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Abstract

Cryo-EM single-particle analysis has proven powerful in determining the structures of rigid 

macromolecules. However, many imaged protein complexes exhibit complex conformational and 

compositional heterogeneity that pose a major challenge to existing 3D reconstruction methods. 

Here, we present cryoDRGN, an algorithm that leverages the representation power of deep neural 

networks to directly reconstruct continuous distributions of 3D density maps and map per-particle 

heterogeneity of single particle cryo-EM datasets. Using cryoDRGN, we uncovered residual 

heterogeneity in high-resolution datasets of the 80S ribosome and the RAG complex, revealed a 

new structural state of the assembling 50S ribosome, and visualized large-scale continuous 

motions of a spliceosome complex. CryoDRGN contains interactive tools to visualize a dataset’s 

distribution of per-particle variability, generate density maps for exploratory analysis, extract 

particle subsets for use with other tools, and generate trajectories to visualize molecular motions. 

CryoDRGN is open-source software freely available at cryodrgn.csail.mit.edu.
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Introduction

Proteins and their complexes are dynamic macromolecular machines that carry out the 

essential biological processes responsible for life. Although the mechanism of these 

macromolecular machines is often deduced from a static three-dimensional (3D) structure, a 

more complete understanding could be achieved if one could analyze the full distribution of 

conformations relevant to function.

Single particle cryo-electron microscopy (cryo-EM) is a rapidly maturing method for high-

resolution structure determination of large macromolecular complexes1,2. Major advances in 

hardware3–5 and software4–9 have streamlined the collection and analysis of cryo-EM 

datasets such that structures of rigid macromolecules can routinely be solved at near-atomic 

resolution10,11. Increasingly, cryo-EM has been applied to study heterogeneous complexes 

as the experimental procedure is less sensitive to sample heterogeneity than other methods 

for structure determination12,13. Additionally, because single particle cryo-EM can capture 

millions of snapshots of the molecule of interest, each carrying a unique molecule in its own 

conformational state14, cryo-EM holds promise in revealing the conformational landscape of 

dynamic macromolecular complexes. However, reconstructing ensembles of 3D volumes 

from such snapshots remains a major computational challenge.

Existing tools for heterogeneous reconstruction make often-limiting assumptions on the 

observed structural heterogeneity. Most commonly, heterogeneity is modeled as though it 

originates from a small number of independent, discrete states, implemented as “3D 

classification” or “heterogeneous refinement” in many cryo-EM software packages15–18. 

However, these discrete classification approaches require specifying initial models for 

refinement, and because the number and nature of the underlying structural states is 

unknown a priori, this approach is error-prone and often results in the omission of 

potentially relevant structures. More critically, such discrete approaches are ill-suited for 

reconstructing structures undergoing continuous conformational changes.

Advanced methods for heterogeneous reconstruction seek to more closely model the 

continuous nature of flexible molecules. Multi-body refinement, available in RELION, 

models the structure as the sum of user-defined rigid bodies that are allowed to rotate 

relative to one another, placing structural assumptions on the observed heterogeneity19. 

Continuous heterogeneity has also been described using principle component analysis 

(PCA)-based approaches20–22, including the recent 3D Variability Analysis (3DVA) 

algorithm available in cryoSPARC23. Although the linear subspace model of these 

approaches can provide a summary of the overall variability within the dataset, the 

visualized heterogeneity contains artifacts when a molecule’s conformational deformations 

are poorly approximated by linear interpolations along basis volumes. In the manifold 

embedding approach proposed in Dashti et al.24,25, heterogeneous structures are recovered 

by binning particles along the data manifold followed by traditional homogeneous 

reconstruction. Additional algorithms for continuous heterogeneous reconstruction have 

been shown on synthetic datasets26,27.
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Here, we present cryoDRGN (Deep Reconstructing Generative Networks), a method for 

heterogeneous cryo-EM reconstruction based on deep neural networks. We hypothesized 

that neural networks, which are known for their ability to model complex, nonlinear 

functions28, could learn heterogeneous ensembles of cryo-EM density maps. We first show 

that our neural network representation of structure can model single density maps at high 

resolution, before demonstrating the full cryoDRGN framework for unsupervised 

heterogeneous reconstruction.

We find that cryoDRGN is a powerful and general approach for analyzing structural 

heterogeneity in macromolecular complexes of varying size and expected sources of 

heterogeneity. We show that the cryoDRGN approach can uncover residual heterogeneity in 

“homogeneous” datasets of the RAG1-RAG2 complex and the 80S ribosome, model large 

compositional changes of the assembling 50S ribosome, and continuous conformational 

changes of the precatalytic spliceosome. Remarkably, cryoDRGN’s unsupervised approach 

for representation learning can readily identify and filter impurities in the dataset and can 

identify rare structural states containing as few as ~1,000 particles. CryoDRGN is 

distributed as an open-source tool that can be easily integrated in existing pipelines and is 

freely available at cryodrgn.csail.mit.edu.

Results

The cryoDRGN method

CryoDRGN performs heterogeneous reconstruction by learning a deep generative model of 

3D structure from single particle cryo-EM images. The method consists of a specialized 

image encoder – volume decoder architecture, which learns an encoding of 2D particle 

images into a continuous vector space described by the latent variable z ∈ ℝn (i.e. the latent 

space), and the concomitant reconstruction of 3D cryo-EM density maps from this latent 

space representation (Fig 1A). This choice of model assumes that the heterogeneous 

structures can be embedded within a continuous, low-dimensional manifold in the latent 

space, where the dimensionality of the latent space is defined by the user. The model is 

specified in the Fourier domain in order to relate 2D images as planar slices of the 3D 

volume29, whose orientation is previously determined from a consensus reconstruction. The 

neural networks are jointly trained from random initialization using stochastic gradient 

descent on an objective function that seeks to maximize (a variational upper bound on) the 

data likelihood as in standard Variational Autoencoders (VAEs)30. Additional architectural 

and training details of cryoDRGN are provided in the Methods section.

After training, the output of cryoDRGN analysis includes: 1) per-particle latent encodings, 

zi, describing the dataset’s heterogeneity; and 2) a neural network model of 3D density maps 

that can directly reconstruct a density map given zi. Specifically, the encoder network 

encodes particle images into the continuous latent space, which allows for visualization and 

inspection of the particle distribution (Fig. 1B, center). The trained decoder network can 

then generate 3D density maps given arbitrary values of the latent variable. For example, 

representative structures can be generated from regions of latent space with high particle 

density, and continuous conformational trajectories can be reconstructed by sampling points 

along a trajectory through latent space (Fig. 1B, right). Notably, any cryoDRGN-generated 
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volume can be orthogonally validated by traditional reconstruction approaches15 using 

nearby particles in the latent space (Fig. 1B, left). Lastly, any regions of the latent space that 

are enriched in impurities or imaging artifacts may be selected, and the encompassed 

particles filtered from subsequent analysis (Fig. 1B, left).

Neural networks can represent cryo-EM density maps

We first evaluated the cryoDRGN volume decoder in representing high resolution cryo-EM 

density maps. To learn the homogeneous structure of the RAG1-RAG2 signal end complex 

(RAG – 369 kDa)31 and the Plasmodium falciparum 80S ribosome (Pf80S – 4.2 MDa)32, we 

trained the volume decoder network with no latent variable input, using image poses 

obtained from C1 homogeneous refinements in cryoSPARC16 (Methods). Trained on full-

resolution images, the cryoDRGN decoder produced structures that correlated with the 

traditional, voxel-based reconstruction (Fig. 2A) at resolutions up to 3.6 Å for RAG and 3.9 

Å for Pf80S at an FSC = 0.5 threshold (Fig. 2B), demonstrating the efficacy of this neural-

network based representation of 3D structure.

As neural networks have a fixed capacity for representation that is constrained by their 

architecture, we next compared decoder architectures of different sizes to evaluate the 

tradeoff between representation power and training speed. We found that larger 

architectures, which have more trainable parameters, result in density maps that correlate 

with the traditionally reconstructed map at higher resolutions (Fig. 2B). The networks are 

trained through multiple passes through the dataset (i.e. epochs) (Fig. 2C) with lower values 

of the objective function (Fig. 2D) as training progressed. Notably, while the resolution of 

the learned structure increased with neural network size, we found that larger models were 

slower to train (Fig. 2E). These tradeoffs suggest that the architecture and image size should 

be tuned to suit the desired balance of speed and achievable resolution. Lastly, we found that 

the cryoDRGN architecture was capable of learning density maps at sufficiently high 

resolution to visualize structural features such as bulky side-chains that are consistent with 

our FSC-based resolution estimates (Fig. 2F).

CryoDRGN models both discrete and continuous structural heterogeneity

We next sought to evaluate the complete cryoDRGN framework for heterogeneous 

reconstruction using simulated datasets (Fig 3A,B). Datasets modelling continuous 

heterogeneity were produced by rotating a single dihedral angle of a hypothetical protein 

complex to simulate a conformational transition along a 1-dimensional reaction coordinate. 

Single particle cryo-EM images were then simulated either: uniformly along this reaction 

coordinate (Uniform); with bias towards particular conformations exemplary of cooperative 

transitions (Cooperative); or with strong bias leading to unobserved transition states 

(Noncontiguous). A dataset simulating discrete compositional heterogeneity was produced 

by mixing particles of the bacterial 30S, 50S, and 70S ribosome (Compositional). We then 

provided each of these four simulated datasets and their corresponding poses to cryoDRGN 

and trained a 1-D latent variable model (Methods).

We found that cryoDRGN was capable of reconstructing both continuous and discrete 

heterogeneous ensembles (Fig. 3C–H). On the Uniform conformational heterogeneity 
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dataset, cryoDRGN reconstructed density maps that reproduced the ground truth continuous 

motion of the complex (Fig. 3C). When trained on the Compositional dataset, cryoDRGN 

reconstructed density maps of the 30S, 50S, and 70S ribosomes at distinct values of the 

latent variable (Fig. 3D).

In addition to reconstructing heterogeneous density maps, cryoDRGN produces a latent 

encoding for each particle that can be compared to the ground truth reaction coordinate (Fig. 

3E–H). For the datasets with continuous conformational changes, the latent encoding of 

each image correlated with position along the reaction coordinate given by the dihedral 

angle of the underlying model (Spearman r = −0.996, 0.992, and 0.988 for Uniform, 
Cooperative, and Noncontiguous, respectively) (Fig. 3E). We observed that the qualitative 

features of the distribution of latent encodings matched the ground truth, with three modes in 

the latent encoding distribution for the Cooperative dataset (Fig. 3F) and distinct clusters for 

the Noncontiguous and Compositional datasets (Fig. 3G, H). We note that, in general, the 

parameterization of a reaction coordinate is non-unique (e.g. when described by the learned 

latent variable or by dihedral angle, leading to different marginal distributions in Fig. 3E). To 

quantitatively assess that cryoDRGN has learned the correct distribution of structures, we 

compute a “per-image” FSC, which compares reconstructed density maps with the ground-

truth on images across the reaction coordinate (Methods), and found that the reconstructed 

structures of all four datasets correlated well with the ground truth distribution (Fig. 3C, 

Extended Data Fig. 1).

CryoDRGN uncovers residual heterogeneity from “homogeneous” cryo-EM datasets

We next evaluated cryoDRGN’s ability to perform heterogeneous reconstruction on real 

cryo-EM datasets of the RAG complex31 and the Pf80S32 ribosome from above. Ru et al. 
reported RAG complex structures from two distinct datasets – the “signal end complex”, 

which failed to resolve the distal ends of the 12-RSS and 23-RSS DNA elements or the 

nonamer binding domain (NBD) of RAG-1; and the “paired complex”, which resolved these 

elements at sufficient resolution for atomic model building (Fig. 4A). To test whether 

cryoDRGN could newly uncover heterogeneity of these distal elements in the “signal end 

complex”, we trained a cryoDRGN 10-D latent variable model on the deposited particle 

images (EMPIAR-10049)31. We found that cryoDRGN revealed significant heterogeneity of 

the 12-RSS, 23-RSS, and NBD (Fig. 4B). In addition to maps that only resolve the 

symmetric core (light grey in Fig. 4B), cryoDRGN revealed structures with RSS positioning 

that aligns with the canonical conformation found in the “paired complex” atomic model31 

(dark blue), tilting of the RSS strands (light blue), linear 23-RSS DNA (purple), as well as 

the presence (yellow) and absence (coral) of the NBD. These representative maps were 

selected out of a large ensemble of generated structures (Methods) from different regions of 

the latent space (Fig. 4C). A trajectory sampling from the continuous distribution modeled 

by cryoDRGN is shown in Supplementary Video 1. To validate the presence of these 

heterogeneous states in the dataset, we performed heterogeneous 3D refinement in 

cryoSPARC16 using the cryoDRGN density maps as initial models, which reproduced the 

heterogeneity of the RSS elements (Extended Data Fig. 2). Subsequent work by Ru et al. 
suggested that the conformational dynamics and asymmetric positioning of the 12- and 23-

RSS by NBD in the pre-cleavage form are fundamental to the structural mechanism 
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underlying the 12–23 rule of V(D)J recombination33. Our results newly demonstrate that 

such heterogeneity is also present in the post-cleavage “signal end” RAG complex.

When analyzing a homogeneous reconstruction of the Pf80S ribosome, Wong et al. observed 

flexibility in the small subunit head region and missing density for peripheral rRNA 

expansion segment elements32. To explore if this unresolved density resulted from residual 

heterogeneity, we trained a cryoDRGN 10-D latent variable model on their deposited dataset 

(EMPIAR-10028)32 and reconstructed an ensemble of density maps that not only contained 

structures consistent with the homogeneous reconstruction, but also revealed rotation of the 

40S small subunit (SSU) (Fig. 4D), heterogeneity within the SSU head (Extended Data Fig. 

3), and motion of many peripheral rRNA expansion segments (Supplementary Video 2). By 

visualizing a representative 40S rotated and unrotated density map, we found that 

cryoDRGN was able to simultaneously capture the large-scale inter-subunit rotation and 

coordinated smaller-scale structural rearrangements, including motion of the L1 stalk, 

disappearance of an rRNA helix, and the disappearance of the inter-subunit bridge formed 

by the C-terminal helix of eL8, which is consistent with Sun et al.’s characterization of 

Pf80S dynamics34 (Fig 4D).

We then visualized the 10-D latent space representation of the Pf80S particles with PCA 

(Fig. 4E) and with Uniform Manifold Approximate and Projection (UMAP)35 (Extended 

Data Fig. 4). The 40S rotated density map originated from a region of the particle 

distribution separated along the first PC of the latent space. To validate the presence of this 

state, we extracted 4,889 particles constituting the outlying cluster (Methods). Traditional 

homogeneous reconstruction of these particles in cryoSPARC produced a 6.4 Å 

reconstruction of the rotated 40S state consistent with the cryoDRGN structure (Extended 

Data Fig. 4). Additionally, by sampling many density maps from the latent space, we 

observed that structures with density missing from the SSU head group were located within 

a subregion of the main cluster of the UMAP visualization (Extended Data Fig. 3). We 

hypothesize that the 40S rotated state appears as a visually distinct cluster because more 

mass changes to rotate the entire 40S subunit, as opposed to the missing SSU head group 

state, which involves changes in a smaller region of the 40S subunit.

CryoDRGN automatically partitions assembly states of the bacterial ribosome

Next, we sought to evaluate cryoDRGN on a highly heterogeneous cryo-EM dataset of the 

E. coli large ribosomal subunit (LSU) undergoing assembly (EMPIAR-10076)12. This 

dataset is known to contain substantial compositional and conformational heterogeneity; In 

the original analysis, multiple expert-guided rounds of hierarchical 3D classification resulted 

in 13 discrete structures that were grouped into 4 major assembly states. Here, we aimed to 

assess if cryoDRGN could automatically reveal these heterogeneous states without user-

guided 3D classification.

As initial pilot experiments, we first trained 1-D and 10-D latent variable models on 

downsampled images of the dataset (Methods). The dataset’s latent space representation 

exhibited distinct peaks in the 1-D case or clusters in the 10-D case when visualized with 

UMAP35 (Fig. 5A,B) that correspond to the major assembly states when grouped by the 

published 3D classification labels (Fig. 5C,D). As the particles were obtained by crudely 
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fractionating a lysate in order to capture the full ensemble of cellular assembly 

intermediates, a substantial fraction of the published particle stack corresponds to 30S or 

non-ribosomal impurities. These unassigned particles were outliers in the latent 

representation (Fig 5C, Extended Data Fig. 5), and neither 2D class averages nor a 

traditional 3D reconstruction of these particles produced structures consistent with 

assembling LSU ribosomes (Extended Data Fig. 5). As we did not wish to devote 

representation capacity of the cryoDRGN neural networks in modelling these impurities, we 

used the latent representation to filter the dataset before further analysis, taking the 

intersection of the particle stack after filtering based on the 1-D and 10-D latent variable 

model (Methods).

To explore the heterogeneity within the LSU assembly states, we trained a cryoDRGN 10-D 

latent variable model on the remaining images at higher resolution (Methods). The decoder 

network reconstructed density maps matching the reported major (Fig. 5E) and minor 

(Extended Data Fig. 6) assembly states of the LSU. We visualized the encodings of particle 

images in the 10-D latent space with UMAP and observed clusters corresponding to the 

major (Fig. 5F) and minor states (Fig. 5G, Extended Data Fig. 6) of LSU assembly after 

coloring by the published 3D classification. From the latent representation, we also noted a 

clearly separated cluster of particles assigned to class A, and structures sampled from this 

region of latent space reconstructed the 70S ribosome, an impurity in the dataset (Fig. 5H). 

Finally, we identified a small cluster of ~1,100 particles adjacent to the class C cluster 

whose particles were originally classified into class E (Fig. 5F, inset). The density map 

reconstructed by the decoder from this region revealed a previously unreported assembly 

intermediate that we newly define as class C4 (Fig. 5I). Like the other class C structures, 

class C4 lacked the central protuberance, but possessed clearly resolved density for rRNA 

helix 68, which was only present in the mature E4 and E5 classes from Davis et al.12 

Traditional homogeneous reconstruction of the particle images constituting this cluster 

reproduced a similar, albeit lower-resolution structure, which confirmed the existence of this 

structural state in the original dataset (Extended Data Fig. 7). We found that the cryoDRGN 

latent representation is highly reproducible across replicates (Extended Data Fig. 8). 

CryoDRGN experiments and runtimes are summarized in Figure 5J. In addition to 

illustrating cryoDRGN’s ability to model extremely heterogeneous datasets without user-

driver classification, this analysis further demonstrated that cryoDRGN can identify novel 

and rare (~1% of all particles) structural classes that would likely be overlooked by 

traditional hierarchical classification.

CryoDRGN reveals dynamic continuous motions in the pre-catalytic spliceosome

Finally, to assess cryoDRGN’s ability to model large continuous conformational changes, 

we reanalyzed a dataset of the pre-catalytic spliceosome (EMPIAR-10180)36. Using 

extensive, expert-guided focused classifications, Plaschka et al. reconstructed a composite 

map for this complex and suggested that the complex sampled a continuum of 

conformations with large motions of the SF3b subcomplex36. In our analysis, we first 

trained a 10-D latent variable model on the downsampled images using image poses derived 

from a consensus reconstruction (Methods). Multiple clusters were observed in the latent 

space encodings of the dataset’s particle images (Fig. 6A). In sampling structures from the 
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latent space, the generated density maps revealed expected spliceosome conformations from 

the largest cluster, poorly resolved structures likely due to imaging artifacts from the 

leftmost cluster, structures lacking density for the SF3b subcomplex from a third cluster, and 

extra density of the U2 core, which is thought to be highly dynamic13, from the uppermost 

cluster (Fig. 6B). To focus our analysis on bone-fide pre-catalytic spliceosome particles, we 

leveraged the latent space representation to eliminate any particles that mapped to the 

undesired clusters from two replicate runs (Methods).

With the filtered particle stack, we trained a 10-D model on higher resolution images and 

visualized the dataset’s latent encodings in 2-D using PCA (Fig. 6C). The visualized data 

manifold was unfeatured, consistent with a molecule undergoing non-cooperative 

conformational changes. By generating structures along the first principal component of the 

latent space encodings, we reconstructed a trajectory of the SF3b and helicase subcomplexes 

in motion, smoothly transitioning from an elongated state to one compressed against the 

body of the spliceosome (Fig. 6D). This large scale-motion is consistent with motions 

derived from the first principal component of rigid body orientations from multi-body 

analysis (Extended Data Fig. 9) and in the first principal component of 3DVA’s linear 

subspace model (Extended Data Fig 10). A similar traversal along the second PC produced a 

continuous trajectory of the SF3b and helicase subcomplexes moving in opposition 

(Supplementary Fig. 1, Supplementary Video 4). The anticorrelated motion of the SF3b and 

helicase subcomplexes in PC2, together with their correlated motion in PC1, suggests that 

the two domains move independently in the imaged ensemble. Finally, although trajectories 

along latent space PCs provide a summary of the extent of variability in the structure, 

cryoDRGN can also generate structures at arbitrary points from the latent space. By 

traversing along the nearest neighbor graph of the latent encodings and generating structures 

at the visited nodes, cryoDRGN generated a plausible trajectory of the conformations 

adopted by the pre-catalytic spliceosome (Supplementary Video 4), highlighting the 

potential of single particle cryo-EM to uncover the conformational dynamics of molecular 

machines.

Discussion

This work introduces cryoDRGN, a method using neural networks to reconstruct 3D density 

maps from heterogeneous single particle cryo-EM datasets. The power of this approach lies 

in its ability to represent heterogeneous structures without simplifying assumptions on the 

type of heterogeneity. In principle, cryoDRGN is able to represent any distribution of 

structures that can be approximated by a deep neural network, a broad class of function 

approximators for continuous, nonlinear functions28. This flexibility contrasts with existing 

methods that impose limiting assumptions on the types of structural heterogeneity present in 

the sample. For example, 3D classification assumes a mixture of discrete structural classes; 

multibody refinement assumes conformational changes are composed of user-defined rigid-

body motions; and 3DVA assumes that heterogeneity is generated from linear combinations 

of density maps. Although these approaches have proven useful, their model for 

heterogeneity is often mismatched with the true structural heterogeneity in many systems, 

and thus can introduce bias into reconstructions. In contrast, we empirically show that the 

cryoDRGN architecture can model both discrete compositional heterogeneity and 
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continuous conformational changes without the aforementioned structural assumptions. For 

example, we discovered heterogeneous states of the RAG complex and Pf80S ribosome that 

were originally averaged out of the homogeneous reconstruction. When analyzing the 

assembling E. Coli LSU dataset, cryoDRGN learned an ensemble of LSU assembly states 

without a priori specification of the number of states or initial models as is required for 3D 

classification. Finally, when analyzing the pre-catalytic spliceosome, we found that the 

continuous conformational changes reconstructed by cryoDRGN lacked the rigid-body 

boundary artifacts from multibody refinement’s mask-based approach19 (Extended Data Fig. 

9) or linear interpolation artifacts from 3DVA’s linear subspace model23 (Extended Data Fig. 

10).

Interpretation of the latent space

A key feature of cryoDRGN is its ability to provide a low-dimensional representation of the 

dataset’s heterogeneity given by each particle’s latent encoding. Subject to optimization, 

cryoDRGN organizes the latent space such that structurally related particles are in close 

proximity. In simulated and real datasets, we find that continuous motions are embedded 

along a continuum in latent space (Fig. 3E–G, 6C) and that compositionally distinct states 

manifest as clusters (Fig. 3H, 5F). These empirical results demonstrate that visualization of 

the distribution of latent encodings can be informative in exploring the structural 

heterogeneity within the imaged ensemble, and even suggest a possible interpretation of the 

latent space as a pseudo-conformational landscape. However, we note that cryoDRGN’s 

objective function aims only to reproduce the distribution of structures and does not 

guarantee that the latent space layout (or its 2D visualization) will produce interpretable 

features of the underlying energy landscape. Furthermore, structures reconstructed from 

unoccupied regions of the latent space will not in general correspond to true physical 

structures, as cryoDRGN optimizes the likelihood of the observed data and these structures 

are not observed.

Finally, in real datasets, there may exist images that do not originate from the standard single 

particle image formation model, for example, false positives encountered during particle 

picking. We demonstrated the utility of the latent space representation in identifying such 

impurities, ice artifacts, and other out-of-distribution particle images that may be filtered out 

in subsequent analyses (Fig. 5A–D, 6A).

We emphasize that different datasets have diverse sources of heterogeneity, and thus the 

interpretation of the cryoDRGN latent space is highly dataset-dependent. We provide 

interactive analysis tools in the cryoDRGN software for exploring the learned latent space.

Visualizing structural trajectories

In addition to encoding particles in an unsupervised manner, cryoDRGN can reconstruct 3D 

density maps from user-defined positions in latent space. Because cryoDRGN learns a 

generative model for structure, an unlimited number of structures can be generated and 

analyzed, thus enabling visualization of structural trajectories. By leveraging the latent 

encodings of the particle images, users can directly traverse the data manifold and only 

sample structures from regions of latent space with significant particle occupancy. Indeed, 
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we applied a well-established graph-traversal algorithm37 to visualize data-supported 

motions in the RAG complex, the Pf80S ribosome, bL17-independent assembly of the 

bacterial ribosome, and the pre-catalytic spliceosome (Supplemental Videos 1,2,3,4). We 

note that while this approach is useful in visualizing potential structural changes linking one 

state to another, they do not necessarily reveal the kinetically preferred path.

Practical considerations in choosing training hyperparameters

Although this method emphasizes an unsupervised approach to analyzing structural 

heterogeneity, cryoDRGN does require that the user define the dimensionality of the latent 

space and the architecture of both the encoder and decoder networks. We find that in 

practice, training a smaller architecture on downsampled images is effective at 

distinguishing bona-fide particles from contaminants and imaging artifacts (Fig. 5A–D, Fig. 

6A), and we recommend users initially employ such pilot experiments to filter their dataset. 

Additionally, we find that in our tested datasets, a 10-D latent space provides sufficient 

representation capacity to effectively model structural heterogeneity, and that this 10-D 

space can be readily visualized with PCA or UMAP. Notably, we recommend the use of 

such a 10-D latent space instead of lower dimensional space as we have found that 10-D 

spaces result in much more rapid overall training, which is consistent with similar 

observations of related overparameterized neural network architectures38. Finally, users must 

specify the number of nodes and layers in the neural networks, hyperparameters that limit 

the complexity of the learned function. Here, we find an inverse relationship between neural 

network size and the achievable resolution of a given structure (Fig. 2B). Training larger 

networks on larger images is significantly slower (Fig. 2E), and we recommend that users 

perform an initial assessment using down-sampled images and relatively small networks 

before proceeding to high-resolution reconstructions. We note that use of excessively 

complex models (i.e. large architectures or latent variable dimensions) can lead to 

overfitting, which may be alleviated by standard neural network regularization techniques 

such as early stopping or using a simpler model38. We provide recommended training 

settings in the cryoDRGN software.

Discovering new states using cryoDRGN

CryoDRGN can be used to identify novel clusters of structurally-related particles, which can 

then be visualized by generating density maps from that region of latent space. Indeed, in 

analyzing the LSU assembly dataset, we noted a completely new structural state, C4, that 

was completely missed in traditional hierarchical classification. C4 provides structural 

evidence that a functionally critical intersubunit helix (h68) can dock in a native 

conformation in the absence of the central protuberance (Fig. 5I). Notably, we could validate 

the existence of this state by performing traditional homogeneous refinement using ~1,000 

particles from this cluster in the cryoDRGN latent space (Extended Data Fig. 7). Although 

we were able to readily identify this state from a distinct cluster present in the UMAP 

visualization (Fig. 5G), in general, the definition of distinct “states” may not be as readily 

apparent (e.g. the “missing SSU head” state in Extended Data Fig. 3), and we view the 

unsupervised identification of states from the cryoDRGN structural ensemble as an exciting 

area to pursue.
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In future work, we envision using cryoDRGN to reveal the number of discrete classes, their 

constituent particles, and to produce initial 3D models that could be used as inputs for a 

traditional 3D reconstruction. Given the mature state of such tools39,40, this data-driven 

classification approach followed by traditional homogeneous reconstruction, particle 

polishing, and higher order image aberration correction, has the potential to produce high-

resolution structures of the full spectrum of discrete structural states.

De novo pose estimation

As implemented, cryoDRGN uses pose estimates resulting from a traditional consensus 3D 

reconstruction. In analyzing four publicly available datasets, we found that such consensus 

pose estimates were sufficiently accurate to generate meaningful latent space encodings and 

to produce interpretable density maps of distinct structures. It is clear, however, that this 

approach will fail if the degree of structural heterogeneity in the dataset results in inaccurate 

pose estimates. For example, a mixture of structurally unrelated complexes will align poorly 

to a consensus structure, and thus produce poor pose estimates. Notably, our framework is 

differentiable with respect to pose variables, which, in principle, should allow for on-the-fly 

pose-refinement or de novo pose estimation. Future work will explore the efficacy of 

incorporating such features to enable fully unsupervised reconstruction of heterogeneous 

distributions of protein structure from cryo-EM images.

Online Methods

The cryoDRGN method

Coordinate-based networks to represent 3D structure—The cryoDRGN method 

performs heterogeneous cryo-EM reconstruction by learning a neural network representation 

of 3D structure. In particular, we use a positionally-encoded multilayer perceptron (MLP) to 

approximate the function V: ℝ3+n → ℝ, which models structures as generated from an n-

dimensional continuous latent space. We refer to this architecture as a coordinate-based 
neural network41,42 as we explicitly model the volume as a function of Cartesian 

coordinates.

Without loss of generality, we model volumes on the domain [−0.5,0.5]3. Instead of directly 

supplying the 3D Cartesian coordinates, k, to the deep coordinate network, coordinates are 

featurized with a fixed positional encoding function43 consisting of sinusoids whose 

wavelengths follow a geometric progression from 1 up to the Nyquist limit:

pe(2i) kj = sin kjDπ 2
D

i
D
2 − 1

, i = 0, …, D
2 − 1; kj ∈ k
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pe(2i + 1) kj = cos kjDπ 2
D

i
D
2 − 1

, i = 0, …, D
2 − 1; kj ∈ k

where D is set to the image size1 used in training. Empirically, we found that excluding the 

highest frequencies of the positional encoding led to better performance when training on 

noisy data, and we provide an option to modify the positional encoding function by 

increasing all wavelengths by a factor of 2π.

Training system—This neural representation of 3D structure is learned via an image-

encoder/volume-decoder architecture based on the variational autoencoder (VAE)30,44. We 

follow the standard image formation model in single particle cryo-EM where observed 

images are generated from projections of a volume at a random unknown orientation, R ∈ 
SO(3). We use an additive Gaussian white noise model. Volume heterogeneity is generated 

from a continuous latent space, modeled by the latent variable z, where the dimensionality of 

z is a hyperparameter of the model.

Given an image X, the variational encoder, qξ(z|X), produces a mean and variance, μz|X and 

Σz|X, statistics that parameterize a Gaussian distribution with diagonal covariance, as the 

variational approximation to the true posterior p(z|X). The prior on the latent variable is a 

standard normal distribution N(0, I). The positionally-encoded MLP is used as the 

probabilistic decoder, pθ(V| k, z), and models structures in frequency space. Given Cartesian 

coordinate k ∈ ℝ3 and latent variable z, the probabilistic decoder predicts a Gaussian 

distribution over V(k, z). The encoder and decoder are parameterized with fully connected 

neural networks with parameters ξ and θ, respectively.

Since 2D projection images can be related to volumes as 2D central slices in Fourier 

space29, oriented 3D coordinates for a given image can be obtained by rotating a D × D 
lattice spanning [−0.5,0.5]2 originally on the x-y plane by R, the orientation of the volume 

during imaging. Then, given a sample out of qξ(z|X) and the oriented coordinates, an image 

can be reconstructed pixel-by-pixel through the decoder. The reconstructed image is then 

translated by the image’s in-plane shift and multiplied by the CTF before it is compared to 

the input image. The negative log likelihood of a given image under our model is computed 

as the mean square error between the reconstructed image and the input image. Following 

the standard VAE framework, the optimization objective is a variational lower bound of the 

model evidence:

ℒ(X; ξ, θ) = Eqξ(z ∣ X)[logp(X ∣ z)] − βKL qξ(z ∣ X) ∥ p(z)

where the first term is the reconstruction error estimated with one Monte Carlo sample, the 

second term is a regularization term on the latent representation, and β is an additional 

1Number of pixels along one dimension of the image, i.e. a D × D image

Zhong et al. Page 12

Nat Methods. Author manuscript; available in PMC 2021 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hyperparameter, which we set by default to 1/|z|. By training on many 2D slices with 

sufficiently diverse orientations, the 3D volume can be learned through feedback from the 

2D views. For further details, we refer the reader to a preliminary version of the method 

described in the proceedings of the International Conference for Learning Representations41. 

The results presented here employ the training regime described in Zhong et al. using 

previously determined poses from a consensus reconstruction41.

Datasets

Simulated compositionally heterogeneous dataset generation—To generate the 

compositionally heterogeneous dataset, the 30S, 50S and 70S subunits of the E. coli 
ribosome were extracted from PDB 4YBB in PyMOL45. A density map of each subunit was 

generated from the atomic model using the molmap46 command in Chimera47 at a grid 

spacing of 1.5 Å/pix and a resolution of 4.5 Å. The resulting volume was padded to a box 

size of D=256, where D is the width in pixels along one dimension. Simulated particle 

images were generated with a custom Python script available in the cryoDRGN software by 

rotating the density map with a random rotation sampled uniformly from SO(3), projecting 

along the z-axis, and shifting the image with an in-plane translation sampled uniformly from 

[−20,20]2 pixels. Images were then downsampled to D=128 by Fourier clipping using a 

custom Python script, corresponding to a Nyquist limit of 6 Å. Projection images were 

multiplied with the CTF in Fourier space, where the CTF was computed from defocus values 

randomly sampled from those given in EMPIAR-1002832, no astigmatism, an accelerating 

voltage of 300 kV, a spherical aberration of 2 mm, and an amplitude contrast ratio of 0.1. An 

envelope function with a B-factor of 100 Å2 was applied. Noise was added with a signal to 

noise ratio (SNR) of 0.1 where the noise-free signal images were defined as the entire D × D 
image. After performing this procedure for each subunit, 10k, 15k, and 25k simulated 

particles of the 30S, 50S, and 70S ribosome, respectively, were combined.

Simulated conformationally heterogeneous dataset generation—To simulate 

continuous conformational heterogeneity, 50 density maps were generated along a one-

dimensional reaction coordinate defined by rotating a dihedral angle in an atomic model of a 

hypothetical protein complex. Each model was generated at 0.03 radian increments of the 

bond rotation, leading to a total range of 1.5 radians. Density maps were generated using the 

molmap46 command in Chimera47 at a grid spacing of 6 Å/pix and resolution of 12 Å, and 

padded to a box size of D=128. For the Uniform dataset, 1000 projection images were 

generated for each density map at random orientations and in-plane translations sampled 

from [−10,10]2 pixels. For the nonuniform datasets, particles were generated along the 

reaction according to a 3-component Gaussian mixture model with means at the 10th, 25th, 

and 40th density map and standard deviation of 0.09 and 0.03 radians for the Cooperative 
and Noncontiguous datasets, respectively. Sampled reaction coordinate values were binned 

to convert into a particle distribution among the 50 generated density maps, and clipped at 

values of the reaction coordinate beyond the 50 maps. A total of 50k particles were 

generated for each dataset. CTF and noise at an SNR=0.1 were added to all datasets using 

the same procedure described above with CTF defocus values randomly sampled from 

EMPIAR-1002832.
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Real cryo-EM datasets—Picked particles and the star file containing CTF parameters 

were downloaded from the Electron Microscopy Public Image Archive (EMPIAR)48 for 

datasets EMPIAR-10049, EMPIAR-10028, EMPIAR-10076, and EMPIAR-10180. Particle 

images were downsized to the image size used in training by clipping in Fourier space with a 

custom Python script available in the cryoDRGN software.

Consensus reconstructions

Homogeneous 3D reconstruction of the Pf80S ribosome (EMPIAR-10028) was performed 

in cryoSPARC v2.416 using the ab-initio reconstruction job followed by the homogeneous 

refinement job with default parameters. The final reconstruction reported a GSFSC0.143
49 

resolution of 3.1 Å with a tight mask and 4.1 Å unmasked.

Homogeneous 3D reconstruction of the bL17-depleted ribosome assembly intermediates 

(EMPIAR-10076) was performed as above, leading to a final structure with a GSFSC0.143 

resolution of 3.2 Å with a tight mask and 4.8 Å unmasked.

Homogeneous 3D reconstruction of the RAG complex (EMPIAR-10049) was performed as 

a “Homogeneous Refinement (NEW!)” job in cryoSPARC v2.15 with all default settings, 

including C1 symmetry. The asymmetric PC map of the RAG complex was used as an initial 

model (EMDB 6489), low pass filtered by 30 Å. The final structure had GSFSC0.143 

resolution of 3.6 Å with a tight mask and 4.6 Å unmasked.

Poses from a consensus reconstruction of the pre-catalytic spliceosome were obtained from 

the star file deposited in EMPIAR-10180.

CryoDRGN homogeneous reconstruction

CryoDRGN decoder networks with no input latent variable were trained for 50 epochs on 

full-resolution images of the RAG complex (D=192, 1.23 Å/pix) and the Pf80S ribosome 

(D=360, 1.34 Å/pix). The tested architectures were MLPs with ReLU activations, where the 

network size was either 3 hidden layers of width 128 (denoted 128 × 3), 256 × 3, 512 × 3, 

1024 × 3, or 1024 × 10. Image poses were set to poses obtained from a consensus 

reconstruction in cryoSPARC, described above16. Networks were trained on minibatches of 

8 images using the Adam optimizer with a learning rate of 0.0001. Once training completed, 

the decoder network was evaluated on the 3D coordinates of a D × D × D voxel array 

spanning [−0.5,0.5]3, where D is the image size in pixels along one dimension. For 

visualization in Figure 2, the RAG complex density maps were sharpened by −54 Å2 and 

−127.4 Å2 for the cryoDRGN and cryoSPARC map, respectively, based on Guinier 

analysis49 performed in a custom Python script; both the cryoSPARC and cryoDRGN 

density maps of the Pf80S ribosome were sharpened using the published B-factor of −80.1 

Å2.

Map-to-map FSC

Fourier shell correlation curves were computed between the cryoSPARC density maps and 

cryoDRGN density maps using a custom Python script available in the cryoDRGN software. 

Real space masks were defined by first thresholding the cryoDRGN volume at half of the 
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99.99th percentile density value. The mask was then dilated by 25 Å from the original 

boundary, and a soft cosine edge was used to taper the mask to 0 at 15 Å from the dilated 

boundary.

CryoDRGN heterogeneous reconstruction

Model training—A summary of the datasets, hyperparameters, and runtimes for all 

cryoDRGN heterogeneous reconstruction experiments is given in Supplementary Table 1. 

CryoDRGN encoder-decoder networks were trained from their randomly initialized values 

for each single particle cryo-EM dataset. Image poses used for training were either the 

ground truth poses for simulated datasets or poses obtained from a consensus reconstruction 

as described above. All networks were trained on minibatches of 8 images using the Adam 

optimizer with a learning rate of 0.0001. After training, the dataset images were evaluated 

through the encoder to obtain the latent encoding for each image. We define the latent 

encoding as the maximum a posteriori value of qξ(z|X) predicted by the encoder.

Latent space visualization—For latent spaces with dimension greater than 2, the 

distribution of latent encodings were visualized with standard dimensionality reduction 

techniques such as PCA and UMAP35. PCA projections of latent space particle distributions 

were computed using the implementation provided by scikit-learn50. Two-dimensional 

UMAP35 embeddings were computed using version 0.4.1 of the Python implementation 

(https://github.com/lmcinnes/umap) with the default settings of k=15 for the k-nearest 

neighbors graph and a minimum distance parameter of 0.1. Automated tools to analyze and 

visualize the latent space given the outputs of model training are provided in the cryoDRGN 

software.

Density map generation—Density maps were generated for a given value of the latent 

variable z by evaluating the trained decoder on z and the 3D coordinates of a D × D × D 
voxel array spanning [−0.5,0.5]3. For higher dimensional latent spaces (|z| > 1), to generate 

representative samples from different regions of the latent space, we perform k-means 

clustering of the dataset’s latent encodings to partition the latent space into k regions. A 

representative density map for each region is generated at the “on-data” cluster center; We 

define the latent encoding closest in Euclidean distance to the k-means cluster center as the 

“on-data” cluster center. Automated tools to generate k representative density maps 

following this procedure are provided in the cryoDRGN software.

Heterogeneous reconstruction of simulated datasets

For each simulated heterogeneous dataset, a 1-D latent variable model was trained for 100 

epochs. The encoder architecture was 256 × 3 and the decoder architecture was 512 × 5. The 

image poses used for training were the ground truth image poses. After training on the 

Uniform simulated dataset, structures shown in Figure 3C were generated at the 5th, 23rd, 

41st, 59th, 77th, and 95th percentile values of the latent encodings, and sharpened by a B-

factor of −100 Å2. After training on the Compositional simulated dataset, structures shown 

in Figure 3D were generated at the k-means cluster centers after performing k-means 

clustering with k=3 on the latent encodings and sharpened by a B-factor of −100 Å2. 
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Spearman correlation was computed using the implementation provided in the scipy version 

1.5.2 Python package (https://www.scipy.org).

Per-image FSC

For simulated datasets where the ground-truth distribution of structures is known, “per-

image” FSC curves can be computed between cryoDRGN-reconstructed density maps and 

the ground-truth density maps to quantitatively evaluate the reconstructed ensemble. To 

compute a per-image FSC, an FSC curve is computed between the density map generated by 

the cryoDRGN decoder at the value of the latent variable predicted for a given particle 

image and the ground-truth density map used to generate the image. 100 images randomly 

sampled according to the ground truth distribution of structures were used in the assessment 

of each of the simulated datasets. No real-space mask was used in computing the FSC.

Heterogeneous reconstruction of the RAG complex (EMPIAR-10049)

A 10-D latent variable model was trained on full-resolution particle images from 

EMPIAR-10049 (D=192, 1.23 Å/pix) and their consensus reconstruction poses for 25 

epochs. The encoder and decoder architectures were 1024 × 3.

Density map generation: After training, k-means clustering with k=100 was performed 

on the predicted latent encodings for the dataset, and volumes were generated at the “on-

data” cluster centers using the decoder network. Six structurally diverse representative 

structures were manually selected for visualization in Figure 4A.

Traditional heterogeneous refinement: To validate the heterogeneous RSS and NBD 

conformations observed in cryoDRGN, we use the 6 selected density maps, low pass filtered 

by 20 Å, as initial models to a heterogeneous refinement job in cryoSPARC v2.15.

Heterogeneous reconstruction of the 80S ribosome (EMPIAR-10028)

Pilot experiments: A 10-D latent variable model was trained on downsampled images 

(D=128, 3.78 Å/pix) from EMPIAR-10028 and their consensus reconstruction poses for 50 

epochs. The encoder and decoder architectures were 256 × 3.

Particle filtering: After training, k-means clustering with k=20 was performed on the 

predicted latent encodings for the dataset. One cluster contained 860 particles that were 

outliers when viewing the projected encodings along the first and second principal 

component. This observation was reproducible, and the particles belonging to the outlier 

cluster from either of two replicates (960 particles in total) were removed from the dataset.

High-resolution training: After particle filtering, a 10-D latent variable model was 

trained on a random 90% the remaining 104,280 images (D=256, 1.88 Å/pix) for 25 epochs. 

The encoder and decoder architectures were 1024 × 3.

Density map generation: After training, k-means clustering with k=50 was performed 

on the predicted latent encodings for the dataset, and volumes were generated at the “on-

data” cluster centers using the decoder network. A representative structure of the rotated 
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state and the unrotated state were manually selected for visualization in Figure 4B. A 

representative structure of the missing head group state was manually selected for 

visualization in Extended Data Figure 3. The numbered k-means cluster centers shown in 

Extended Data Figure 3A, originally arbitrarily ordered, were reordered based on 

hierarchical clustering of the latent encodings with Euclidean distance metric and average 

linkage.

Validation with traditional reconstruction: To validate the 40S rotated state, we 

selected 4,889 particles as the cluster from k-means clustering with k=20 that was separated 

along PC1 (Extended Data Fig. 4). These particles were then input to a homogeneous 

refinement job in cryoSPARC v2.15. The cryoDRGN density map, low pass filtered by 30 

Å, was used as the initial model.

Heterogeneous reconstruction of the assembling 50S ribosome (EMPIAR-10076)

Pilot experiments: A 1-D and a 10-D latent variable model were trained on downsampled 

images (D=128, 3.3 Å/pix) from EMPIAR-10076 with poses from a consensus 

reconstruction for 50 epochs. The encoder and decoder architectures were 256 × 3.

Particle filtering: From the 1-D experiment, particles with z ≤ −1 were removed from 

subsequent analysis. From the 10-D experiment, a 5-component, full-covariance Gaussian 

mixture model (GMM) was fit to the latent encodings using scikit-learn50, and particles 

from the outlier cluster were removed. The outlier cluster was identified by visualizing the 

magnitude of the latent encodings (Extended Data Fig. 4). The intersection of both filtered 

particles stacks was used for subsequent analysis. 2D classification of the kept and removed 

particles was performed in cryoSPARC v2.416 using all default options except for the 

number of 2D classes, which was set to 20. Ab-initio reconstruction of the kept and removed 

particles was performed in cryoSPARC v2.416 using all default options.

High-resolution training: A 10-D latent variable model was trained on a random 90% of 

the remaining 97,031 images (D=256, 1.7 Å/pix) for 50 epochs. The encoder and decoder 

architectures were 1024 × 3. Two additional replicates were run, one with the exact settings 

from a different random initialization and a second with latent variable dimension |z| = 8.

Density map generation: After training, the dataset’s latent encodings were viewed in 

2D with UMAP35. Density maps corresponding to the major and minor assembly states were 

generated at the “on-data” mean latent encoding for each class, i.e. zM = 1
|M| ∑i ∈ M zi, 

where M is the set of particles assigned to a given class in the published 3D classification.

Map-to-map FSC: The map-to-map FSC was computed between the cryoDRGN and 

published density map for each minor class. Density maps were aligned in Chimera and a 

loose real-space mask (obtained as described above) was applied before computing an FSC 

curve.

Reproducibility analysis: For each replicate, a 5-component, full-covariance GMM was 

fit to the UMAP embeddings using scikit-learn50. UMAP axes were negated to facilitate 

Zhong et al. Page 17

Nat Methods. Author manuscript; available in PMC 2021 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



visual comparison. Label assignments were permuted to ensure consistent assignments 

between replicates. Clustering consistency was computed as the percentage of particles with 

identical GMM labels.

New assembly state C4: Particles corresponding to the new assembly state were 

manually selected from the UMAP embeddings with an interactive lasso tool in a custom 

visualization script available in the cryoDRGN software, whose outline is shown in the 

Figure 5F inset. The mean latent encoding of the resulting 1,113 selected particles was used 

to generate the structure representative for this new assembly state.

Validation of C4 with traditional refinement: The particles associated with class C4 

were then input to a homogeneous refinement job in cryoSPARC v2.15. The cryoDRGN 

density map, low pass filtered to 30 Å, was used as the initial model.

Heterogeneous reconstruction of the pre-catalytic spliceosome (EMPIAR-10180)

Pilot experiments: A 10-D latent variable model was trained on downsampled images 

(D=128, 4.25 Å/pix) from EMPIAR-10180 for 50 epochs. The encoder and decoder 

architectures were 256×3. Poses were obtained from the consensus reconstruction values 

given in the consensus_data.star deposited to EMPIAR-10180.

Particle filtering: The UMAP embeddings showed multiple clusters where the largest 

cluster corresponded to fully formed pre-catalytic spliceosomes. Particles corresponding to 

other clusters were removed from subsequent analyses by first performing k-means 

clustering with k=20 on the latent encodings, and removing k-means clusters whose 

structure did not resemble the fully formed pre-catalytic spliceosome (11 out of 20 k-means 

clusters in one replicate, and 10 out of 20 in a second replicate).

High-resolution training: A 10-D latent variable model was trained on a random 90% of 

the remaining 155,247 images (D=256, 2.1 Å/pix) for 50 epochs. The encoder and decoder 

architectures were 1024 × 3.

Density map generation: After training, the dataset’s latent encoding was viewed in 2-D 

with UMAP and PCA. Density maps in Figure 6D were generated at the latent encoding 

values along the PC1 axis at five equally spaced points between the 5th and 95th percentile of 

PC1 values. Density maps in Supplementary Figure 1 were generated at the latent encoding 

values along the PC2 axis at five equally spaced points between the 5th and 95th percentile of 

PC2 values. Density map generation along PC axes is implemented in a custom script in the 

cryoDRGN software.

Latent space graph traversal for generating trajectories

Trajectories were generated by first creating a nearest-neighbors graph from the latent 

encodings of the images, where a neighbor was defined if the Euclidean distance was below 

a threshold computed from the statistics of all pairwise distances. We choose a value for 

each dataset such that the average number of neighbors across all nodes is 5. Edges were 

then pruned such that a given node does not have more than 10 neighbors. Then, Djikstra’s 
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algorithm37 was used to find the shortest path along the graph connecting a series of anchor 

points, and density maps were generated at the z value of the visited nodes. Anchor points 

were either defined manually or set to be the “on-data” cluster centers after performing k-

means clustering of the latent encodings.

For the graph traversal of the RAG complex in Supplemental Video 1, we use the latent 

encodings of the 6 density maps shown in Figure 4A as the anchor points. For the graph 

traversal of the Pf80S ribosome in Supplemental Video 2, we use 10 randomly chosen latent 

encodings as the anchor points out of the k-means cluster centers with k=20 that are shown 

prior to the graph traversal. For the graph traversal of the assembling ribosome in 

Supplemental Video 3, we use the latent encodings of the minor assembly states following 

the three assembly pathways given in Figure 7 of Davis et al12. For the graph traversal of the 

pre-catalytic spliceosome in Supplemental Video 4, we use the latent encodings of the k-

means cluster centers with k=20 as the anchor points. All density map figures and 

trajectories were prepared with ChimeraX51 and are viewed at identical isosurface levels for 

a given model unless otherwise specified. CryoDRGN’s graph traversal algorithm is 

provided in the cryoDRGN software.

3DVA

3D Variability Analysis23 was performed in cryoSPARC v2.15 on the 139,722 particles and 

their consensus poses comprising the filtered EMPIAR-10180 dataset used in cryoDRGN 

analysis. Three variability modes were solved with all default options and the low-pass filter 

resolution set to 7 Å. 3DVA per-particle latent encodings were extracted from the 

cryoSPARC metadata file. Spearman correlation was computed using the implementation 

provided in the scipy version 1.5.2 Python package (https://www.scipy.org). To visualize the 

component 1 trajectory in Extended Data Figure 10, the consensus density map was 

combined with the component 1 eigen-volume at 5 equally spaced points between the 1st 

and 99th percentile value of the 3DVA component 1 latent encoding distribution.

Data Availability Statement

Trained cryoDRGN models and generated volumes are deposited to Zenodo at doi:10.5281/

zenodo.4355284. Inputs files for training (excluding particle stacks) are deposited to Zenodo 

at doi:10.5281/zenodo.4412072 and are also available at www.github.com/zhonge/

cryodrgn_empiar. We used the following publicly available datasets:

• EMPIAR-10049: Cryo-EM structures of a synaptic RAG1-RAG2 complex

• EMPIAR-10028: Cryo-EM structure of a Plasmodium falciparum 80S ribosome 

bound to the anti-protozoan drug emetine

• EMPIAR-10076: Modular assembly of the large bacterial ribosome

• EMPIAR-10180: Structure of a pre-catalytic spliceosome

The simulated datasets of conformational and compositional heterogeneous are deposited to 

Zenodo at doi:10.5281/zenodo.4355284.
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Code Availability Statement

CryoDRGN software and analysis scripts are implemented in custom software deposited to 

Zenodo at doi:10.5281/zenodo.4412058 and are also available at www.github.com/zhonge/

cryodrgn.

Extended Data

Extended Data Figure 1. Per-image FSC curves between ground-truth maps and density maps 
from cryoDRGN trained on simulated heterogeneous datasets.
For each dataset, we compute 100 “per-image FSC curves” between generated and ground-

truth density maps (Methods). Images are sampled at equally spaced percentiles along the 

reaction coordinate for the Uniform, Cooperative, and Noncontiguous datasets. For the 

Compositional dataset, the per-image FSC for 20, 30, and 50 randomly sampled images of 

the 30S, 50S, and 70S ribosome, respectively, are shown. No mask is used in computing the 

FSC.
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Extended Data Figure 2. RAG complex density maps reconstructed by cryoDRGN and by 
heterogeneous refinement in cryoSPARC.
A) Front (top) and back (bottom) view of the six cryoDRGN density maps of the RAG 

complex from Figure 4B.

B) Density maps from 3D classification in cryoSPARC using the cryoDRGN density maps 

in (A) as initial models. Gold-standard FSC resolution and number of particles used in 

reconstruction are noted.
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C) Two side views of the density maps from 3D classification in (B), focusing on the RSS 

and NBD.

Extended Data Figure 3. Missing head group of the Pf80S ribosome.
A) UMAP visualization of latent space encodings of EMPIAR-10028 particles with 50 

sampled points shown in black. Sampled points are ordered according to distances in latent 

space (Methods). Visual inspection of the 50 volumes generated at the depicted points 

reveals 3 volumes with the 40S in a rotated state (purple) and 6 volumes with portions of the 

40S head region missing (pink).

B) Density map of the 80S ribosome with the missing head group reconstructed by 

cryoDRGN (pink) compared with the density maps from Figure 4C showing the canonical 

(blue) and 40S-rotated (purple) forms of the 80S ribosome. The density maps are generated 

from points 32, 4, and 1 in panel A from left to right.
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Extended Data Figure 4. Validation of Pf80S rotated state with cryoSPARC.
A) PCA and UMAP visualization of the cryoDRGN latent space representation of Pf80S 

particle images with 4,889 particles separated along PC1, selected with k-means clustering, 

colored in purple (Methods).

B) Density map from cryoSPARC homogeneous refinement (purple) using the 4,889 

particles selected in (A). The density map is also shown superimposed with the cryoDRGN 

unrotated state (blue) and annotated as in Figure 4C.

C) Gold standard FSC (GSFSC) curve between independent half-maps of the cryoSPARC 

refinement of the Pf80S rotated state and map-to-map FSC between the cryoDRGN and 

cryoSPARC density map of the Pf80S rotated state. Dotted lines indicate 0.5 and 0.143 

cutoffs.
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Extended Data Figure 5. Filtering of particles from the assembling ribosome dataset.
A) UMAP visualization of the 10-D latent encodings from cryoDRGN as in Figure 5B, 

colored by cluster after fitting a 5-component Gaussian mixture model. The cluster that was 

removed from subsequent analysis is colored orange.

B) UMAP visualization of (A), colored by the magnitude of the latent encodings, ||z||.

C) Nine randomly sampled particle images from EMPIAR-10076 with latent encoding 

magnitude ||z|| > 10 as predicted from cryoDRGN training in (A,B). Each image is 419.2 Å 

along each side.

D) Table summarizing dataset filtering.

E,F) 2D classification and ab initio reconstruction of the 34,868 removed particles.

G,H) 2D classification and ab initio reconstruction of the 97,031 kept particles.
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Extended Data Figure 6. Minor LSU assembly states reconstructed by cryoDRGN.
A) Density maps of the LSU minor assembly states reconstructed by cryoDRGN. Each 

cryoDRGN structure is generated at mean of the latent encoding of particles with the 

corresponding class assignment from Davis et al.12

B) Map-to-map FSC curves between the generated cryoDRGN density maps and the 

published density map from Davis et al.12. Published resolutions for assembly states B-E 

ranged between ~4–5 Å. Dotted lines indicate 0.5 and 0.143 cutoffs.
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C,D) Reproduction of the cryoDRGN latent space shown in Figure 5G, colored by minor 

assembly state (C), or viewed in separate panels (D).

Extended Data Figure 7. Validation of LSU class C4 with cryoSPARC.
A) Density map from cryoSPARC homogeneous refinement of the 1,113 particles selected 

from the cryoDRGN latent representation that constitute class C4 (right), compared with the 

density map generated by cryoDRGN (left) from Figure 5I. rRNA helix 68 is circled in red.

B) Gold standard FSC (GSFSC) curve between independent half-maps of the cryoSPARC 

reconstruction and map-to-map FSC between the cryoDRGN and cryoSPARC maps shown 

in (A). Dotted lines indicate 0.5 and 0.143 cutoffs.
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Extended Data Figure 8. Reproducibility of cryoDRGN’s latent space representation of the 
assembling ribosome.
A) UMAP visualization of the latent encodings from replicate runs of cryoDRGN trained on 

the filtered particles of EMPIAR-10076. Particle embeddings are colored by major assembly 

state assigned from 3D classification in Davis et al12.

B) UMAP visualization of (A), colored by cluster after fitting a 5-component Gaussian 

mixture model on the UMAP embeddings.

C, D) Consistency of the GMM labeling between replicates reported as the percentage of 

particles with identical labels (C) and the confusion matrix of GMM cluster assignments 

(D).
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Extended Data Figure 9. Comparison of multi-body refinement and cryoDRGN of the pre-
catalytic spliceosome.
A) Visualization of a rigid-body trajectory from multibody refinement of the pre-catalytic 

spliceosome. Snapshots are extracted from the trajectory along PC1 of rigid-body 

orientations, showing a large-scale motion of the SF3b subcomplex. The masks that define 

the rigid-body decomposition of the complex are shown on the right. The circle highlights a 

helix that breaks at the boundary between bodies where the rigid-body assumption no longer 

holds. Adapted from Video 3 of Nakane et al.19 and density maps and masks deposited in 

EMPIAR-10180.

B) Alternate view of cryoDRGN’s PC1 traversal in Figure 6. CryoDRGN learns the same 

overall motion of the SF3b subcomplex, however its neural network representation lacks the 

helix-breaking artifact.
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Extended Data Figure 10. Comparison of cryoSPARC’s 3D variability analysis and cryoDRGN.
A) Density map of the consensus reconstruction and 2D projections of the top three 3DVA 

variability components (i.e. eigen-volumes) that form a linear basis describing structural 

heterogeneity of the pre-catalytic spliceosome.

B) 3DVA latent encodings of particles from the filtered EMPIAR-10180 dataset.

C) Comparison of 3DVA component 1 latent encodings and PC1 of the cryoDRGN 10-D 

latent encodings from Figure 6C. Correlation indicates Spearman correlation.

D) 3DVA component 1 trajectory at the depicted points in (B).
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E) Alternate view of the density maps from the cryoDRGN PC1 trajectory in Figure 6D.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The cryoDRGN method for heterogeneous single particle cryo-EM reconstruction.
A) The cryoDRGN model consists of two neural networks structured in an image encoder-

volume decoder architecture with a continuous latent variable representation of 

heterogeneity. During training, each particle image is encoded into the low-dimensional 

latent space, and then reconstructed as its corresponding model slice based on the Fourier 

slice theorem. Image and volume data are depicted in real space for visual clarity.

B) Once a cryoDRGN model has been trained, the full dataset of particle images is encoded 

into the latent space, which is visualized as a contour map here with darker regions 

corresponding to higher particle density (center). The decoder, which represents an ensemble 

of 3D density maps, can directly generate density maps from arbitrary values of the latent 

variable (right). The particle stack may also be filtered using the latent space representation 

for validation of specific structures via traditional tools or to remove impurities from the 

dataset (left). Example images from EMPIAR-1018036.
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Figure 2). Neural network representation of cryo-EM density maps.
A) Density maps of the RAG1-RAG2 complex (EMPIAR-10049)31 and of the eukaryotic 

Pf80S ribosome (EMPIAR-10028)32 reconstructed by cryoDRGN’s decoder neural network 

(left) and a traditional, voxel-based reconstruction in cryoSPARC (right). The cryoDRGN 

volumes were generated from decoder networks with 3 hidden layers and 1024 nodes per 

hidden layer (denoted as 1024 × 3) trained for 25 epochs.

B) Fourier shell correlation (FSC) curves between density maps produced by the cryoDRGN 

decoder of varying architecture and the traditional reconstruction in (A).

C,D) Evolution of the FSC curve in (B) and the training curve over multiple epochs of 

cryoDRGN model training.

E) Training speed in minutes per 100k images for cryoDRGN decoder networks of different 

architectures on different image sizes (D, in pixels) on a single Nvidia V100 GPU.

F) Representative regions of the RAG1-RAG2 density map from cryoDRGN superimposed 

with the published atomic model (PDB: 3JBX).
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Figure 3). CryoDRGN heterogeneous reconstruction of simulated datasets.
A) Ground truth density maps simulating continuous heterogeneity generated by sampling 

conformations along a 1-D conformational transition from leftmost to rightmost structure 

(left). Particles along this conformation transition were sampled uniformly (top), or with a 

mixture of Gaussians of varying widths (middle, bottom) to simulate various degrees of 

cooperative transitions between three states.

B) Compositional heterogeneity simulated by mixing particles of the 30S, 50S, and 70S 

bacterial ribosomal complexes.

C) Density maps reconstructed by cryoDRGN trained on the uniformly sampled dataset in 

(A). Six structures are sampled from the specified values of the latent variable (top). “Per-

image” Fourier Shell Correlation (FSC) curves are shown, where for 100 images equally 

spaced along the reaction coordinate, we compute the FSC between a map generated by 

cryoDRGN at the predicted latent encoding for each image and ground truth density map for 

that image (bottom). See Methods for description of the “Per-image” FSC approach.

D) Density maps reconstructed by cryoDRGN from the Compositional dataset in (B), and 

their FSC to the corresponding ground truth density map.

E-H) Predicted latent space encoding for each particle image of different simulated datasets 

versus the ground truth reaction coordinate describing the motion (E,F,G) or the ground 

truth class assignment (H).

All cryoDRGN reconstructions use a 1-D latent variable model.
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Figure 4. Discovery of residual heterogeneity in “homogeneous” datasets.
A) Published density maps of the 369 kDa RAG1-RAG2 complex. The signal end complex 

(left) shows the C2 symmetric core and the paired complex (right) resolves additional 

asymmetric 12- and 23-RSS DNA elements and the RAG-1 nonamer binding domain (NBD) 

that extend below the core.

B) Representative density maps of the RAG signal end complex (EMPIAR-10049)31 

reconstructed by cryoDRGN. Density maps resolve variable conformations of the 12- and 

23-RSS DNA elements and the nonamer binding domain (NBD) missing from the 

homogeneous refinement. Docked atomic model (PDB: 3JBW) of the RAG paired complex 

includes an asymmetric conformation of the RSS and NBD elements outside of the core 

RAG complex.

C) Latent space representation of particles images from EMPIAR-1004931, visualized using 

PCA with explained variance (EV) noted. Structures from (B) are marked with the 

corresponding color.

D) Density map of the 4.2 MDa Pf80S ribosome (EMPIAR-10028)32 in an unrotated (blue) 

and rotated (purple) state reconstructed by cryoDRGN. Arrows indicate rotation of the 40S 

subunit relative to the 60S subunit (top) and motion of the L1 stalk (bottom). Circles indicate 
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differential occupancy of the C-terminal helix of eL8 and an rRNA helix between the two 

states.

E) Latent space representation of particle images from EMPIAR-1002832, visualized using 

PCA with explained variance (EV) noted. Structures from (D) are marked with the 

corresponding color. A cluster of particles separated along PC1 of (D) that corresponds to 

the rotated state of the Pf80S ribosome is noted.

Additional density maps from these datasets are shown in Extended Data Figure 2 and 

Supplemental Videos 1 and 2.
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Figure 5. CryoDRGN heterogeneous reconstruction of the assembly landscape of the bacterial 
large ribosome subunit.
A,B) Latent space representation of particle images of the assembling large ribosomal 

subunit (LSU) (EMPIAR-10076)12 as a histogram or UMAP embeddings after training a 

cryoDRGN 1-D and 10-D latent variable model, respectively.

C,D) Latent space representation of particles colored by major LSU assembly state assigned 

from 3D classification in Davis et al12. Impurities in the dataset were assigned and 

subsequently filtered based on a cutoff of z = −1 in the 1-D case (dotted line), and cluster 
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assignment from a 5-component Gaussian mixture model in the 10-D case. Dotted line in D 
indicates rough outline of cluster assignment, shown in Extended Data Figure 4.

E) Density maps reconstructed by cryoDRGN of the four major assembly states of the LSU, 

after training on the filtered dataset. Dotted line indicates outline of the fully mature 50S 

ribosome.

F,G) Latent space representation of the filtered dataset, colored by major and minor 

assembly state assigned from 3D classification in Davis et al12. Points denote cluster centers 

for the corresponding assembly state. Major assembly state labels correspond to the 

structures from (E). Inset shows magnified view of the state C cluster, and a population of 

particles originally mis-classified into state E.

H,I) CryoDRGN reconstruction of additional density maps, showing the 70S ribosome, an 

impurity during purification, and LSU minor states C4 and E5. Newly identified C4 

resembles major state C in maturation, but contains rRNA helix 68, previously present only 

in mature assembly states E4 and E5.

J) Hyperparameters and runtime of the initial pilot experiments for particle filtering (A-D) 

and the final cryoDRGN model (E-I) trained on the assembling LSU dataset.

Additional density maps are shown in Extended Data Figure 5 and Supplemental Video 3.
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Figure 6. CryoDRGN heterogeneous reconstruction of the pre-catalytic spliceosome.
A) UMAP visualization of the latent space representation of particle images of pre-catalytic 

spliceosome (EMPIAR-10180)36 after training a 10-D latent variable model with 

cryoDRGN.

B) Representative structures generated at points shown in (A) that depict the expected 

structures of the pre-catalytic spliceosome (i,ii), structures likely corrupted by imaging 

artifacts (iii), the complex lacking the SF3b subcomplex (iv), and with the U2 core (v). 

Density maps are shown at identical isosurface levels except for (v) which required a lower 

value to highlight the U2 core.

C) PCA projection of latent space encodings after training a 10-D latent variable model on 

the dataset filtered for the selected region in (A).

D) Structures generated by traversing along PC1 of the latent space representation at points 

shown in (C).

Additional density maps are shown in Extended Data Figure 7 and Supplemental Video 4.
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