyde solution, and the right

lung was snap frozen in liquid nitrogen after exsanguinations [18].

Histological assessment of the degree of muscularization
of small pulmonary arteries

Three-mm lung sections from blocks fixed in 3% paraformal-

dehyde solution were used for double staining with anti-von

Willebrand factor antibody (1:900 dilution, Dako) and anti a-

smooth muscle actin antibody (1:900 dilution, Sigma-Aldrich) to

analyze small peripheral pulmonary artery muscularization. In

each rat, 80 to 100 intra-acinar arteries (20–50 mm) were

categorized as fully muscularized, partially muscularized, or

nonmuscularized, as previously described [18].

Isolation of pulmonary arterial smooth muscle cells
(PASMCs)

Rat PASMCs were cultured from peripheral small pulmonary

artery explants as previously described [19]. Small pulmonary

arteries were freshly obtained from rats and maintained in Hank’s

balanced salt solution (HBSS, Gibco) supplemented with penicillin

(100 units/ml, PAN) and streptomycin (100 units/ml, PAN).

Under a dissecting microscope, the adventitia layer was removed

by microdissection. Arterial segments were cut open along the

longitudinal axis, and the endothelium was gently removed by

scraping the luminal surface. The arteries were minced into

1 mm2 explant pieces and maintained in Dulbecco’s modified

Eagle’s medium/F12 (DMEM/F12, Gibco) supplemented with

10% fetal bovine serum (FBS, Biowest), penicillin (100 units/ml),

streptomycin (100 units/ml), and 2 mM L-glutamine (PAN). After

5 days, PASMCs started to migrate from the explants, and this was

followed by 10 days of subculturing. Early-passage (passages 2–5)

PASMCs were used for all experiments. Cells were positively

stained for a-smooth muscle actin by immunocytochemistry, and

the expression of vascular smooth muscle cell (VSMC) phenotypic

genes (a-smooth muscle actin, smooth muscle-myosin heavy chain,

and calponin) was confirmed by polymerase chain reaction (PCR)

(data not shown). Every experiment was performed with primary

PASMCs isolated from at least 3 individual rats.

RNA isolation and cDNA synthesis
For cDNA synthesis, total RNA from tissues or cells was extracted

using TrizolH (Invitrogen) according to the manufacturer’s

instructions. One mm of RNA was used for reverse transcriptase

polymerase chain reaction (RT-PCR) in a total volume of 20 ml with

oligo(dT)15 primer using the ImProm-II reverse transcription system

(Promega) according to the manufacturer’s instructions.

Quantitative real-time polymerase chain reaction (qRT-
PCR)

The intron-spanning primer pairs (Metabion) were designed

using the Primer3 program, and these primer pairs are shown in

Table 1. qRT-PCR was performed on an Mx3000PH QPCR

System machine (Stratagene) using SYBRH GreenERTM qPCR

SuperMix Universal kits (Invitrogen). Using the MxProTM QPCR

software, a dissociation curve was generated for each gene to ensure

single product amplification, and we determined the threshold cycle

(Ct value) for each gene. The comparative 22DDCt method was used

to analyze mRNA fold changes between control and MCT group,

which was calculated as ratio = 22(DCt control-DCt MCT), where Ct is

the cycle threshold and DCt (Ct target - Ct reference) is the Ct value

normalized to the reference gene porphobilinogen deaminase

(PBGD) obtained for the same cDNA samples. Each reaction was

run in duplicate and repeated in three independent experiments.

The calculated 22DDCt was transformed into a percentage using the

control value as 100% to indicate the mRNA expression.

Immunohistochemistry
Three-mm lung sections were cut from lung blocks fixed in 3%

paraformaldehyde solution. After deparaffinization in xylene and

rehydration in a series of grade-decreasing ethanol solutions, the
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slides were washed in phosphate-buffered saline (PBS). For

PDE10A, antigen retrieval was achieved using 0.25% trypsin for

15 min at 37uC; and for proliferating cell nuclear antigen (PCNA),

antigen retrieval was achieved by cooking in citrate buffer (pH 6.0)

buffer followed by a 15-min incubation in proteinase K at room

temperature. The sections were treated with 3% hydrogen

peroxide to block endogenous peroxidases prior to serum blocking.

Then, a NovaRED horseradish peroxidase (HRP) kit (Vector) was

used for PDE10A staining, and a ZymedChem-plus alkaline

phosphatase (AP) Polymer kit (Zymed) was used for PCNA

staining according to the manufacturer’s instructions. The sections

were incubated with anti-PDE10A polyclonal antibody (1:200 in

10% bovine serum albumin, Scottish Biomedical) or anti-PCNA

polyclonal antibody (1:100 in 10% bovine serum albumin) at 4uC
overnight. After being washed, slidses were incubated with the

corresponding secondary antibody conjugated with HRP or AP

for 1 h. After slides were washed, color development was

performed with a substrate/chromogen mixture followed by

counterstaining with hematoxylin. The sections were examined

under a Leica DM 2500 microscope using Leica QWin imaging

software (Leica). Sections from 4–5 rats in each group were stained

with each antibody. PCNA positive pulmonary vascular cells were

counted throughout the entire section and expressed as fold

changes of the control lung by calculating the number of PCNA-

positive cells per pulmonary vessel [20].

Immunocytochemistry
Rat PASMCs grown on 8-well chamber slides were fixed with

220uC-cooled acetone-methanol mix (1:1) for 10 min at 4uC.

After being washed 3 times with PBS, the fixed cells were

sequentially incubated with blocking buffer (3% bovine serum

albumin in PBS) for 1 h at room temperature, primary antibody

against PDE10A (1:200 in blocking buffer, Novus) overnight at

4uC, and FITC-conjugated anti-rabbit secondary antibody (Alexa

FluorH 488 1:1000 in blocking buffer, Invitrogen) for 1 h at room

temperature. Cells were counterstained for nuclei with DAPI and

visualized using a Leica DMLA fluorescence microscope and

Leica QWin imaging software (Leica). PASMCs from 3 individual

rats of each group were stained.

Immunoblotting
Protein extracted with RIPA buffer (Santa Cruz) was

resolved with SDS-PAGE (10% acrylamide) and transferred

onto nitrocellulose membranes. After being blocked with 5%

non-fat milk for 1 h at room temperature, membranes were

probed with rabbit polyclonal anti-PDE10A antibody (1:2000,

Scottish Biomedical), rabbit polyclonal anti-CREB antibody

(1:1000, Millipore), rabbit polyclonal anti-phospho-CREB

(Ser133) antibody (1:1000, Millipore) or mouse monoclonal

anti-GAPDH antibody (1:5000, Novus) overnight at 4uC.

Following washing with TBS containing 0.1% Triton X-100,

HRP-conjugated secondary antibodies (1:50000; anti-rabbit,

Pierce; anti-mouse, Sigma-Aldrich) were applied for 1 h. After

washing, the blots were developed with an enhanced chemilu-

minescence (ECL) kit (Amersham) followed by film exposure.

Blots were repeated three times independently.

PDE activity assay
3-Isobutyl-1-methylxanthine (IBMX), erythro-9-(2-hydroxy-3-

nonyl) adenine (EHNA), rolipram and papaverine were purchased

from Sigma-Aldrich. 8MM-IBMX and milrinone were purchased

from Calbiochem. Phosphodiesterase enzyme activity was mea-

sured using modifications of the methods of Thompson and

Appleman [21] and Bauer and Schwabe [22]. Protein was

extracted from PASMCs with RIPA buffer (Santa Cruz) and

normalized to the same concentration for use. The reactions were

performed with 10 mg of protein in 100 ml of HEPES buffer

(40 mM; pH 7.6), which consisted of MgCl2 (5 mM), bovine

serum albumin (1 mg/ml), cAMP (1 mM) and [3H]-cAMP (1 mCi/

ml, Amersham), at 37uC for 15 min. The samples were boiled for

3 min, subsequently cooled for 5 min and incubated with 25 ml of

Crotalus atrox snake venom (20 mg/ml, Sigma-Aldrich) for 15 min

at 37uC. After being chilled on ice, the samples were applied to

QAE Sephadex A-25 (Amersham) mini-chromatography columns

and eluted with 1 ml of ammonium formate (30 mM, pH 7.5).

The eluents were collected in 2 ml of scintillation solution (Roth),

and counts per minute (CPM) were measured by a beta-counter.

Each assay was performed in triplicate and repeated twice

independently. Data are expressed as pmol cAMP/min/mg

protein.

cAMP enzyme immunoassay (EIA)
At the end of culture, cells were washed twice with PBS and

lysed in 0.1 M HCl at room temperature for 10 min. After

centrifugation, the supernatants were normalized to the same

Table 1. Primer pairs of rat PDEs for quantitative realtime-PCR.

Gene Forward Primer Reverse Primer

PDE1A 59- ATCAGCCACCCAGCCAAA -39 59- GGAGAAAACGGAAGCCCTAA -39

PDE3A 59- CACAAGCCCAGAGTGAACC -39 59- TGGAGGCAAACTTCTTCTCAG -39

PDE3B 59- GTCGTTGCCTTGTATTTCTCG -39 59- AACTCCATTTCCACCTCCAGA -39

PDE4A 59- CGACAAGCACACAGCCTCT -39 59- CTCCCACAATGGATGAACAAT -39

PDE7A 59- GAAGAGGTTCCCACCCGTA -39 59- CTGATGTTTCTGGCGGAGA -39

PDE7B 59- GGCTCCTTGCTCATTTGC -39 59- GGAACTCATTCTGTCTGTTGATG-39

PDE8A 59- TGGCAGCAATAAGGTTGAGA -39 59- GAATGTTTCCTCCTGTCTTT -39

PDE8B 59- TCGGTCCTTCCTCTTCTCC -39 59- AACTTCCCCGTGTTCTATTTGA -39

PDE9A 59- GTGGGTGGACTGTTTACTGGA -39 59- TCGCTTTGGTCACTTTGTCTC -39

PDE10A 59- GACTTGATTGGCATCCTTGAA -39 59- CCTGGTGTATTGCTACGGAAG -39

PDE11A 59- CCCAGGCGATAAATAAGGTTC -39 59- TGCCACAGAATGGAAGATACA -39

PBGD 59- CAAGGTTTTCAGCATCGCTAC -39 59- ATGTCCGGTAACGGCGGC -39

doi:10.1371/journal.pone.0018136.t001

PDE10 in Pulmonary Hypertension

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e18136



protein concentration for use. Fifty-ml of protein samples, which

were pre-diluted to 0.3 mg/ml, and standard solutions were

incubated with 50 ml of tracer and 50 ml of antibody in the dark

at 4uC overnight. After washing 5 times, plates were incubated

with Ellman’s solution for 90–120 min at room temperature with

gentle shaking. The plates were read at a wavelength of 405 nm,

and the concentration was calculated by the ready-made Cayman

EIA Double workbook. The standard curve was generated as a

plot of the percent bound/maximum bound (%B/B0) vs

concentration of a series of known standards using linear (y) and

log (x) axes. Using the 4-parameter logistic equation obtained from

the standard curve, the cAMP concentrations of samples were

determined, which are given as nmol/mg protein. Each sample

was determined in duplicate and repeated twice.

Proliferation assay
PASMC proliferation was evaluated using the [3H]-thymidine

incorporation assay. PASMCs (16104 cells/well) were seeded on

48-well plates and grown overnight. The next day, the medium

was substituted with DMEM/F12 containing 0.1% FBS with or

without siRNA to render the cells quiescent. After 24-h serum

starvation, cells were induced to reenter the cell cycle by 10% FBS,

and the cells were incubated with or without papaverine for 24 h.

The final 4 h of the incubation included the incorporation of

[3H]thymidine (0.4 mCi/ml, Amersham). Cells were then washed

twice with 500 ml of chilled HBSS, fixed with 250 ml of ice-cold

methanol and precipitated by 250 ml of 10% trichloroacetic acid.

Finally, samples were lysed in 0.1 M NaOH, transferred to 4 ml of

scintillation solution (Roth) and counted by a beta-counter to

determine CPM values. All labeling was performed on quadru-

plicate cultures and repeated twice independently. The prolifer-

ation of PASMCs is shown as a percentage (taking the CPM of

unstimulated PASMCs under 0.1% FCS as 100%).

RNA interference
siRNA oligonucleotides specific for PDE10A (sense: 59-GGA

CAGCUUGGAUUCUACA-39; anti-sense: 59-UGUAGAAUC

CAAGCUGUCC-39) and scramble siRNA (dTdT 39 overhang)

were purchased from Eurogentec and transient transfection of

siRNA was performed with X-tremeGENE siRNA Transfection

Reagent (Roche) according to the manufacturer’s protocols.

PASMCs were subcultured to 40% confluence in antibiotic-free

DMEM supplemented with 10% FBS and 2 mM L-glutamine.

Transfection of 100 nM siRNA (ratio of siRNA to transfection

reagent, 1 mg/4 ml) was performed in Opti-MEM (Gibco) for 5 h,

which was followed by culturing in DMEM supplemented with 10%

FBS and 2 mM L-glutamine for up to 24 h (RNA isolation) or 48 h

(protein isolation and enzyme immunoassay, respectively). The

RNA interference was well established and repeated three times.

Statistical analysis
Data are expressed as the mean and standard error of the mean

(SEM). All statistical analyses were performed with Student’s t test

for comparisons between two groups or with one-way ANOVA

and Newman-Keuls post-hoc test for multiple comparisons.

Differences between groups were considered significant at P,0.05.

Results

Expression of PDE7-11 in rat lung tissues and PASMCs
The expression of PDE7-11 was investigated by qRT-PCR. In

the lungs of MCT-treated rats, we observed upregulation of

PDE7A, PDE7B, and PDE10A and downregulation of PDE8B.

The other PDEs were expressed at similar levels as the controls

(Figure 1A). In the isolated PASMCs at passage 2, we only

observed the presence of PDE7A, PDE7B, PDE8A, PDE10A and

PDE11A, and we found a 2.5-fold increase in PDE7A and

PDE10A mRNA expression in MCT PASMCs compared with

control PASMCs (Figure 1B). However, the translational regula-

tion of PDE7A in lung vasculature is beyond the scope of our study

due to the fact that PDE7A protein signal was not detectable with

the antibodies we possess (data not shown); therefore, we focused

on PDE10A.

PDE10A is selectively upregulated in pulmonary
vasculature and in PASMCs from MCT-PH rats

Because the present study was the first to report PDE10A

expression in the lung, immunohistochemistry was performed to

verify the PDE10A expression pattern. Figure 2A shows that a

stronger immunoreactivity of PDE10A was observed in lung

specimens from MCT-PH rats, which suggests that the site-specific

change of PDE10A expression was induced in pulmonary

hypertensive lungs, especially in the medial layers of pulmonary

arteries. In contrast, only weak expression of PDE10A was

detected in pulmonary vessels of control rat lungs. In addition,

immunoreactivity against PDE10A was also noted in bronchial

SMCs in the small airways. To investigate whether PDE10A

induction is specific in remodeled pulmonary vasculature, we

examined PDE10A expression in pulmonary and systemic arteries,

including the aortic and femoral artery. qRT-PCR data showed a

2-fold increase in PDE10A mRNA expression in the pulmonary

arteries of MCT-PH rats compared to control rats, which showed

no changes in either the aortic artery or the femoral artery

(Figure 2B). In corroboration, immunoblotting demonstrated a

significant increase in PDE10A expression in MCT PASMCs

compared with control (Figure 3A and 3B). In addition,

immunofluorescence staining showed a predominant presence of

PDE10A in the nuclei of PASMCs (Figure 3C). Similar

localization was observed with two additional anti-PDE10A

antibodies (data not shown).

Higher contribution of PDE10A to the total cAMP PDE
activity in MCT PASMCs compared with control PASMCs

In addition to the expression level, the enzyme activity of

PDE10A was also determined by the PDE activity assay. The total

cAMP hydrolyzing PDE activity was increased in MCT PASMCs

compared to control PASMCs (8.72 vs 7.66 pmol cAMP/min/mg

protein), and this activity was suppressed by a non-selective PDE

inhibitor, IBMX, to a similar basal level (1.9 pmol cAMP/min/mg

protein) (Figure 4A). Interestingly, the PDE10A accounted for 53%

of the total cAMP PDE activity in MCT PASMCs as opposed to

38% in control PASMCs (Figure 4B and 4C). In contrast, the

contribution of other cAMP hydrolyzing PDEs (PDE1, PDE2,

PDE3 and PDE4) declined from 70% in control PASMCs to 52% in

MCT PASMCs. Taken together, these data suggest that PDE10A is

one of the major cAMP hydrolyzing PDEs in PASMCs, and the

cAMP hydrolyzing activity contributed by PDE10A was signifi-

cantly increased in PASMCs from MCT-PH rats.

PDE10A knockdown by siRNA inhibits PASMC
proliferation

The immunoblotting results in Figure 5A show that endogenous

PDE10A protein expression in control and MCT PASMCs was

strongly suppressed by PDE10A siRNA (100 nM), whereas no

change occurred after transfection with scramble siRNA. In

addition, to examine the isoform-specific effects of PDE10A siRNA,

the expression of other cAMP-PDE isoforms was analyzed after

PDE10 in Pulmonary Hypertension
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PDE10A siRNA transfection. Quantitative RT-PCR results suggest

that PDE10A siRNA suppressed PDE10A mRNA expression by

75% without affecting PDE1A, PDE3A, PDE3B and PDE4A

expression (Figure S1). [3H]-thymidine incorporation stimulated by

10% FBS indicated that MCT PASMCs were 80% more

proliferative than control PASMCs (Figure 5B). Furthermore, the

proliferation of MCT PASMCs was reduced by 40% of the original

level after PDE10A knockdown, whereas proliferation was only

reduced by 25% of the original level in control PASMCs (Figure 5B).

Pharmacological inhibition of PDE10A in vitro suppresses
PASMC proliferation, accumulates intracellular cAMP and
activates cAMP response element binding protein (CREB)

Administration of the PDE10 inhibitor papaverine (Pap,

25 mM) resulted in a 40% reduction in [3H]-thymidine incorpo-

ration in MCT PASMCs compared to a 25% reduction in control

PASMCs (Figure 6A). The cAMP EIA assay data suggested that

intracellular cAMP levels were increased 2.1-fold in MCT

PASMCs after Pap (25 mM) treatment (Figure 6B), whereas there

was only a 1.5-fold increase in cAMP levels in control PASMCs.

Because CREB is an important downstream target of cAMP, we

investigated whether CREB was activated by increased cAMP

levels following PDE10 inhibition by determining the phosphor-

ylation of serine 133 (Ser133) via immunoblotting. Figure 6C

shows that control PASMCs exhibited high levels of CREB

phosphorylation, which increased slightly after PDE10A inhibition

by Pap (25 mM). In contrast, Pap (25 mM) dramatically increased

the phosphorylation of CREB (Ser33) in MCT PASMCs.

Therapeutic effects of papaverine in MCT-PH rats in vivo
We performed in vivo experiments with an MCT-PH rat model

to examine the therapeutic efficacy and anti-remodeling potential

Figure 1. Expression of PDE7-PDE11 isoforms in rat lung tissue and rat PASMCs. A) mRNA expression of PDE7-PDE11 in lung
homogenates from control rats (gray bars) and MCT-PH rats (black bars) as shown by qRT-PCR after normalization to PBGD. *P,0.05, **P,0.01,
***P,0.001 vs control lungs. n = 4 in each group. B) Relative mRNA levels of PDE7-PDE11 in control (gray bars) and MCT (black bars) PASMCs
demonstrated by qRT-PCR after normalization to PBGD. **P,0.01 vs control PASMCs. n = 4 in each group. Values are expressed as the mean 6 SEM.
doi:10.1371/journal.pone.0018136.g001

Figure 2. PDE10A expression and localization in rat pulmonary vasculature. A) Immunohistochemistry staining of PDE10A in lung sections
from control (a, b) and MCT (c, d) rats. Scale bar: 20 mm. B) PDE10A mRNA expression in the pulmonary artery (P.A.), aortic artery (A.A.) and femoral
artery (F.A.) from control rats (gray bars) and 4-week MCT-PH rats (black bars) are shown as a percentage of control by qRT-PCR after normalization to
PBGD. **P,0.01 vs control PASMCs. n = 4 in each group. Values are expressed as the mean 6 SEM.
doi:10.1371/journal.pone.0018136.g002
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of PDE10 inhibition. Compared with control rats, saline treated

MCT-PH rats exhibited significant increases in right ventricular

systolic pressure (RVSP) on day 35 (77.269.7 vs 29.161.3 mm

Hg) (Figure 7A) and in the pulmonary vascular resistance index

(PVRI) (2.9060.24 vs 0.9060.13 mm Hg min/ml 100 g body

weight) (Figure 7B). We did not observe any significant changes in

systemic arterial pressure (SAP) or the systemic vascular resistance

index (SVRI) (Figure 7C and 7D). Continuous infusion of

papaverine from day 21 to day 35 resulted in a significant

reduction of RVSP (48.465.3 mm Hg) (Figure 7A) and PVRI

(1.7360.28 mm Hg min/ml 100 g body weight) (Figure 7B),

whereas SAP and SVRI did not change significantly (Figure 7C

and 7D) compared with saline treated MCT-PH rats. In addition,

the ratio of right ventricle (RV)/left ventricle plus septum (LV+S)

increased from 0.2360.01 in control rats to 0.6260.01 in MCT-

PH rats due to increased pulmonary arterial pressure, whereas

papaverine treatment significantly reduced this ratio to 0.3960.04

(Figure 7E).

Quantitative morphological analysis of the degree of muscular-

ization of the peripheral small pulmonary arteries showed that

control rat lungs primarily consisted of nonmuscularized arteries

(79.564.5%) with a small percentage of partially muscularized

arteries (14.064.0%) and a smaller percentage of fully muscular-

ized arteries (6.560.5%) (Figure 7F and Figure S2). In contrast,

the percentage of nonmuscularized arteries in saline-treated

MCT-PH rat lungs was 1.260.4%, and the percentages of

partially and nonmuscularized arteries were 33.364.3% and

65.464.5%, respectively. Papaverine treatment decreased the

proportion of fully muscularized arteries to 24.463.4%, which was

accompanied by significant increases in the proportions of partially

muscularized arteries and nonmuscularized pulmonary arteries

(70.562.7% and 5.061.2%, respectively). In addition, compared

to the vessels of the control lungs, PCNA staining indicated a 5.8-

fold increase in the number of proliferative vascular cells in MCT-

PH rat lungs. Importantly, papaverine-treated lungs only had a 2.8

fold increase in the number of proliferative vascular cells, which

suggested an amelioration of in vivo proliferation by papaverine

(Figure 8).

PDE10A expression in human lungs from donors and
idiopathic PAH (IPAH) patients

To ascertain the clinical relevance of our findings in the MCT-

PH rat model, the expression and localization of PDE10A were

investigated in human IPAH lungs by immunohistochemistry. As

shown in Figure 9, strong immunoreactivity of PDE10A was

observed in pulmonary arteries, predominantly in the medial layer

of IPAH lung tissue (Figure 9E–H). In contrast, only weak

expression of PDE10A was detected in the pulmonary arteries of

donor lung tissue (Figure 9A–D).

Discussion

The present data demonstrate that PDE10A expression is

prominently induced in the structurally remodeled arterial

muscular layer in pulmonary hypertensive lungs, which suggests

that PDE10A contributes to the pathogenesis of pulmonary

vascular remodeling. In vitro functional deletion of PDE10A in

PASMCs resulted in increased cAMP generation, increased

CREB phosphorylation and decreased proliferation. In vivo

PDE10A inhibition by intravenous infusion of papaverine resulted

in 40%–50% inhibition of MCT-induced hemodynamic param-

eters and histological changes. This study supports a central role of

PDE10A in progressive pulmonary vascular remodeling and

suggests that inhibition of PDE10A is a novel therapeutic

Figure 3. PDE10A expression and localization in PASMCs. A) A representative blot of PDE10A protein expression in MCT and control PASMCs,
which was determined by immunoblots using GAPDH as the loading control. B) Densitometric quantification of PDE10A expression in PASMCs is
shown as the ratio to GAPDH in the bar graph. *P,0.05 vs control PASMCs, n = 3 in each group. Values are expressed as the mean 6 SEM. C) Cellular
localization of PDE10A in both control and MCT PASMCs was determined by representative immunofluorescence: green (PDE10A, FITC-conjugated),
Blue (DAPI). Staining is shown at 4006magnification.
doi:10.1371/journal.pone.0018136.g003
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Figure 4. cAMP PDE activities of control and MCT PASMCs. A) Total cAMP activity in control and MCT PASMCs. {P,0.05 vs control PASMCs,
***P,0.001 vs total activity, n = 3 in each group. cAMP activity of B) control PASMCs and C) MCT PASMCs mediated by PDE10A or other PDEs (PDE1,
PDE2, PDE3 and PDE4). Total cAMP PDE activity was suppressed in varying degrees by a PDE10A inhibitor (papaverine, 10 mM) or by a combination of
inhibitors against PDE1 (8 mm-IBMX, 30 mM), PDE2 (EHNA, 30 mM), PDE3 (milrinone, 5 mM) and PDE4 (rolipram, 10 mM). ***P,0.001 vs total activity,
n = 3 in each group. Values are expressed as the mean 6 SEM.
doi:10.1371/journal.pone.0018136.g004

Figure 5. Effects of PDE10A knockdown by siRNA on PASMC proliferation. Representative blots showing PDE10A protein expression in A)
control PASMCs and B) MCT PASMCs transiently transfected with 100 nM scramble siRNA or PDE10A siRNA for 48 h. PASMCs treated with
transfection reagent alone served as a negative control (NTC), and GAPDH was used as a loading control. C) PASMC proliferation stimulated by 10%
FBS with siRNA transfection was determined by the [3H]thymidine incorporation assay. {{{P,0.001 vs 0.1% FBS, *P,0.05 vs 10% FBS, n = 4 in each
group. Values are expressed as the mean 6 SEM.
doi:10.1371/journal.pone.0018136.g005

PDE10 in Pulmonary Hypertension

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e18136



approach against pulmonary vascular remodeling for the treat-

ment of PAH.

PDE10A is one of the most recently described PDEs, and it was

characterized as a dual-substrate gene in 1999 in mouse and in

human brain [23–25]. PDE10A has the capacity to hydrolyze both

cAMP and cGMP; however, the Km for cAMP is approximately

0.05 mM compared with 3 mM for cGMP. Interestingly, the Vmax

for cAMP hydrolysis is fivefold lower than that for cGMP. Because

of this kinetic pattern, PDE10A-mediated cGMP hydrolysis is

potently inhibited by cAMP in vitro, which suggests that PDE10A

may function as a cAMP-PDE and a cAMP-inhibited cGMP-PDE

in vivo [23–25]. Furthermore, the cGMP-binding regulatory (GAF)

domain of PDE10A is unique compared to the GAF domains of

other PDE families because it is the only one that binds to cAMP

instead of cGMP, which may contribute to the preferential

hydrolysis of Camp [26]. The unique distribution of PDE10A in

the brain and its enrichment in the striatum indicate that PDE10A

inhibitors are potential therapeutic agents for the treatment of

neurological and psychiatric disorders [27]. Recently, PDE10A-

selective inhibitors have also been suggested to be useful in the

treatment of diabetes and obesity [24,28]. In the present studies,

we observed a higher expression of PDE10A in the MCT-PH rat

pulmonary arteries and isolated PASMCs, which suggests that

PDE10A may contribute to the proliferative phenotype of

PASMCs. Although the specific functional role of PDE10A in

lung tissue needs to be characterized in more detail, the present

study also suggests a reactivation of PDE10A signaling in

abnormal proliferative lung disease tissues, such as the tissues

observed in pathological vascular remodeling. Moreover, PDE10A

immunoreactivity was markedly increased in pulmonary arteries of

IPAH patient lungs compared to the donor lungs, which indicates

the clinical relevance of the findings obtained from the MCT-PH

rat model.

Vascular remodeling, which includes the proliferation and

hypertrophy of SMCs, is a characteristic feature of PAH. Recent

studies have reported that targeting abnormal PASMC prolifer-

ation in the vascular media blocks the development of PAH and

attenuates pulmonary arterial remodeling in rodents and humans

[17,29]. In our studies, downregulation of PDE10A by siRNA led

to a greater suppression of PASMC proliferation among

hyperproliferative cells than among healthy control cells, which

suggests that PDE10A could be a useful therapeutic target for

pulmonary vascular remodeling and other disorders characterized

by increased PASMC proliferation. Furthermore, applying the

selective PDE10A inhibitor papaverine also suppressed the

proliferation of MCT PASMCs to a greater extent than control

PASMCs. These anti-proliferative effects are largely due to an

increase in intracellular cAMP levels that may stimulate the

activity of protein kinase A (PKA) [30,31]. In line with this notion,

several studies from our group and others have reported that

compounds that activate adenylate cyclase or inhibit PDE

counteract several pathways involved in SMC proliferation

[11,15,32]. For example, cAMP in vascular SMCs was shown to

decrease the expression of cyclin D1 and cdk2 as well as the

Figure 6. Effects of the PDE10A inhibitor papaverine (Pap) on PASMC proliferation, intracellular cAMP accumulation and CREB
activation. A) FBS stimulated PASMC proliferation after Pap (10 mM, 25 mM) treatment for 24 h. [3H]thymidine incorporation was used to evaluate
cell proliferation. {{{P,0.001 vs 0.1% FBS, *P,0.05 vs 10% FBS, n = 4 in each group. B) Intracellular cAMP levels in PASMCs after Pap treatment
measured by a cAMP enzyme immunoassay. The cAMP content of PASMC lysates is given as nmol/mg protein. *P,0.05, ***P,0.001 vs NTC (negative
control), n = 4 in each group. C) CREB phosphorylation after Pap (10 mM, 25 mM) treatment. Representative immunoblots are shown in the figure,
Values are expressed as the mean 6 SEM.
doi:10.1371/journal.pone.0018136.g006
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activation of extracellular signal-regulated kinase (ERK). In

addition, cAMP in vascular SMCs has been shown to increase

the expression of the anti-proliferative molecules p53 and p21 [33–

35]. Furthermore, there is now substantial evidence that cAMP/

PKA signaling acts as a molecular gate to block cell cycle

progression, primarily via occupancy of the cAMP response

elements (CREs) in the promoter region of the cyclin A gene and

increases in the level and phosphorylation status of the

transcription factor CREB [36]. In accordance, we found that

CREB phosphorylation was markedly increased in MCT

PASMCs after PDE10A inhibition by papaverine. We only

observed a minor increase in control PASMCs, which suggested

that hyperproliferative PASMCs were more sensitive to PDE10A

inhibition. This may have important consequences for pulmonary

media wall remodeling in PAH in vivo because CREB content has

been shown to be diminished in smooth muscle cells in remodeled

pulmonary arteries with PAH [37].

More importantly, numerous studies have demonstrated that

the compartmentalization and dynamics of cAMP signaling are

crucial for cAMP-triggered cellular responses [38]. In contrast to

the conventional transmembrane adenylyl cyclase, soluble adeny-

lyl cyclase (sAC) is distributed in specific subcellular compart-

ments, including mitochondria, centrioles, mitotic spindles, and

nuclei. sAC has been proved to be an alternative source of

intracellular cAMP pools regulated in a temporary and spatial

manner [39]. Furthermore, the direct activation of nuclear PKA

by nuclear-localized cAMP was demonstrated to be a more

efficient signaling pathway leading to CREB activation compared

to activation of cytoplasmic PKA [40]. Notably, the subcellular

distribution of PDE proteins may regulate the specific intracellular

localization of cAMP by compartmentalized hydrolysis of cAMP

[41]. As we showed in the present study, PDE10A was localized in

the nuclei of PASMCs with great abundance. Furthermore,

PDE10 inhibition led to cAMP accumulation and significant

activation of the transcriptional factor CREB, which was followed

by cAMP accumulation. PDE10 inhibition may lead to increased

cAMP in the nuclei of PASMCs and regulate cell growth responses

by activating CREB. Further investigations on the subcellular

distribution of cAMP after PDE10 inhibition, however, are

required to prove this finding.

Recently, Murray et al. demonstrated that the total PDE

activity levels are increased in PAH PASMCs compared to control

PASMCs [42]. In agreement with these findings, an increase in the

total cAMP-PDE activity was observed in our experimental model

of PAH. Notably, the relative contribution of PDE10A to the total

cAMP-PDE activity was increased in MCT PASMCs compared to

control PASMCs, which indicated that PDE10A inhibition was

more effective in increasing cAMP generation and inhibiting the

hyperproliferation of PASMCs from MCT-PH rats. This suggests

that PDE inhibitors that increase cAMP levels in general, as well as

PDE10A-selective inhibitors, offer new possibilities for therapeutic

intervention for pulmonary vascular remodeling in PH. In line

with these findings, treatment of MCT-PH rats with the PDE10A

inhibitor papaverine for 14 days markedly improved their

Figure 7. Effects of papaverine on MCT-PH rats in vivo. Papaverine was applied by continuous intravenous infusion with osmotic minipumps
from days 21 to 35. A) RVSP (mm Hg), B) SAP (mm Hg), C) PVRI (mm Hg min/ml 100 g body), and D) SVRI (mm Hg min/ml 100 g body) are given as the
mean 6 SEM. ***P,0.001 vs control; {P,0.05 vs. MCT [35 d]/saline. Control: n = 9; MCT [35 d]/saline: n = 8; MCT [35 d]/papaverine: n = 8. E) Right
heart mass, which was measured by the ratio of RV/LV+S. F) Effect of papaverine on the extent of muscularization of peripheral pulmonary arteries.
The percentage of nonmuscularized (N), partially muscularized (P), or fully (M) muscularized pulmonary arteries related to the total number of
pulmonary arteries is given as the mean 6 SEM. A total of 80 to 100 intra-acinar vessels were analyzed in the lung of each rat from each group.
***P,0.001 vs control; {P,0.05 vs MCT [35 d]/saline. Values are expressed as the mean 6 SEM.
doi:10.1371/journal.pone.0018136.g007
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hemodynamics. Indeed, RVSP and PVRI values were significantly

lowered after papaverine treatment. The structural changes of the

lung vasculature, such as the high percentage of fully muscularized

peripheral pulmonary arteries and proliferating vascular cells,

were significantly decreased after papaverine treatment. In

addition, right heart hypertrophy was significantly reduced by

papaverine. Because papaverine is used as a potent vasodilator in

the systemic and cerebral vasculature, we could not eliminate the

possibility that it may exert vasodilatory effects on pulmonary

vessels [43]. Papaverine-induced vasorelaxation is believed to be

related to reduced calcium influx following PKA activation after

cAMP levels increase [44,45]. Nevertheless, the present study

Figure 8. Anti-proliferative effects of papaverine in vivo. Proliferating cell nuclear antigen (PCNA) staining was performed to identify
proliferating pulmonary vascular cells. A) Representative PCNA immunostaining microphotographs of the rat lung sections from control (left), MCT
[35 day]/saline placebo (middle) and MCT [35 day]/papaverine (right), with black arrows indicating the PCNA-positive vascular cells in red. Scale bar:
20 mm. B) Effects of papaverine on pulmonary vascular cell proliferation are expressed as fold changes compared to control lungs, n = 5 in each
group. ***P,0.001 vs control; {{{P,0.001 vs MCT [35 d]/saline. Values are expressed as the mean 6 SEM.
doi:10.1371/journal.pone.0018136.g008

Figure 9. Pulmonary vascular expression and localization of PDE10A in lung tissues from donor and IPAH patients. Representative
PDE10A immunostaining microphotographs of the human lung sections from donors (A–D) and IPAH patients (E–H). Scale bar: 20 mm.
doi:10.1371/journal.pone.0018136.g009
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showed that the systemic pressures of papaverine-treated rats are

similar to those of healthy rats. The effects of papaperine may not

be exclusively targeted to PDE10A, although a continuous

intravenous infusion of papaverine should not result in high

plasma levels of this compound. Based on our previous experience

in the field of in vivo siRNA mediated knockdown, we believe that

in vivo siRNA targeting of PDE10A in pulmonary arterial SMCs is

not feasible because the cells are present between endothelial and

fibroblast cells in pulmonary vasculature. Within published

literature in the field of PH, only two manuscripts have addressed

the siRNA mediated knockdown of endothelial specific genes

[46,47]. Hence, new PDE10 inhibitors with higher selectivity and

potency are required to explore these therapeutic aspects in more

detail.

In conclusion, PDE10A expression and activity are increased in

PASMCs of experimental MCT-PH rats. Using PDE10A-targeted

siRNA and the PDE10 inhibitor papaverine, we demonstrated

that PDE10A plays a major role in the hyperproliferation of

PASMCs. Furthermore, papaverine significantly improved pul-

monary hemodynamics and significantly reversed the structural

abnormalities underlying the MCT-PH rat model. To the best of

our knowledge, this was the first study addressing a central role of

PDE10A in progressive pulmonary vascular remodeling, and we

propose the inhibition of PDE10A as a novel therapeutic approach

to the treatment of PAH.

Supporting Information

Figure S1 mRNA expression of cAMP-PDEs (PDE10A,
PDE1A, PDE3A, PDE3B and PDE4A) after PDE10A
siRNA transfection. To examine the isoform-specific effects

of PDE10A siRNA, cAMP-PDEs were analyzed by qRT-PCR

after a 24-h transfection of 100 nM scramble siRNA (gray bars) or

PDE10A siRNA (black bars). PASMCs treated with transfection

reagent alone were used as a negative control (NTC), n = 3 in each

group. Values are expressed as the mean 6 SEM.

(TIF)

Figure S2 Representative double immunostaining mi-
crophotographs of the rat lung sections were used to
assess the muscularization of small pulmonary arteries.
Staining was undertaken for von Willebrand factor (brown;

endothelial cells) and a-smooth muscle actin (purple; smooth

muscle cells).

(TIF)
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