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Abstract 

BackGround:  Bacterial genomes are being deposited into online databases at an 
increasing rate. Genome annotation represents one of the first efforts to understand 
organisms and their diseases. Some evolutionary relationships capable of being 
annotated only from genomes are conserved gene neighbourhoods (CNs), phylo-
genetic profiles (PPs), and gene fusions. At present, there is no standalone software 
that enables networks of interactions among proteins to be created using these three 
evolutionary characteristics with efficient and effective results.

Results:  We developed GENPPI software for the ab initio prediction of interaction 
networks using predicted proteins from a genome. In our case study, we employed 
50 genomes of the genus Corynebacterium. Based on the PP relationship, GENPPI 
differentiated genomes between the ovis and equi biovars of the species Corynebac-
terium pseudotuberculosis and created groups among the other species analysed. If 
we inspected only the CN relationship, we could not entirely separate biovars, only 
species. Our software GENPPI was determined to be efficient because, for example, it 
creates interaction networks from the central genomes of 50 species/lineages with an 
average size of 2200 genes in less than 40 min on a conventional computer. Moreover, 
the interaction networks that our software creates reflect correct evolutionary relation-
ships between species, which we confirmed with average nucleotide identity analyses. 
Additionally, this software enables the user to define how he or she intends to explore 
the PP and CN characteristics through various parameters, enabling the creation of 
customized interaction networks. For instance, users can set parameters regarding the 
genus, metagenome, or pangenome. In addition to the parameterization of GENPPI, it 
is also the user’s choice regarding which set of genomes they are going to study.

Conclusions:  GENPPI can help fill the gap concerning the considerable number of 
novel genomes assembled monthly and our ability to process interaction networks 
considering the noncore genes for all completed genome versions. With GENPPI, a user 
dictates how many and how evolutionarily correlated the genomes answer a scientific 
query.
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Background
The annotation of genomes is an important task to perform after sequencing and assem-
bly. Annotating genomes helps researchers to elucidate the functions of predicted open 
reading frames (ORFs). In this study, we largely assign an ORF’s potential role accord-
ing to the sequence similarity of proteins or bases to those of previously characterized 
counterparts [1]. In addition to functionality, there are other features that can be pre-
dicted from ORFs, enabling researchers to annotate a genome from a network’s topolog-
ical characteristics. If we consider ORFs to be vertices and the relationships as edges, a 
complex network can be constructed from a genome. This hypothetical network’s avail-
able information depends on the number of vertices and the quality and stability of the 
associated edges [2]. After a trustable network is obtained, researchers can experiment 
with various close and distant relationships among the vertices. A near relation can be 
defined by the number of edges directly connected to each vertex or the degree of the 
connections. The vertex degree immediately helps to characterize the magnitude of the 
number of connections, facilitating the identification of central or peripheral elements of 
a network of proteins. A distant relation can be defined by referring to the importance 
of a set of vertices V as the most likely to be traversed when connecting an arbitrary 
pair of points u and x in a network. We can consider the vertices possessing such larger 
probabilities to be essential for communication within the web or betweenness central-
ity. Also, we can mention several other centrality measures that are of great importance 
to the analysis of data under a topological perspective, such as PageRank, Bridging Coef-
ficient, Bridging Centrality, Density, and Diameter of a network [3]. In addition to inves-
tigating the gene’s topological annotation products as isolated features, we have recently 
employed a set of notes as input for machine learning (ML) algorithms. ML enables 
us to utilize a new technique for genome annotation [4]. However, when employing 
all these topological analyses to characterize a genome, enriching its annotation starts 
with a trustable protein network. At present, the primary source of genome topological 
annotations is the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) 
database. STRING presents annotation data for more than five thousand genomes 
spread over a wide range of organisms. Such features as conserved gene neighbourhood, 
conserved phylogenetic profile, gene fusion, Gene Ontology features (molecular func-
tion, process, and localization), coexpression, experiments, and bibliographic evidence 
are conjugated, creating a probabilistic strength of belief of interaction for pairs of pro-
teins [5]. Although STRING can annotate the user’s novel genomes, it accomplishes this 
task using traditional annotation processing and sequence similarity. We believe that 
topological annotation’s main disadvantage based on sequence similarity resides in the 
novelty of new genomes. We knew that at least 10% of predicted genes from a recently 
elucidated genome are not present in previously annotated genomes [6]. This property 
implies that in a newly characterized Escherichia coli lineage, at least five hundred genes 
will not receive a single annotation if topological annotations based on sequence simi-
larity (TABSS) are utilized. Therefore, we will miss approximately 2.5 million possible 
annotation interactions, or 10% of possible interactions, because these five hundred 
novel genes have no history. Producing a de novo annotation of the topological network 
for all new genomes assembled is not a practical solution. Instead, we need to gather a 
representative set of genomes of each genus or species to produce high-confidence de 
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novo topological annotations [7]. The main bottleneck to this approach is processing 
power. Even if processing power were not the main issue, the time for doing it would 
become the next pressing issue because we have several new genome lineages availa-
ble daily. To overcome such bottlenecks, we propose a new bioinformatic tool, named 
GENPPI, that is capable of processing a set of genomes stored in a conventional configu-
ration machine.

Implementation
Genomes studied

We obtained the genomes investigated in this work using the official NCBI file trans-
port protocol. We listed the genomes by their GenBank, assembly code, and assembly 
version, for Corynebacterium pseudotuberculosis and Corynebacterium diphtheriae. 
We also included a nickname to enable easy identification across the results section; 
the nickname is surrounded by parentheses: GCA_001457455.1_NCTC11397 (Cdip), 
GCA_001833005.2_ASM183300v2 (Cdip01), GCA_002073375.2_ASM207337v2 
(Cdip02), GCA_004758745.1_ASM475874v1 (Cdip03), GCA_900638705.1_59178_
D01 (Cdip04), GCA_902497465.1_YE-NCPHL-90 (Cdip05), GCA_004771215.1_
ASM477121v1 (Cdiplaus), GCA_000144935.3_ASM14493v3 (Cp1002B), 
GCA_000233735.1_ASM23373v1 (Cp106A), GCA_000265545.3_ASM26554v3 (Cp162), 
GCA_000144675.2_ASM14467v2 (Cp231), GCA_000263755.3_ASM26375v3 (Cp258), 
GCA_000258385.1_ASM25838v1 (Cp267), GCA_000248375.2_ASM24837v2 (Cp316), 
GCA_000259155.4_ASM25915v4 (Cp31), GCA_000241855.1_ASM24185v1 (Cp3995), 
GCA_000227175.1_ASM22717v1 (Cp4202A), GCA_000227605.3_ASM22760v3 
(CpCIP5297), GCA_000143705.2_ASM14370v2 (CpFRC41), GCA_000152065.3_
ASM15206v3 (CpI19), GCA_000255935.1_ASM25593v1 (CpP54B96), 
GCA_000221625.1_ASM22162v1 (CpPAT10), GCA_000730445.1_ASM73044v1 
(CpString).

Metrics and reference genomes

To test the validity of the results observed within the GENPPI interaction networks, we 
performed trials with variations in the following parameters. We describe metrics 1–5 as 
the following: 

1.	 Number of nodes/vertices: number of proteins present in the network;
2.	 Average degree: number of existing interactions compared to the number of pro-

teins;
3.	 Density: ratio between a total number of edges and possible edges according to the 

number of vertices;
4.	 Number of edges: number of interactions between the proteins in the network;
5.	 Maximum degree: number of interactions that the most interactive protein has 

within the network.

We obtained the interaction networks of a set of genomes from model organisms from 
the STRING database. We calculated these metrics using the software GEPHI and 
ordered the columns according the level of importance (Table 1). Among ours objectives 
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for the interaction networks created by GENPPI is the study of centrality measures. We 
believe in the necessity of utilizing differences in degrees to create vertices with distinct 
metrics, thereby avoiding the same centrality values. Thus, we understand that encour-
aging interaction networks for studies of centrality measures requires a nonuniform dis-
tribution of probabilities regarding their vertices’ degrees. This principle dictated our 
way of thinking about the parameters that would classify talented interaction networks 
regarding the study of centrality measures. We define the set of metrics in this section 
as parameters of a network’s desired quality level. Metric 1 (M1) should represent as 
many genes as possible for further analyses. We do not want large numbers for M2, M3, 
and M4 in order to minimize the risk of low discrimination power for centrality meas-
ures. For the sample of genomes depicted in Table 1, most of each genome’s genes are 
accounted for, and we have modest values for metrics from M1 to M5.

Novel heuristic for faster sequence proteins comparing

In our software GENPPI, we represent the proteins through an amino acid histogram, 
which indicates the amino acid frequency distribution within a protein sequence 
(Table 2). In the process of comparing two proteins, we applied our similarity heuris-
tic approach, known as Histofasta checking (Algorithm 1). We based HistoFasta on an 
amino acid frequency difference. Therefore, to match the similarity between proteins, 
our heuristic uses two parameters. The first is the aa limit (-aadifflimit), meaning the tol-
erated histogram difference for an amino acid frequency. The second one is check-limit 
(-aacheckminlimit), representing the maximum number of amino acids that can accept-
ably have the -aadifflimit. For instance, considering hypothetical proteins A and B, we 
first created an amino acid histogram for these two proteins (Table 2). Next, we checked 
the similarity between A and B sequences, comparing the difference between their 
amino acid histograms and verifying the number of different amino acid frequencies 
within the tolerated limit. A pair of similar proteins needs to guarantee minimal iden-
tity. To achieve minimal identity through HistoFasta checking, we performed exhaustive 
comparisons to the Needleman–Wunsch algorithm [8]. For this comparison, we used 

Table 1  Sample of model organisms obtained from the STRING database according to seven 
network metrics

We define these networks as appropriate to infer centrality measures. The majority of the networks from this sample have 
densities less than 0.100. The average degree, density, and edges were 228, 0.077, and 567 thousand, respectively

Organism STRING 
nomenclature

Vertices Average degree Density Edges Maximum 
degree

Escherichia coli ATCC 8739 4190 195.34 0.047 409,238 1697

Bacillus subtilis subsp. subtillis 4181 244.388 0.058 51,0983 2014

Caulobacter crescentus CB15 3721 208.14 0.056 387,245 1393

Mycoplasma genitalium ATCC 33530 474 128.35 0.271 30,419 318

Synechocystis (Cyano-
bacteria)

sp. ATCC 27150 4124 215.33 0.052 444,011 1548

Pseudomonas fluore-
scens

NCIMB 11764 6384 247.91 0.039 791,330 2158

Azotobacter vinelandii DJ 4955 233.558 0.047 578,640 2047

Streptomyces coelicolor A3(2) 7741 357.142 0.046 1,382,317 3576
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the Mycobacterium tuberculosis H37Rv lineage, simulating the search for homologous 
proteins within this genome. We varied our heuristic parameters to find configura-
tions generating satisfactory minimal percentages of identity to the Needleman–Wun-
sch algorithm. Table  3 shows the top values for our heuristic parameters generating 
high percentages of minimum identity for the pairs of proteins classified as similar. For 
illustration, if out of the 26 possible amino acids, there are at least 25 (-aacheckminlimit 
25) whose frequency difference is at most one (-aadifflimit 1), such a pair of proteins 
are classified as similar with at least 92.55% of amino acid identity. With HistoFasta 
checking, GENPPI can verify the relevant similarity of proteins and construct worth 

Table 2  With values 1 and 25 for the aa-limit and check-limit parameters, respectively, our heuristic 
guarantees a minimum identity percentage equal to 92.55% for pairs of similar classified proteins 
(Table 3)

According to the heuristics of GENPPI, proteins A and B are similar because, in the difference of their amino acid histograms, 
at least 25 of the 26 possible types presented frequency differences less than or equal to 1. In this table, we present only 
the 20 principal amino acids for the sake of exemplification. For the proteins A and B, in fasta format below, we have 94.5% 
identity (96.9% similar) according to the Needleman–Wunsch Algorithm. Amino acids in bold format are the different ones 
between A and B sequences

>A Protein

MAYSKKVMDHYENPRNVGSFSNSDNNVGSGLVGAPACGDVMKLQIKVNEKGIIEDACFKTYGCGS

AIASSSLVTEWVKGKSITEAESIRNTTIVEELELPPVKIHCSILAEDAIKAAIADYKSKKYSN

>B Protein

MAYSKKVMDHYENPRNVGSFSNSDLNVGSGLVGAPACGDVMKLQIKVNEEGIIEDACFKTYGCGS

AIASSSLVTEWVKGKSIVEAESIRNTTIVEELELPPVKIHCSILAEDAIKAAISDYKRKKNLN

Amino acids A R N D C E Q G H I L K M F P S T W Y V

A histogram 12 2 8 6 4 10 1 9 2 11 6 13 3 2 4 14 5 1 5 10

B histogram 11 3 8 6 4 11 1 9 2 11 8 12 3 2 4 13 4 1 4 11

abs(A-B): 1 1 0 0 0 1 0 0 0 0 2 1 0 0 0 1 1 0 1 1

Table 3  Comparison of our heuristic to find high similarity pairs of proteins (HistoFasta) to the exact 
algorithm Needleman–Wunsch

For the creation of the core pangenome, we need only the higher matches

AA limit 
(-aadifflimit)

Check limit 
(-aacheckminlimit)

Number 
of similar 
proteins

Mean identity Median identity Min identity

0 26 336 100.00 100.00 100.00

0 25 336 100.00 100.00 100.00

0 24 360 99.95 100.00 97.96

0 23 366 99.91 100.00 96.94

0 22 368 99.90 100.00 96.94

0 21 370 99.87 100.00 94.68

0 20 372 99.83 100.00 91.75

0 19 382 99.60 100.00 85.57

1 26 360 99.95 100.00 97.87

1 25 370 99.84 100.00 92.55

1 24 390 99.07 100.00 29.21

1 23 428 96.21 100.00 29.21

1 22 500 89.38 100.00 17.33

1 21 784 71.68 97.70 17.33

1 20 2164 52.27 39.60 17.33

1 19 6120 43.26 36.36 15.00
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pangenomes. HistoFasta checking consistently achieves the constant time complexity of 
O(26). At the same time, the Needleman–Wunsch algorithm has a complexity of O(nm), 
where the aligned sequences have sizes of n and m letters. 

 

Complexity analysis of the Dynamic Expansion for Conserved Neighbourhood algorithm

The Dynamic Expansion for Conserved Neighbourhood (DECN) algorithm (Algo-
rithm  2) inspects genomes in a forward sense according to the disposition of pro-
tein sequences in a multifasta file. It works simulating the traversing of pairs of DNA 
strands, using a pivotal genome as a reference, sequentially reading open reading 
frames, and looking for neighborhood conservation. As a prerequisite, we must ade-
quately order protein sequences in multifasta files, just like in their respective origin 
nucleotide sequences. The DECN algorithm consists of four nested repeating com-
mands, one of which does not have a specific variable whose limit stipulates the end 
of repeating execution. We calculate the complexity of GENPPI through the DECN 
algorithm. The first loop in Algorithm 2 (line 1) ensures that DECN will inspect all 
proteins of the pangenome. The number of proteins for a set of genomes depends on 
the average number of proteins per genome ( ν ) multiplied by the number of genomes 
( µ ). In line 2, one protein becomes the pivotal one for CN analyses. In line 3 we define 
the dynamic list gene-conservation. It keeps a list of how many times the algorithm 
found each gene as conserved, starting from the pivotal one in the current neighbor-
hood under analysis for all genomes. We update the gene-conservation list each time 
the algorithm finds a conserved gene in one of the genomes under inspection. The ws 
variable determines the initial size of the gene-conservation list, which can get big-
ger. The value of 1 means that there is conservation in the windows of ws size at least 
within the pivotal genome. As HistoFasta heuristics (Algorithm  1) work on protein 
pairs, in line 4, the second DECN loop selects a homolog protein (pivot-2) to pivot-1 
to check for a conserved neighborhood in another genome. As the algorithm inspects 
other genomes via pivot-2 (line 4), the gene-conservation list can increase the occur-
rence of genes in the current window. In line 4, the estimated size of the vector of 
proteins similar to the pivot depends on µ multiplied by the mean similarity between 
genomes at the protein level ( σ ). The GENPPI -ws parameter, set at run time, defines 
the value of the variable ws (window size of CN analyses) at line 8, specifying the exe-
cution limit of the fourth inner loop. Whenever HistoFasta (line 9) estimates a similar 
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protein pair among genomes, the algorithm should increment the level of conserva-
tion (line 11) in a neighborhood and expand the boundaries of the neighborhood for 
the subsequent interaction loop analysis (line 12). 

In Algorithm 2, a ws value means a conserved neighborhood defined with this initial 
conservation window limit. Suppose DECN finds a minimal number of proteins con-
served within an initial window of ws size. In that case, it registers the last conserva-
tion achievement and prepares to check for an incremented value of ws for the next set 
of ws proteins in the vector proteins similar to the pivot. We do not need to reanalyze 
the previous proteins with the initial ws value. We achieve this forward walkthrough by 
monotonically incrementing the variable pos. To better explain the lines 11 and 12 in the 
DECN algorithm, lets suppose the ws parameter equal 3. In this case, gene-conservation 
is initiated with the value of (1 1 1) in line 3. If in the first iteration DECN finds that the 
subsequent neighboring gene of pivot-1 is conserved in another genome, the vector is 
incremented in that position and expanded, thus becoming: (2 1 1 1). Whenever DECN 
finds gene conservation, it first increments the vector value in that position (line 11), 
expands it with the amount of 1’s required for the next iteration (line 12), and resumes 
the expansion of the following gene onwards. The criterion of expansion stop is to check 
ws subsequent genes without verifying any preserved gene. If in step 2 of the expansion 
conservation is found, DECN increments the vector in that position and expands it by 
inserting two more equal values 1, thus being: (2 2 1 1 1). In the next iteration, DECN 
continues to expand the following gene (step 3) onwards. Thus, if in the last expansion 
step (5) another conservation is found, the algorithm increases the vector in that posi-
tion and inserts three more values equal to 1, thus: (2 2 1 1 2 1 1 1). Whenever DECN 
finds conservation in an expansion step, it increments the list in that position and pre-
pares it by inserting the required amount of 1’s for the next iteration.
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In line 6, there is a loop whose terminating condition (line 17) is responsible for the 
uncertainty about the DECN time complexity. The termination of DECN for a pair of 
genomes will happen when a current stretched window no longer gets a minimal per-
centage of conserved proteins within it. We cannot infer an exact formula regarding the 
number of interactions starting at line 6. However, we could try to tabulate it increment-
ing the ws value for a set of genomes. We named this variable ρ . After all, the two inner-
most loops of Algorithm 2 have a complexity proportional to ρ multiplied by ws. We list 
the variables that influence the algorithm for calculating CN in DECN.

•	 ν = average number of proteins among the genomes analyzed;
•	 µ = number of genomes analyzed;
•	 σ = mean similarity between genomes at the protein level;
•	 ws = window size and step for dynamic expansion in DECN algorithm;
•	 ρ = a constant specific for each set of genomes.

Given a pair of knowing ρ , ν , and σ values, we could try to approximate ρ for a particular 
set of genomes. ρ has values that are proportional to ν and σ . We could, for instance, set 
up a quadratic system of linear equations (1) that could allow approximating values of ρ . 
In Eq. 1, suppose the data of the knowing genomes are from Corynebacterium (Cp) and 
Staphylococcus (St).

Once estimated the constants of the Eq. (1), It could be possible in estimating the value 
of ρ ( ν , σ ) with the Eq. 2 for a genome (g):

The DECN complexity was infered by the presence of the below relations per line at the 
Algorithm 2:

•	 νµ : line 1
•	 µσ : line 4
•	 ρws : lines 6 and 8

Finally, the amount of comparations made between the proteins of a set of genomes for 
the neighborhood algorithm conserved with the dynamic expansion (DECN) is esti-
mated with the Eq. 3.

We emphasize that these are estimates. For example, for Staphylococcus, with ws rang-
ing from 5 to 7, we spent 68, 96, and 102 h, respectively. There is no guarantee that there 
will be a monotonic increase in the complexity of one value from ws to another higher, 
that is, that we can count on the repetition factor ρ ( ν , σ ) will always be maintained. 
There is no constant difference between executions from ws=5 to ws=6 (28 hours) and 
from ws=6 to ws=7 (6 h). It characterizes an uncertainty in the number of runs of our 

(1)
{

Kσ σCp + KννCp = KCp

Kσ σSt + KννSt = KSt

(2)ρg (νg , σg ) = Kννg + Kσ σg

(3)O(νµ2σ(ρ(ν, σ))ws)
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algorithm. However, we can count on an average value for this inflation of executions 
between different values of ws.

Complexity analysis of the conserved phylogenetic profile algorithm

Considering that Histofasta, DECN, and Conserved Phylogenetic Profile are the prin-
cipal algorithms of this work, we here documented the conserved phylogenetic profile 
(CPP) algorithm procedure. The CPP algorithm inspects the genomes looking for genes 
co-occurring in several genomes, despite their physical dispositions.

In line 1 of Algorithm 3, we initialize a phylogenetic-profiles hash table, a list of pro-
files’ proteins. We use this hash table to store the phylogenetic profiles of conserved pro-
teins in genomes. The generate-profiles function of line 2 scans the genomes table-hash 
by assembling proteins’ phylogenetic profile. CPP identifies similar proteins by apply-
ing the HistoFasta heuristic, called by the function generate-profiles, for all possible 
protein pairs. Using the variables defined in the DECN algorithm, HistoFasta performs 
(1/2)(ν(ν − 1)) comparisons. The generate-profiles function considers all genomes 
included in the analysis at once. Assuming that we included six genomes in one analy-
sis, the phylogenetic profile of a protein in a query genome would be a 5-bit chain, each 
representing the presence (1) or absence (0) of a similar protein in one of the five subject 
genomes. At the end, line 2 demands (1/2)(ν(ν − 1))(µ− 1) comparisons. In the loop in 
line 3, CPP will inspect the generated profiles for µ genomes. In line 4, CPP will group 
proteins with identical or similar (ppdifftolerated > 0) phylogenetic profiles at the cost 
of ν2 comparisons. Line 5 will iterate through the groups of phylogenetic profiles. The 
iteration turns in line 5 will depend on the number of groups created for each genome. 
Here we should introduce a variable similar to the σ used in the DECN algorithm since 
the number and the size of the groups depends on the evolutionary relationships of 
genomes under analysis but a σ for phylogenetic profile conservation. In line 6, CPP will 
create protein interaction edges for all pairs of proteins. CPP ends after creating PPI 
edges for all possible pairs of proteins with the cost of (1/2)ν(ν − 1) . However, we expect 
the number of comparisons in line 4 and 6 to be smaller than ν since we know not all 
proteins within a genome is conserved among several genomes. The ν can be considered 
the worst case, for instance, when comparing clonal genomes. A GENPPI user can easily 
perceive this smaller than ν behavior when running the program. In general, no matter 
the PP parameters, the program does not take too much time to finish the PP analyses 
but the Algorithm 2. Finally, the big O complexity for the CPP algorithm is estimated 
with the Eq. 4.

In line 4 of Algorithm  3, the agroup function has the ppdifftolerated parameter. This 
parameter determines whether clusters will be formed only of proteins with identical 
phylogenetic profiles (ppdifftolerated 0) or proteins with similar profiles (ppdifftolerated 
> 0). CPP considers two phylogenetic profiles similar if the difference of their bit chains 
is not more significant than the number of different bits tolerated by the ppdifftolerated 
parameter. For instance, If the tolerated difference is equal to 1, proteins whose phyloge-
netic profiles differ by a maximum of 1 bit will be considered proteins with similar pro-
files. By default, GENPPI predictions by the conserved phylogenetic profile method are 

(4)O(µν4σ)
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made only for pairs of proteins with identical phylogenetic profiles. If necessary, a user 
should pass a non-zero ppdifftolerated parameter at execution time.

Trustable results’ measure

Figure 1 presents a scheme in which we attempt to explain the disposition of the results 
that we obtained with GENPPI. Since the GENPPI program can show neighbourhood 
conservation or phylogenetic profiles, the first step is to produce a pangenome. The data 
on this pangenome are not in the session of results but rather are results derived from 
the pangenome. In possession of a pangenome, GENPPI conducts a systematic search 
for neighbourhoods and conserved phylogenetic profiles. To direct this search, we start 
from proteins with a high identity (greater than 90%) or proteins with a high chance of 
belonging to a central or accessory genome under analysis. The point of this approach 
is to show that the central pangenome’s characteristics, phylogenetic profile (PP), and 
conserved neighbourhood (CN) are trustable; otherwise, they would not correctly rep-
resent facts about the evolutionary relationship of known bacterial species. Once the 
correction of evolutionary relationships is confirmed, we can explore distinct ways of 
generating these networks. In brief, the network creation process variations stem from 
limitations that we can attribute to how many interactions we want to be part of format-
ted networks to answer a specific scientific question. However, regardless of the level of 
data restriction imposed by the user to answer their scientific query, we ensure that the 
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Fig. 1  Scheme of an arrangement of the results. Suggesting that GENPPI produces trustable results
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networks produced by GENPPI are trustable because they represent, with a high degree 
of confidence, the evolutionary relationships of the bacterial species under analysis.

Parameters for interaction networks created with GENPPI for Corynebacterium

We try to provide complete control to the user via parameter passing to GENPPI. We 
implemented 29 possible parameters to our software. The number of possibilities one 
could exploit is far beyond this article’s purpose. However, we empirically made such 
a search through the space search of our commands. We listed the final result of our 
quest in Table 4. One should keep in mind the three primary parameter sets: Conserved 
Neighborhood (CN), Phylogenetic Profile (PP), and the last for Gene Fusion (GF). In this 
work, we did not focus on GF since, for our case study, it simply doubles our software’s 
computation and adds few dozen interactions to the final set of PP and CN. One should 
keep in mind that interactions created by these three significant sets are independent: 
no PP parameter will interfere with the CN results and vice-versa. The consequence is 
a whole different set of parameters for CN, but keeping the same PP parameters always 
will provide the same output concerning PP. Another result is that a pair of proteins 
could have three different interactions, one for each primary set of parameters. We 
did not implement a mechanism to join the group of interactions for a pair of proteins. 
Table  4 lists the GENPPI execution commands that produced the networks listed in 
Table 5. All settings were derived from an initially fixed window (CN) of -w1 10, mean-
ing that ten proteins in a window were analysed sequentially for their conservation in all 
genomes under analysis. For example, -cw 4 indicates that four proteins were conserved 
in a neighbourhood, and all proteins were considered to be related to interaction. How-
ever, if we could not find conservation in an analysed window, making use of the -w1 and 
-cw1 parameters, then GENPPI reduced the size of the -w1 window to -w2 and the mini-
mum quantity -cw1 for -cw2 parameters, as automatically configured by the program, 
and the patterns was repeated until the smallest window possible was explored. For this 
reason, when we refer to fixed expansion parameters, GENPPI performs a retraction 
to smaller window values and a smaller minimal threshold of acceptable similarities to 
annotate neighbourhood conservation. An interaction weight is associated with proteins 
said to be interacting, and it is proportional to the distance between proteins within a 
window. When we use the -cw1 1 parameter (CN), we consider windows containing 
any conserved proteins. In Table 5, the association of high window size (-w1) with a low 

Table 4  GENPPI execution line with parameters to generate interaction networks keeps fixed 
expansions for conserved neighbourhoods and variations controlling the number of phylogenetic 
profile interactions

We omitted the folder parameter (-dir) for not contributing changes in the nodes or edges’ volume resulting in the 
networks. Execution d5 is a dynamic expansion for the conserved neighbourhood. d5 has no counterpart results of a fixed 
retraction. d5 was maintained in this table solely to group the documentation on the exploited commands

Id Parameters

f1 genppi -expt fixed -w1 10 -cw1 3 -ppiterlimit 1000000 -ppdifftolerated 3 -ppaadifflimit 0

f2 genppi -expt fixed -w1 10 -cw1 4 -trim 20000

f3 genppi -expt fixed -w1 10 -cw1 1 -ppiterlimit 500000

f4 genppi -expt fixed -w1 10 -cw1 1 -ppcomplete -aadifflimit 0 -aachecklimit 24

d5 genppi -expt dynamic -ws 3 -ppcomplete -ppdifftolerated 1 -pphistofilter
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number of required conserved genes (-cw1) generated adequate node numbers in the 
four best runs compared to STRING. The set of parameters of f1 id was responsible for 
the highest value in all metrics. Concerning phylogenetic profile, we noted that changes 
in the maximum number of desired interactions (-ppiterlimit) from one to half million 
in the f3 id reduced all the metrics’ values from 1 to 7, including the density to visualize 
a network nuance in topology. The parameter for the absence of filters for phylogenetic 
profiles (-ppcomplete) was relevant in the execution of the f4 id. The number of nodes 
was close to that found by STRING. Still concerning PP, only using a limit parameter 
of the maximum number of interactions (-trim) enabled an empirically sought density 
value of less than 0.1 to be obtained. The -trim 20000 parameters in the f2 id enabled a 
density value of 0.034, a number lower than that found by the STRING reference net-
work. It is also interesting to note that the set of parameters of the f4 id provided atrac-
tive values for all metrics, except for the maximum degree, which was nearly half that of 
other results.

Results
Heat‑maps

The analysis of the difference between genomes using nucleotide sequences, known as 
Average Nucleotide Identity (ANI), is presented in Fig. 2. Figure 3 depict the results of 
GENPPI for the same genomes. However, the data used in Fig. 3 show the extent of pro-
teins shared between each pair of genomes. For example, suppose genome A has 2200 
proteins. Of this total, 2000 proteins of genome A have high similarity to proteins of 
genome B. Therefore, at row A and column B of the heat graph, we have 2000/2200 = 
0.91 % protein similarity between genomes A and B. Note that in row B and column A, 
the protein similarity value between these genomes is likely to be specific. We explain 
this difference as occurring because the denominator is the measure of B proteins, and 
the numerator is the chunk of B proteins found in A. The cell colours above and below 
the main diagonal depend on which genome is the numerator and which is denomi-
nator. In Figs. 2 and 3, we chose the colours white and black for low and high identi-
cal genomes, respectively. The gray colour is an intermediate value between white and 
black. Genomes of correlated species compared by ANI are differentiated by small per-
centages and are generally above 90% (Fig. 2). Values of protein similarity between the 
pangenome (Fig. 3) were less sharpened than the ANI values. A rate of less than 50% can 
be a high similarity value between a pair of genomes. The majority (87%) of the possible 
combinations obtained from the 50 genomes of the genus Corynebacterium have a simi-
larity of less than 50% (data not showed). Figure 4 represents the differences between the 
similarities of each pair of genomes, as determined by ANI (Fig. 2)—GENPPI (Fig. 3). 
Importantly, the differences indicated in Fig. 4 are not regarding the similarity between 
the species but how much GENPPI and ANI on these species agree or diverge. In Fig. 4, 
heat map cells with black values indicate a very pronounced difference, while white val-
ues indicate a slightly significant difference between ANI and GENPPI. Most of the units 
that constitute the C. pseudotuberculosis grouping are white. Other units are slightly 
grayish, representing differences with little expressiveness, between ANI and GENPPI. 
Excluding the Cdiplaus genome, the Corynebacterium diphtheriae cluster would have 
a colour pattern similar to that of C. pseudotuberculosis. Some cases are noteworthy 
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in Figs. 2, 3 and 4. (i) The genome identified as GCA_902702935.1_FRC0190 refers to 
Corynebacterium rouxii (high GC Gram+). This genome showed high similarity at both 
the nucleotide and protein levels with the C. diphtheriae grouping. An analysis of the 
data from the heat maps of our work indicates that the genome named C. rouxii was 
C. diphtheriae. In addition to our analyses, the specialized literature in these organisms 
confirms our recommendation to change the nomenclature from the species C. rouxii 
to C. diphtheriae (Badell et al., 2020). (ii) The genome identified as GCA_009789155.1_
ASM978915v1 refers to Corynebacterium ulcerans, strain MRi49. According to the ANI 
analysis, this genome exhibited high similarity at the nucleotide level with the clusters 
of C. pseudotuberculosis and C. diphtheriae. However, the genome exhibited a higher 
similarity at the protein level with C. pseudotuberculosis. Nevertheless, given that we 
can perceive a slight gray colour in the GENPPI heat map, we believe that this species 
has some protein similarity to C. pseudotuberculosis. In this case, the literature describes 
the species C. pseudotuberculosis, C. diphtheriae, and C. ulcerans as being evolution-
arily related (Busch et al., 2019; McNamara, Cuevas, and Songer 1995). Most of Fig. 4 
is coloured white, meaning that the ANI enables us to reach the same conclusion as 
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Fig. 2  Average nucleotide identity for 50 genomes of the genus Corynebacterium. The largest grayish square 
represents the clusters of C. pseudotuberculosis and Corynebacterium diphtheriae. Both groupings have units 
that are almost black due to the high score of DNA similarities
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GENPPI regarding the minor similarity between the majority of the possible relation-
ships between each pair of genomes. However, there is a considerable portion of Fig. 4 
that is in black colouration. The colour reflects similarities found at the nucleotide 
level that do not sustain themselves at the amino acid level compared with the pange-
nome analyses of GENPPI. It is interesting to note that for the clusters of C. pseudo-
tuberculosis and C. diphtheriae, the pattern of similarity between ANI and GENPPI is 
notable, despite the presence of other numerical values. By guarding the differences in 
the similarity quantities, we reach the same conclusions between Figs. 2 and 3 regard-
ing the evolutionary proximity of cluster organisms. Using the ANI results (Fig. 2), we 
can note similarities between genome sequences not reflected in the pangenome (Fig. 3). 
Such closeness extends beyond the clusters of C. diphtheriae and C. pseudotuberculosis. 
Therefore, our results support the hypothesis that the similarity between species using 
the protein pangenome is more useful for differentiating them compared to the DNA 
sequences. This finding is reasonable because we have demonstrated in Fig. 3 that the 
species are distinctive with distinct pangenomes, despite having similar DNA sequences, 
as depicted in Fig.  2. The differentiation of proteins is known to occur because of 
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Fig. 3  Pangenome similarity profile for the same 50 genomes of the genus Corynebacterium depicted 
in Fig. 2. The clusters of C. pseudotuberculosis and Corynebacterium diphtheriae are the most grayish. The 
remaining units are whitish due to the low protein similarities of their phylogenetic profiles
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transcription in the DNA strands. Therefore, a phylogenetic analysis using the pange-
nome helps to more accurately determine differences between species compared with 
an identical study examining DNA. Nevertheless, when we analysed genomes from the 
same species, there was parity between phylogenetic analyses using ANI and GENPPI.

Graph of boxes of conserved phylogenetic profiles

Figure  5 summarizes the phylogenetic profiles present in each genome analysed 
(Genome) versus the bulk of genomes in which these profiles appear (Genomes). 
Therefore, the Y-axis is on the scale from 0 to N, where N is the total genome. In this 
graph, a median means a load of genomes in which we found conserved phylogenetic 
profiles, and the width of a plot box is proportional to the number of profiles con-
served in a genome. The analysis of conserved phylogenetic profiles made by GENPPI 
demonstrated the relationship between the ovis and equi biovars of C. pseudotuber-
culosis. The biovar equilinage has six genomes: Cp106A, Cp162, Cp258, Cp31, Cp316, 
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Fig. 4  Profile differences between Figs. 2 and 3. It accounts for the chunk of divergence about ANI and the 
pangenome raised by GENPPI. Black cells represent the maximum difference, while white cells account for 
smaller differences, with grayish units representing intermediate differences. The majority of the comparisons 
are white because ANI and GENPPI agree on the low similarity of the compared genomes and small 
differences
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and CpCIP5297. We employed the median and first and third quartiles of genome box 
plots to demonstrate biovar equi separation. The equi biovar is represented by the first 
quartile of the plot boxes of the genomes aligning near the median of the plot boxes 
of genomes belonging to the biovar ovis. The genomes of the biovar equi that fall into 
this scenario are the following: GCA_000265545.3_ASM26554v3 (Cp162, from a camel 
in Egypt), GCA_000263755.3_ASM26375v3 (Cp258, from a horse), GCA_000259155.4_
ASM25915v4 (CpCp 31, from a buffalo), GCA_000248375.2_ASM24837v2 (Cp316, from 
a horse in the USA) and GCA_000227605.3_ASM22760v3 (CpCIP5297, from a horse 
in Kenya). The exception to this rule was the genome with end GCA_000233735.1_
ASM23373v1 (Cp106A, from a horse in the USA), which presented the first quartile 
closest to the ovis biovar strains. However, the median Cp106A was observed to be 
closer to the biovar equi. The expanded box plots are sixteen and comprise the species 
C. pseudotuberculosis. The box plots of the genomes of the species C. diphtheriae are 
seven and have a smaller width than that of C. pseudotuberculosis. Even because these 
box plots are less represented in this set of genomes, the other species did not show 
expressive phylogenetic conservation, and we presented plot boxes with a small width. 
These other species have only one genome representing them in this set of 50 from the 
genus Corynebacterium. Genomes numerically underrepresented compared to C. pseu-
dotuberculosis and C. diphtheriae account for phylogenetic profiles preserved solely for 
the genus Corynebacterium. The C. diphtheriae and C. pseudotuberculosis clusters, on 
the other hand, dominate the number of conserved phylogenetic profiles. We utilized 
the species C. diphtheriae as a reference genome to assemble the first fifteen genomes 
of C. pseudotuberculosis. At the time, we believed that the species C. diphtheriae and C. 
pseudotuberculosis were very similar. At the end of the first assembly, we concluded that 
these species had a similarity level above 60% at the protein level. For the first automatic 
annotation transfer, this level of similarity was satisfactory. However, in Fig. 3, the col-
ouration of protein similarity between Cp1002 and Cdip can be observed to be intense 
white staining, which reflects 2.4% protein similarity with a confidence level greater than 
90% of the pangenome. This similarity is low because we set the program to raise the 
pangenome between these two strains to consider proteins similar only if they had more 
than 90% identity at the amino acid level. If we had decreased the criterion for deter-
mining resemblance, there would probably be a greater affinity between these two spe-
cies. However, if we had diminished the stringency for proteins’ identity to nearby levels, 
60% GENPPI would not translate such a set, given the pangenome’s reliability. With low 
levels of similarity, preserved protein domains that are present in many proteins with 
distinct functions could lead to false positive results regarding the pangenome’s central 
genome. The previous section showed the utility of generating a central genome with the 
ability to create phylogenetic clusters consistent with our biological knowledge of bacte-
rial species. The analysis of the box chart results in Fig. 5 shows that phylogenetic pro-
files made by GENPPI are also consistent with the previous findings regarding species 
and biovars. Thus, the interaction networks created by GENPPI using the conservation 
of phylogenetic profiles can help us to identify a topological structure with biological 
significance.
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Box plot of preserved gene neighbourhoods

GENPPI does not work with the genomic DNA sequence but with a report exported 
from the DNA encoding proteins. However, the conservation of a gene’s DNA 
sequence location influences the box plot of preserved gene neighbourhoods. We 
assume that protein sequences tend to enter a multifasta file in an order similar to that 
observed when they were when extracted from a DNA sequence. GENPPI software 
receives as input a multifasta file of proteins ordered similar to the corresponding 
genes arranged on the DNA sequence. Given this premise, in Fig. 6, we use a window 
of size w to count how many genes are conserved according to at least some other 
N genomes under analysis. We store a conservation pattern if that pattern occurs 
in two or more genomes. Two very similar genomes may have almost identical gene 
neighbourhoods. For an example of two genomes evolutionarily close and assuming 
a value of w < 10, the median of a conserved neighbourhood (CN), the first quar-
tile and the third quartile, as well as the maximum number of conserved genes, are 
all equal to w, except for several outliers. The greater the extent of a box plot is, the 
greater the number of genes with CN characteristics in a genome is. In a CN graph, 
there is no way to know which genomes are very similar. It is possible to know that 
there are very similar genomes with a minimum of two. When the GENPPI program 
runs without the restriction of the threshold window for conserved neighbourhood 
analysis with progressive increases of −ws until the conservation quality decreases, 
we call this process a dynamic expansion. In Fig. 6, the measure of genes conserved in 
a neighbourhood (dynamic extension with −ws 3) showed a high similarity between 
the genomes of the biovar equi of the species C. pseudotuberculosis, strains Cp106A, 
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Fig. 5  Each genome has a box plot registering stats for their conserved phylogenetic profiles. The width of 
a box plot is proportional to the number of PPs found. There is a numerical expressiveness of genomes from 
C. pseudotuberculosis (left) and diphtheriae (leftmost). For the former, the PP median enables separation of the 
biovars ovis and equi (highest medians)
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Cp162, Cp258, Cp31, Cp316, and CpCIP5297. The median of the six equine genomes 
remained below 25 genes. Within this graph, three out of sixteen genomes of C. pseu-
dotuberculosis have box plots with the median below 25 not belonging to the bio-
var equi, the genomes Cp267, Cp3995, and CpString. We know the genomic relations 
between the biovars ovis and equi from the literature of C. pseudotuberculosis (Soares 
et al., 2013). When the dynamic expansion step −ws is equal to 1, we have seven out 
of ten genomes of C. pseudotuberculosis biovar ovis whose medians approach those 
of the biovar equi genomes (data not displayed). However, if we increase the neigh-
bourhood conservation window’s pitch, for example, to −ws 5 and −ws 7, there will 
be no changes against the result with −ws 3 (data not displayed). Thus, the value that 
best created the separation of the biovars ovis and equi regarding the gene neigh-
bourhood’s conservation was a dynamic extension step with window size equal to 3, 
value derived from experimentation and comparison between results. Nevertheless, 
in Fig. 6, when we utilized dynamic expansion, the seven genomes of C. diphtheriae 
had medians lower than the lowest median obtained for most C. pseudotuberculosis 
strains. The median of the C. diphtheriae species remained lower than the average 
of most of the species C. pseudotuberculosis. The Cdiplaus genome was at a median 
well below those of the other analysed genomes of C. diphtheriae. Considering that 
the literature reports Cdiplaus as a heterotypic synonym of Corynebacterium belfan-
tii (Badell et  al., 2020), we have evidence indicating that our analysis of the median 
genomes of C. diphtheriae would provide a correct classification of all genomes of the 
species C. diphtheriae analysed in this study. In addition, the difference between the 
CpString median compared to all other genomes of C. pseudotuberculosis and even 

0

50

100

150

C
di

p

C
di

p0
1

C
di

p0
2

C
di

p0
3

C
di

p0
4

C
di

p0
5

C
di

pl
au

s

C
p1

00
2B

C
p1

06
A

C
p1

62

C
p2

31

C
p2

58

C
p2

67

C
p3

1

C
p3

16

C
p3

99
5

C
p4

20
2A

C
pC

IP
52

97

C
pF

R
C

41

C
pI

19

C
pP

54
B

96

C
pP

AT
10

C
pS

tri
ng

G
C

A
_0

00
00

66
05

.1
_A

S
M

66
0v

1

G
C

A
_0

00
01

13
05

.1
_A

S
M

11
30

v1

G
C

A
_0

00
01

13
25

.1
_A

S
M

11
32

v1

G
C

A
_0

00
02

29
05

.1
_A

S
M

22
90

v1

G
C

A
_0

00
02

31
45

.1
_A

S
M

23
14

v1

G
C

A
_0

00
06

99
45

.1
_A

S
M

69
94

v1

G
C

A
_0

00
14

38
25

.1
_A

S
M

14
38

2v
1

G
C

A
_0

00
15

91
15

.1
_A

S
M

15
91

1v
1

G
C

A
_0

00
15

96
35

.1
_A

S
M

15
96

3v
1

G
C

A
_0

00
17

53
75

.1
_A

S
M

17
53

7v
1

G
C

A
_0

00
17

75
35

.2
_A

S
M

17
75

3v
2

G
C

A
_0

00
17

93
95

.2
_A

S
M

17
93

9v
2

G
C

A
_0

00
34

47
85

.1
_A

S
M

34
47

8v
1

G
C

A
_0

00
55

07
85

.1
_A

S
M

55
07

8v
1

G
C

A
_0

00
55

08
05

.1
_A

S
M

55
08

0v
1

G
C

A
_0

00
73

29
45

.1
_A

S
M

73
29

4v
1

G
C

A
_0

00
75

89
65

.1
_H

M
P

16
50

v0
1

G
C

A
_0

00
76

72
55

.1
_A

S
M

76
72

5v
1

G
C

A
_0

00
98

08
15

.1
_A

S
M

98
08

1v
1

G
C

A
_0

01
27

79
95

.1
_A

S
M

12
77

99
v1

G
C

A
_0

01
64

30
15

.1
_A

S
M

16
43

01
v1

G
C

A
_0

01
94

14
25

.1
_A

S
M

19
41

42
v1

G
C

A
_0

09
78

91
55

.1
_A

S
M

97
89

15
v1

G
C

A
_9

00
10

55
05

.1
_2

63
41

66
17

0

G
C

A
_9

00
11

12
65

.1
_2

59
91

85
26

6

G
C

A
_9

00
17

61
55

.1
_2

52
92

92
55

7

G
C

A
_9

02
70

29
35

.1
_F

R
C

01
90

Genome

G
en

e 
co

un
t b

y 
C

N

Fig. 6  Better possible separation of the genus Corynebacterium achieved using the conserved 
neighbourhood. We achieved splitting via the expansion of a window of pitch three. The stopping criterion 
was a reduction by more than half in the number of conserved loci for window size. In this query, we did not 
ensure a full split of C. pseudotuberculosis biovars ovis and equi but of the main represented species
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with C. diphtheriae is noteworthy. In graphs of the number of genes per conserved 
neighbourhood generated by GENPPI, medians with values close to zero are found 
for genomes that have only one specimen per species among the analysed set. The 
GENPPI’s dynamic expansion to CN makes us pay the price for more accurate map-
pings. The number of protein comparisons is polynomial. The constant ρ depends on 
the average number of proteins among the genomes analyzed. We spent 2 h finish 
considering a window size equal to three and 50 genomes. However, for Staphylococ-
cus, with 57 genomes, we spent 32 h on the same window pitch. The counterpart of 
the dynamic expansion algorithm to CN is the fixed retraction. Instead of polynomial 
complexity, we have a logarithmic one, which takes about 40 min to process the iden-
tical 50 Corynebacterium genomes, considering an initial window of size 10.

Comparing interaction networks created with GENPPI and STRING

We submitted a set of 50 genomes of C. pseudotuberculosis to several combinations of 
GENPPI parameters. The analyses were divided between the two types of window sets 
for a conserved neighbourhood (fixed retraction or dynamic expansion) versus the seven 
possible types of configurations for a boundary of phylogenetic profiles , including an 
option that does not restrict the load of interactions mapped in the final report. It is 
important to note that the code employed for assessing conserved PP (Algorithm 3) and 
CN (Algorithm 2) work independently. Each algorithm generates variant sets of inter-
actions that can occur for the same pair of genes. We chose to explore CN execution 
variations without changing the PP execution mode. The objective was to facilitate the 
comparison between results. We assume the most relevant results produced by GENPPI 
were those with network metrics similar to STRING networks (Table 5). We believe that 
metrics like a more significant number of nodes and edges, plus lower density, medium 
degree, and maximum degree, are more suitable considering the centrality measures’ 
study. As an example of centrality measure favored by such a set of general metrics, we 
can cite Betweenness and Bridging Centrality, both dependent on the nodes’ degrees. 
For instance, imagining a highly connected network, we based our beliefs on the dif-
ficulty of making significant differentiation among the nodes. In this scenario, it would 
be arduous to pinpoint nodes with more topological significance in a network with a 
medium degree closer (for instance, a half or more) than the total number of nodes. We 
employed a network generated by STRING software for the genome of C. pseudotuber-
culosis as a reference for the metrics. Compared to the fixed expansion, the values of the 
metrics for dynamic expansion in Table 5 were approximate with point exceptions.The 
particular web created by d5 Id has a density and average degree above what we consider 
ideal for the study of centrality measures compared to the STRING reference. However, 
this network generated the best phylogenetic separation between species via CN (Fig. 6). 
This result is an example of the flexibility of network generation provided by GENPPI. 
Our software enables the creation of interaction networks customized for a user’s spe-
cific need, such as the study of measures of centrality (lower density) or the study of 
protein clusters (higher density). Regardless of the end-user objective and considering 
that interactions have a valid biological meaning, we guarantee the correction of the net-
works obtained in further studies. Given the variations in the bulk of vertices and edges 
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that can compose each network created by GENPPI, we expect to experience diversity in 
the topology of nets created by our software. We present the results of an examination of 
topology’s variety in Fig. 7.

In Fig. 8, we query the network’s interactions for each web in the columns against 
a subject in the rows. As a result, we compared the shared interactions between our 
products and the STRING output. The networks created by f1 and d1 Ids are the 
more numerous ones. The reason is that the parameters we set in these GENPPI’s 
executions allow exploiting a more significant number of possibilities. We justify such 
a conclusion because all other results we created, and even the STRING results, have 
the majority or a significant portion of their outcomes in the set of f1 and d1 outputs 
(dark grayish cells and values closer to one). We also accomplished the highest prox-
imity of our networks to the STRING via f1 and d1 Ids. GENPPI identified almost 
half of all undirected edges mapped by STRING. On the other hand, the most signifi-
cant number of edges STRING matched in the GENPPI’s results was 14%. Regarding 
the results in Fig. 8, the reader should note that we produced the GENPPI’s networks 
using solely fifty Corynebacterium genomes, a much smaller group of genomes than 
that used by STRING. On the other hand, the STRING database comprises five 
thousand and ninety genomes, including several other genera. It could explain the 
STRING intersections as the role of query or subject in Fig. 8. Considering we used 
less than 1% of the genomes hosted by the STRING site to generate our interaction 
networks, we claim as representativeness achieving almost half of STRING’s result. 
We also believe that if the STRING site uses our set of genomes, it could acquire a 
more remarkable intersection to our returns more significant than 14%.

Topological diversity between Corynebacterium networks

There are no closed formulas for deciding on the quality of a network topology of a 
set of genomes. We used five criteria as guidelines (subsection Metrics and Refer-
ence Genomes) for selecting networks with an appropriate topology for biologically 
relevant analyses. For this reason, we focus on webs with metrics that are closer to 
the STRING reference. The following reasoning seeks to show that although networks 
use different topologies, our software networks can have topological similarities. This 
property is plausible, since the descriptors used are the same but appear numerically 
contrasting. Initially, we suspected that networks exploring the conservation of the 
gene neighbourhood by fixed retractions versus dynamic expansions would generate 
webs with topology sufficiently distinct that centrality metrics could lead one to ques-
tion the quality of these networks from the biological perspective. We compared the 
top 100 proteins with the highest bridging centrality value of fixed and dynamic nets 
(Table  5). We present the results in  Fig.  7 with a median and average of 25 and 29 
intersections per pair of experiments, respectively. The mean and median values are 
overcome loosely by topologies created from combinations of fixed retractions and 
dynamic expansions. For example, f1d1, f3d3, and f4d4 cells have 68, 56, and 58% pro-
teins, respectively, that repeat in the ranking of the first 100 created by the Bridging 
Centrality metric. Therefore, although a variation in the way of accounting for the 
conserved gene neighbourhood (fixed retraction versus a dynamic expansion) alters 
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the topology of networks, most networks were observed to have significant similari-
ties. These similarities also maintain high metric values that depend on the number of 
interactions/edges in an interaction network, as shown in Fig. 7.

Discussion
Producing an interaction network is relatively simple; researchers simply need to find 
a reason to link pairs of entities and apply this rule for all possible pairs of a set. How-
ever, such a reason should be trustworthy, or else we could have messy, random, and 
ineffective relationships. Considerable time and resources could be lost in explaining 
a non-existent solution for an annotated relation among subjects. Thus, the funda-
mental role of always present and useful databases becomes clear. Some notable data 
sources for genome annotation include the following:

•	 Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) [5];
•	 Database for Annotation, Visualization and Integrated Discovery (DAVID) [9];
•	 Metascape [10];
•	 Kyoto Encyclopedia of Genes and Genomes (KEGG) [11];
•	 Gene Ontology (GO) [12]; and
•	 Gene Expression Omnibus [13].

These well-known databases possess easy-to-use enrichment analyses and useful and 
user-friendly interfaces for biologists. Many of these databases allow researchers to export 
their results and continue additional studies using various programs, such as Python [14], 
Cytoscape [15], R [16], UALCAN [17], MCODE [18], and GEPHI [19]. Notably, there are 
a considerable number of libraries existing and deployed annually for all this software. For 

Fig. 7  Quantity shared for each pair of runs of Table 5 regarding the first 100 proteins ordered by the metric 
Bridging Centrality. The fn and dn labels come from the executions of Table 5. White cells have a higher 
percentage of an intersection followed by yellow cells, and red cells have the lowest prevailing amounts 
between each gene neighbourhood parameter setting (fixed retraction or dynamic expansion)
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instance, such libraries enable researchers to focus on candidate hub genes, differentially 
expressed genes (DEGs), the tertiary structure of protein interactions, and many other use-
ful features. For example, in [20], the authors studied crucial genes in hepatocellular cancer. 

Fig. 8  We query the network’s interactions listed in columns against subjects in rows. The result compares 
shared interactions between different GENPII parameters and the STRING. The more significant intersection 
of GENPPI obtained 46% of the STRING interactions (f1 and d1 Ids), even using 0.009% of genomes to craft 
the networks compared to the STRING database. On the other hand, the more significant result of the STRING 
network to our webs achieved 14%

Table 5  Metric values obtained for interaction networks by CN and PP

Id CN expansion Nodes Medium degree Density Edges Maximum 
degree

STRING – 2213 180.83 0.082 200,088 901

f1 Fixed 2149 840.228 0.391 902,825 1316

f2 Fixed 2050 69.748 0.034 71,492 688

f3 Fixed 2057 270.628 0.132 278,341 689

f4 Fixed 1984 121.620 0.061 120,647 385

d1 Dynamic 2141 853.973 0.399 914,178 1355

d2 Dynamic 2045 91.318 0.045 93,373 705

d3 Dynamic 2045 289.11 0.141 295,615 772

d4 Dynamic 1976 132.947 0.067 131,356 469

d5 Dynamic 2058 272.208 0.132 280,102 713
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The authors obtained the initial data from the Gene Expression Omnibus database. The 
DAVID website was employed to perform the GO and KEGG enrichment analyses before 
uploading the data to the STRING database, which was utilized for further analysing the 
DEGs. After that step, the authors used Cytoscape software to construct a protein interac-
tion network. Once in Cytoscape, a plugin for MCODE was used to study the modules of 
DEGs. For a final analysis, the authors used the Gene Expression Profiling Interactive Anal-
ysis website to determine the module genes’ effects on overall survival under hepatocellu-
lar cancer. This research employs a notably elaborate combination of several databases and 
software tools to produce interesting in silico bioinformatic analyses. There are many other 
studies similar to this one [2]. Many of the cited databases in this section have the com-
mon characteristic of being sealed databases. We define sealed as not accepting new data 
from anyone outside a trained and specialized team of workers. There is nothing wrong 
with this approach; one does not allow others to access their bank accounts because of such 
concerns regarding unauthorized access. For instance, one cannot upload a new genome 
to the STRING database. First, the database administrator must ensure that the data are 
trustworthy. Second, a new genome should have some representativeness level to acquire a 
specific matching of annotation according to the genomes already in the database to reduce 
the risk of producing poor annotations. Nonetheless, many users would prefer to have their 
novel genomes annotated by such useful software. Indeed, users can upload their novel 
genomes to the STRING database and subject them to various kinds of enrichment accord-
ing to a plethora of third-party databases but only for known genes, not for novel genes. A 
researcher investigating model organisms will not face such challenges in obtaining useful 
insights from all the databases mentioned earlier. For instance, when studying H. sapiens, 
M. musculus, R. norvegicus, D. rerio, D. melanogaster, C. elegans, S. cerevisiae, A. thaliana, 
S. pombe, and P. falciparum, if the STRING [5], Metascape [10], and DAVID [9] databases 
are employed, a list of genes is sufficient to provide useful data. However, when investigat-
ing unseen or underrepresented organisms, a researcher will not have a trustworthy list of 
genes. Many of the open reading frames (ORFs) will be of unknown function. Such a sce-
nario is more likely to occur when studying prokaryotes. The study of prokaryotes yields 
dozens of novel genomes and thousands of novel genes daily. We believe that these novel 
data, even those not curated, deserve the benefit of doubt and further annotation, includ-
ing topological annotations. We are also confident that the currently utilized databases will 
not easily manage such a massive volume of novel data. We support the parallelism of this 
considerable data novelty processing by the creators of the data, the researchers, not by 
centralized databases, at least in the early stages of data generation. To achieve our vision 
of parallelism, we developed GENPPI software. GENPPI transfers the question of topologi-
cal annotation from the centralized databases to the final user, the researcher, at the initial 
point of research. GENPPI enables researchers to experiment among better sets of genomes 
to create topological annotation. For instance, we believe that the GENPPI topological 
annotation information is directly proportional to the number of genomes used to create 
an annotation. In contrast, the data are indirectly proportional to the number of genomes 
used for a GENPPI round. As we employ fewer genomes in an annotation round, GENPPI 
will suggest more interactions between the ORFs, since there are not too many genomes to 
confirm such a set of predictions as co-occurring. We constantly search for equity between 
data and information but are guided by the skills of researchers regarding the organisms 
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under study. GENPPI inspects genomes represented as proteins in the multifasta format, 
searching for a conserved neighbourhood, phylogenetic profile, and gene fusion. This soft-
ware enables the decision of how many and what genomes to use for the construction of a 
protein interaction network to be transferred to the final user. Despite the limited number 
of features employed in GENPPI, in the previous sections, we attempted to demonstrate 
that this set of characteristics suffices to produce good-quality networks. We attempted to 
support our hypotheses based on the construction of finely detailed phylogenetic maps for 
the genomes under study. We demonstrated that the features used by GENPPI can distin-
guish between, for example, the biovars of the species Corynebacterium pseudotubercu-
losis [21], as well as obtaining optimal separation among the genera of other prokaryotic 
organisms, although the software is not limited to unicellular organisms. Considering the 
quality of species separation and based on the three features analysed by GENPPI, our soft-
ware obtained good quality for our topological annotations, as well as fewer computational 
resources needed for this task. For instance, for 50 genomes of an organism containing 
an of average 2200 genes, we spent only a matter of hours accomplishing full topological 
annotation.

Why we are not comparing our results to STRING, directly

We sustain the quality of an interaction network based on the quality of the data used to 
create the relationships. We believe in the quality of an interaction network according to 
the potential of the data to describe known real-world connections. Considering we are 
using phylogenetic profile (PP) and conserved neighbourhood (CN) as the primary ground 
for interaction networks, we claim a trustable interaction network if CN and PP can sepa-
rate genus, species, or subspecies. Depending on the implemented algorithm, one can have 
different interactions for the same set of genomes. However, even among unlikely software 
results, we can expect the correct ones to devise equivalent conclusions. For CN and PP, the 
derived interaction networks should correctly differentiate species and subspecies accord-
ing to these features. Our research team had no access to CN and PP created by the soft-
ware STRING concerning the genomes analyzed in this work. Such limitation does not 
allow us to compare our ground data to the STRING directly.

Conclusions
The study of bacterial network topologies based on evolutionarily predicted relation-
ships is a promising area of research. Until this study was conducted, few studies had 
performed such a query for a genome. A possible cause for this limitation is the absence 
of software to predict interaction networks from protein sequences alone. Our software 
presented in this report is a useful tool for any researcher to use. GENPPI can be another 
software tool for the scientific community to investigate many novel genomes constantly 
assembled. It would allow us to investigate noncore genes concerning the most known 
organisms, a more profound analysis with a particular species or a superficial one for 
unrelated species. Such a differentiated analysis is possible with GENPPI because it gives 
a researcher control over which ones and how many genomes we intend to use to answer 
a scientific question. We offer various configuration modes to employ, ranging from fast 
and lightweight to more careful and intense computations. However, we should warn 
users of the usual traps of extensive computational inquiries. Regardless of the chosen 
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processing method, the user can be assured of obtaining a mostly reasonable answer, at 
least [22]. We are confident in the GENPPI software because the majority of the neces-
sary relationships that it provided were determined to be correct by CN and PP, as phy-
logenetic analyses of these relations correctly separated bacterial species. Our software 
is open-source, and we can compile it for different operational systems.

Availability and requirements

•	 Project name: genppi
•	 Project home page: genppi.facom.ufu.br
•	 Operating system(s): Platform independent
•	 Programming language: Common Lisp
•	 Other requirements: Not applicable
•	 License: GNU GPL
•	 Any restrictions to use by non-academics: licence needed

Abbreviations
CN: Conserved gene neighbourhood; PP: Phylogenetic profile; GF: Gene fusion; ANI: Average nucleotide identity; ORF: 
Open reading frame; STRING: Search Tool for the Retrieval of Interacting Genes/Proteins.
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