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Gene expression differences 
between matched pairs of ovarian 
cancer patient tumors and patient-
derived xenografts
Yuanhang Liu1, Pritha Chanana1, Jaime I. Davila   1, Xiaonan Hou2, Valentina Zanfagnin3, 
Cordelia D. McGehee2, Ellen L. Goode1, Eric C. Polley1, Paul Haluska2, S. John Weroha2 & 
Chen Wang   1,3

As patient derived xenograft (PDX) models are increasingly used for preclinical drug development, 
strategies to account for the nonhuman component of PDX RNA expression data are critical to its 
interpretation. A bioinformatics pipeline to separate donor tumor and mouse stroma transcriptome 
profiles was devised and tested. To examine the molecular fidelity of PDX versus donor tumors, we 
compared mRNA differences between paired PDX-donor tumors from nine ovarian cancer patients. 
1,935 differentially expressed genes were identified between PDX and donor tumors. Over 90% 
(n = 1767) of these genes were down-regulated in PDX models and enriched in stroma-specific 
functions. Several protein kinases were also differentially expressed in PDX tumors, e.g. PDGFRA, 
PDGFRB and CSF1R. Upon in silico removal of these PDX-donor tumor differentially expressed genes, 
a stronger transcriptional resemblance between PDX-donor tumor pairs was seen (average correlation 
coefficient increases from 0.91 to 0.95). We devised and validated an effective bioinformatics strategy 
to separate mouse stroma expression from human tumor expression for PDX RNAseq. In addition, we 
showed most of the PDX-donor differentially expressed genes were implicated in stromal components. 
The molecular similarities and differences between PDX and donor tumors have implications in future 
therapeutic trial designs and treatment response evaluations using PDX models.

Despite in vitro preclinical data to support the efficacy of many novel agents, translation to the clinic has been 
underwhelming1,2. Preclinical models are often limited in their ability to reflect the complexity and heterogeneity 
of patient tumors2. In addition, tumor cell lines can differ dramatically from the tumors from which they are 
derived3 and these discrepancies may increase over time, further limiting translation of findings to clinical prac-
tice4. Patient derived xenograft (PDX) models partially overcome limitations of cell-line based models and are 
widely used as preclinical models for drug development across many tumor types5–9.

In the context of ovarian cancer (OC) research, PDX models recapitulate key characteristics of the original 
donor tumor10. For instance, the donor tumor and corresponding PDX-tumor share similar histologic features 
including the extent of stromal infiltration, proliferation index measured by Ki-67, and expression of cytokerat-
ins. Genomic aberrations of PDX tumors were also evaluated by array CGH, demonstrating faithful preservation 
of copy number changes10,11. Moreover, clinically relevant germline mutations in cancer-related genes, such as 
BRCA1/2, are persistent after multiple passages of PDX tumor in vivo12. However, other studies suggest that the 
genomic landscape of a PDX tumor can diverge from the donor tumor by clonal selection and/or clonal evolu-
tion13,14. This could give rise to differences in transcriptional activity, which has been reported in a breast cancer 
PDX-donor tumor pair15. Given the relevance of PDX models for preclinical drug development and potentially 
as a platform for personalized therapy, methods to assess human gene expression without interference by con-
founding nonhuman components are essential for proper interpretation of gene expression changes that occur as 
a result of xenotransplantation rather than the tested drug therapy.
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Here we examined in detail the molecular differences of gene expression profiles between paired donor and 
PDX tumors using RNA sequencing (RNAseq). Since PDX tumor contains mouse stromal tissues, we devised 
and examined an effective bioinformatics pipeline to separate human-tumor and mouse-stroma transcriptome 
signals from PDX RNAseq. Differential expression analysis was conducted for nine pairs of donor-tumors and 
PDX tumors. In addition, differentially expressed genes between donor and PDX tumor pairs, likely representing 
the lack of human stromal elements in the PDX, were examined in a public OC dataset that used laser capture 
micro-dissection to separate ovarian carcinoma cells from the tumor stroma16. Possible reasons for the observed 
differences between donor PDX tumor pairs and potential implications for PDX study design and interpretation 
are discussed.

Methods
Total RNA extraction.  Total RNA was isolated from tissues collected from patients and matched PDX from 
mice using the RNeasy Micro kit (Qiagen, #74004) according to the manufacturer instructions. Purity of total 
RNA and concentration was determined on a Thermo Scientific NanoDrop 2000c UV-Vis Spectrophotometer 
(Thermo Scientific, Wilmington, DE). All samples met RNA integrity number and validated Agilent (Agilent 
Technologies, Santa Clara, CA) criteria.

mRNA library preparation and sequencing.  RNA libraries were prepared according to the manufactur-
er’s instructions for the TruSeq RNA Sample Prep Kit (Illumina, San Diego, CA, USA). The concentration and size 
distribution of the libraries were determined on an Agilent Bioanalyzer DNA 1000 chip (Santa Clara, CA, USA). 
Libraries were loaded onto flow cells at concentrations of 8–10 pM to generate cluster densities of 700,000/mm2 
following Illumina’s standard protocol using the Illumina cBot and cBot Paired End cluster kit version 3. The flow 
cells were sequenced as 51 × 2 Paired End reads on an Illumina HiSeq. 2000 using TruSeq SBS sequencing kit 
version 3 and SCS version 1.4.8 data collection software. Base calling was performed using Illumina’s RTA version 
1.12.4.2. There were approximately 45 million reads per sample mapped to the human genome, and 21,686 genes 
were detected.

Reverse-transcriptase quantitative PCR validation.  To validate the RNAseq results, six top 
significantly-varied differentially-expressed genes (DEGs) between donor-PDX pairs were chosen for quanti-
tative real-time PCR according to fold change and expression level by RNAseq: three down-regulated genes in 
PDX with a fold change of more than 5 (FABP4, FAP and DCN) and three up-regulated genes in PDX with a fold 
change of more than 1.5 (PAX2, FOXB1 and SBK2). Between 300–500 ng of tissue RNA was reverse transcribed 
using ABI High capacity RNA to cDNA kit (Cat# 4387406; ThermoFisher Scientific, Waltham MA) as described 
in the manufacturer’s instructions and resulting cDNA was diluted 1:5 in molecular grade RNase/DNase free 
H2O. The quantitative real-time PCR was performed using the LightCycler 480-II with Lightcycler 480 Syber 
Green Master kit (Cat# 04707516001; Roche Diagnostic Ltd, Basel, Switzerland). The gene-specific primers were 
designed using the “Primer3 input” software (http://frodo.wi.mit.edu/primer3/), and their specificity was verified 
using the Primer-BLAST software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINKLOC=Blast-
Home). GeneBank accession numbers of the six genes examined and their respective primer pair sequences are 
shown in Table S1. Quantitative PCRs were run and the melting curves of the amplified products were used to 
determine the specificity of the amplification. The threshold cycle number for the genes analyzed was normalized 
to RPLP0 as housekeeping gene. Fold changes between samples were determined using the ΔΔCt method. Data 
is presented as mean + Standard Error of Mean (SEM).

Bioinformatics pipelines for processing donor- and PDX-tumors.  For donor tumors’ RNAseq, the 
samples were processed with MAP-RSeq version 2.1.1 (Patient pipeline, Fig. 1b). MAP-RSeq uses a variety of 
publicly available bioinformatics tools tailored by in-house developed methods. Briefly, the aligning and mapping 
of reads is performed using TopHat217 against the hg19 reference genome. The gene and exon counts are gen-
erated by FeatureCounts18 using the gene definitions files from Ensembl v78. All samples passed quality control 
according to RSeqQC19 and additional checks20. RNASeq data from all PDXs were first processed with Xenome 
(version 1.0.1) to classify the raw sequenced reads into human or mouse reads (PDX pipeline). Only the reads that 
were classified as ‘graft’, ‘ambiguous’ or ‘both’ were selected as the ‘human’ portion of PDX tumors. The ‘Human’ 
portion of PDX tumors was then processed through standard MAP-RSeq pipeline.

RNAseq differential expression analysis.  After removing genes with low expression (average counts per 
million across all samples smaller than 2), 16,968 genes were then tested for differential expression using edgeR 
paired analysis (version 3.20.1). In order to detect potential technical differences that might be due to different 
bioinformatics pipelines for donor tumors and paired PDXs, the same nine donor tumors were processed with 
both patient and PDX pipelines followed by differential expression analysis to identify differential genes caused by 
pipeline difference. Differential expression analysis for PDX versus matched donor-tumors was carried out using 
edgeR paired analysis to identify differentially expressed genes caused by engraftment process.

Calculation of conservation score.  Phast conservation scores were retrieved from UCSC genome data-
base in bigwig format21,22. The conservation score for each gene was calculated based on average scores of all 
covered bases that belong to each gene.

Examination of PDX-donor differential genes in independent human dataset.  A publicly avail-
able, independent OC expression dataset that separately assessed the transcriptome profile of stroma- and carci-
noma components from 31 patients16 was downloaded from GEO (GSE40595). Preprocess steps were carried out 
using affy (version 1.56.0). Differential testing between tumor-associated stroma and tumor epithelia cells was done 
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using limma (version 3.34.0). A hypergeometric test was used to examine the significance of enrichment between 
PDX-donor differentially expressed genes and stroma-carcinoma differentially expressed genes (Yeung’s dataset).

Gene set enrichment and association analysis.  Gene set enrichment analysis was used to identify over-
represented biological functions for DEGs between PDX and donor tumor (XDGs) using GSEA software (version 
3.0) and MsigDB database (version 6.1)23. Toppgene24 was used to examine biological functions enriched in genes 
overlapping between DEGs of PDX-donor pairs and DEGs of tumor-stroma/tumor-epithelium from the public 
dataset. Fisher’s exact test was adopted to examine the enrichment statistics of PDX-donor differentially expressed 
genes in several MsigDB defined gene families, including cell differentiation markers, cytokines and growth fac-
tors, homeodomain proteins, translocated cancer genes, oncogenes, protein kinases, transcriptional factors and 
tumor suppressors. Spearman correlation was used to examine expression similarity of XDGs with previously 
defined subtype signatures for ovarian cancer. Only overlapping genes between XDGs and subtype signature 
genes were considered for correlation analysis.
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Figure 1.  Illustration of bioinformatics strategy and workflows for analyzing patient- and PDX-RNAseq. (a) 
Bioinformatics strategy to separate mouse-stroma and human-tumor expression levels from PDX RNAseq data; 
(b) Dotted box indicates patient and PDX Pipelines for processing donor tumors and PDX tumors, respectively; 
(c) Dotted box indicates workflow for examining technical and biological differences.
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Genotype calling for human donor tumor and PDX pairs.  RVBoost25 was applied to identify genetic 
variants based on RNA sequencing data. Variants with an RVBoost q score smaller than 0.05 were removed 
from further analysis. BioR26 was used to annotate each identified variant with databases, such as dbSNP27 and 
COSMIC28. Sample genotype correlation was further evaluated using NGSCheckMate29.

Generation of PDX models, ethical considerations, and informed consent.  All studies with 
human samples were approved by Mayo Clinic Institutional Review Board (IRB). All animal studies were carried 
out in accordance with the relevant guideline and regulations of the Mayo Clinic Institutional Animal Care and 
Use Committee. All methods were performed in accordance with the relevant guidelines and regulations. Fresh 
tissues from nine patients with ovarian or fallopian tube cancer (eight serous and one clear cell) were collected at 
the time of primary debulking surgery at Mayo Clinic, Rochester. Written informed consent was obtained from 
all patients and documented in the electronic medical record. All tissues were coded with a patient heterotrans-
plant (PH) number to protect patient identity in accordance with the Mayo Clinic IRB and in accordance with 
the Health Insurance Portability and Accountability Act through the Mayo Clinic Ovarian Tumor Repository. 
PDXs were developed by intraperitoneal injection of the donor tumor into female SCID beige mice (C.B.-17/
IcrHsd-Prkdcscid Lystbg; ENVIGO). Briefly, 0.1 to 0.3 cc of grossly malignant tissue was minced and mixed 1:1 
with McCoy’s media, supplemented with a one-time dose of Rituximab at the time of initial tumor implanta-
tion to reduce the occurrence of spontaneous lymphomas30, and injected intraperitoneally. Since the half-life of 
Rituximab in mice is only 5 days31 and CD20 expression is specific to B lymphocytes, the impact of this critical 
quality control step should not impact carcinoma transcriptomics when assessed months after initial injection 
and after multiple tumor passages without Rituximab re-treatment. No enzymatic or mechanical tumor dissocia-
tion was performed. Mice were monitored by routine palpation for engraftment and tumors were harvested when 
moribund. PDX models are reported here in accordance to the international minimal information standards32 
(Table S2).

Results
RNAseq bioinformatics pipeline separating human-tumor and mouse-stroma transcrip-
tomes.  Since ovarian cancer PDX tissue is known to have murine stromal infiltrates10, RNAseq data from 
PDX tissue is expected to contain a mixture of human and mouse reads. A PDX RNAseq analysis pipeline was 
devised based on Xenome and a standard patient tumor pipeline (Fig. 1a,b). Although it is common practice to 
analyze PDX data by aligning sequencing reads to both human and murine reference genomes with subsequent 
filtering to identify murine reads, a careful validation of this practice to evaluate the accuracy of capturing human 
reads is needed. Accordingly, nine donor tumor samples, without prior passage in mice, were processed in the 
PDX pipeline to determine which reads were mis-identified as murine. The mapped ‘human’ reads were then sub-
mitted into the standard MAPR-Seq pipeline (Fig. 1c dashed box). In parallel, the same samples were processed 
through the standard patient pipeline to serve as a reference control. Subsequently, differential expression analysis 
was performed to examine the concordance of gene expression by pipeline as detailed in the Methods section. 
Any differentially expressed genes (DEGs) would reflect a technical artifact introduced by the PDX pipeline.

Expression profiles of the nine donor tumors measured by the two pipelines was highly concordant (aver-
age correlation coefficient 0.99) and only ~1% of DEGs (n = 215) were detected out of 16968 examined genes 
(FDR < 0.05; Absolute log2 fold-change > 1) (Fig. 2a and Table S3). Since a key step in the PDX pipeline is align-
ment to human and mouse genomes, we hypothesized that these false-positive DEGs are enriched in conserved 
genetic regions. These regions are expected to be highly similar between the two species, thereby affecting the 
read classification step in Xenome. To test this hypothesis, phast conservation scores, which are designed to reflect 
the degree of evolutionary conservation, were used. Indeed, DEGs due to pipeline differences are more conserved 
between human and mouse with a relatively high conservation score (mean phast score: 0.85, Fig. 2b). Since the 
215 genes could not be reliably detected in the PDX pipeline as ‘human’, they were excluded from the following 
analyses.

Transcriptomic differences between patient donor tumors and paired PDXs.  In order to exam-
ine transcriptional differences between paired patient donor tumor and PDX tumor, gene expression profiles 
for nine pairs of donor/PDX tumors were compared using RNAseq. All patient tumors were processed through 
the MAP-RSeq pipeline, and all PDX tumors were processed with the Xenome pipeline (Fig. 1b. dotted box). 
All nine PDX tumors exhibit a high percentage of reads uniquely mapped to the human reference genome (avg. 
78.4%, Table S2) compared to the mouse genome (avg. 16.3%, Table S2). In total, 1935 DEGs were identified with 
absolute log2 fold change larger than 1 and FDR smaller than 0.05 after excluding the 215 previously identified 
artificially ‘differentially regulated’ genes (Fig. 3a and Table S3). These genes are referred to as PDX-Donor differ-
ential Genes (XDGs) since the primary biological difference between the paired tumors is the host within which 
the tumor resided at the time of RNA sequencing. The top three significantly up-regulated XDGs (up-XDGs) and 
three down-regulated XDGs (down-XDGs) were successfully validated using PCR (Fig. S2). Gene set enrichment 
analysis indicated that XDGs were enriched for up-regulation in cell growth and proliferation (cell cycle regula-
tion FDR = 2e-3, DNA replication regulation FDR < 2e-16, etc.) and down-regulation in immunologic functions 
(immune response regulations, regulation of cell adhesions, etc., FDR < 2e-16) (Table S4). This is consistent with 
known replacement of human stroma with murine cells10 and loss of human immune infiltrates30 in the PDX.

To assess the potential impact of tumor passage on XDGs, a Spearman correlation coefficient of PDX gene 
expression with PDX passage was performed (Fig. S1). The distribution of correlation coefficients was symmetric 
(Fig. S1a) and the p values were largely uniformly distributed for all genes or XDGs separately (Fig. S1b,c). After 
multiple test correction, no genes are associated with passage at false discovery rate of 30%. This indicates that 
PDX gene expression is not associated or affected by PDX passage for our study.

https://doi.org/10.1038/s41598-019-42680-2


5Scientific Reports |          (2019) 9:6314  | https://doi.org/10.1038/s41598-019-42680-2

www.nature.com/scientificreportswww.nature.com/scientificreports/

To examine whether exclusion of XDGs would improve concordance between paired donor and PDX tran-
scriptomes, the pair-wise correlation of donor-PDX pairs was compared before and after removing XDGs. 
Indeed, the average correlation coefficient of gene expression values in donor-PDX pairs was improved from 0.91 
to 0.95 (Fig. 3b). In addition, unsupervised hierarchical clustering of donor-PDX pairs increased the proportion 
of aligned pairs from 5/9 (with XDGs) to 9/9 (without XDGs), leading to improved and unambiguous grouping of 
donor/PDX pairs (Fig. 3c,d). Not surprisingly, exclusion of the relatively small 215 previously identified artificially 
‘differentially regulated’ genes had minimal influence over the correlation between donor tumor/PDX pairs since 
they represent only ~1% of transcripts (Table S5).

Tumor microenvironment significantly accounts for donor/PDX transcriptomic differ-
ences.  Since > 90% of XDGs were down-XDGs in PDX tumor and enriched for stroma-related pathways, the 
hypothesis that XDGs are predominately due to the loss of human stroma in PDX tissues was further examined 
using a public OC expression dataset derived from tumors in which the RNAseq was separately performed on epi-
thelial carcinoma or the surrounding stromal components. By re-analyzing this public dataset, 1582 DEGs were 
identified between tumor-epithelial (TE) and tumor-associated stroma (TS) components with a fold-difference 
comparable to our dataset of PDX vs donor tumor when the PDX analysis was restricted to human carcinoma 
transcripts and donor tumor analysis included carcinoma plus stroma transcripts (cor = 0.39, FDR < 2e-16) 
(Fig. 4a). When comparing stroma-tumor differentially expressed genes from the public data and XDGs from the 
PDX-donor analysis above, 499 overlapping genes were found with significant enrichment (FDR < 2e-16; odds 
ratio = 3.8) (Fig. 4b). Functional annotation of these genes indicated that they were highly enriched for immune 
related genes and extracellular matrix (ECM) related functions (Table S6), (e.g. immune response (FDR = 6e-12) 
and cell adhesion (FDR = 3e-27)). Intriguingly, the non-overlapping XDGs are also strongly enriched in biolog-
ical functions (Table S7) such as immune response (FDR = 9e-29) and cell adhesion (FDR = 2e-18). Those genes 
may reflect gene expression changes required for a human tumor to thrive in a murine host.

Gene Set Enrichment Analysis for Identified XDGs.  To explore possible implications of XDGs in 
preclinical drug development, a series of gene set enrichment or association analyses were conducted with dif-
ferent cancer-related gene categories (Table S8), targetable protein kinases (Table S9), and previously reported 
gene signatures defining various ovarian cancer molecular subtypes (Table S10). In particular, down-XDGs 
were over-represented in genes known to be cell-differentiation markers (p value = 1.38e-62, Table S8). XDGs 
contain 37 known protein kinase coding-genes, including many clinically evaluated genes, e.g. PDGFRA, BTK, 
and JAK2. When the list of kinase XDGs was cross-referenced with a diverse set of 72 kinase inhibitor com-
pounds33, all genes matched to at least 2 compounds with a binding result less than 300 nM. Twenty-nine of 
those protein kinases were previously shown to be targetable by at least five compounds (Table S9)33. In addition, 
XDGs significantly correlated with the so-called “mesenchymal” molecular subtype of ovarian tumors (correla-
tion coefficient = −0.42, p = 6.5e-3 for Wang’s subtype signatures; correlation coefficient = −0.29, p = 2.5e-12 
for Tothill’s subtype signatures; Table S10, Figs S3 and S4), which was linked to poor survival and unfavorable 
surgical outcomes34,35.

Genotype concordance between patient donor tumors and paired PDXs.  Although genotype 
analysis was not a focus of this study, demonstrating concordance between donor and PDX tumor pairs is relevant 
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Figure 2.  Identification of genes sensitive to patient- versus PDX-RNAseq bioinformatics pipelines. Nine 
patient donor tumors were processed through patient- and PDX-RNAseq piplines separately; differential 
expressed genes (DEGs) between the two pipelines are used to determine genes sensitive to pipeline 
differences. (a) MA (M: log ratio, A: Mean average) plot with DEGs highlighted in red; (b) Distribution of phast 
conservation score for all genes and DEGs caused by pipeline differences.
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to the assessment of PDX tumors as surrogates for primary tumors. In order to demonstrate the genomic fidelity 
of donor tumor/PDX pairs, we applied RVBoost to call genetic variants based on RNA sequencing data. After 
proper variant filtering and annotation, we found that donor tumor/PDX pairs indeed shared a significant portion 
of variants annotated in either dbSNP or COSMIC databases (Fig. S5a,b). We then evaluated pairwise sample 
genotype correlation using NGSCheckMate. As shown in Fig. S5c, the donor tumor/PDX pair relationship was 
correctly identified for all 9 pairs. This confirms that the genetic fidelity between donor tumor/PDX pairs is 
largely preserved.

Discussion
Although ovarian cancer PDX models recapitulate key histologic characteristics and chemotherapeutic responses 
of the primary patient tumor, a detailed evaluation of the molecular differences between patient donor tumors 
and corresponding PDX models is needed to better understand the strengths and limitations of this technol-
ogy. By measuring the transcriptional signature of paired donor/PDX tumor samples, we identified a relatively 
small percentage of genes affected by technical limitations of the bioinformatics pipelines (n = 215), which can 
be largely attributed to highly conserved human and murine genes. Importantly, 1935 genes exhibited significant 
differences between donor tumors and paired PDX tumors, which we termed as XDGs. After excluding XDGs, 
PDX tumors became more similar to the original donor tumors. Moreover, the categorization of XDGs as pre-
dominantly stromal was supported by comparisons with an independent external dataset.

−5

0

5

0 4 8 12
log2 mean of normalized CPM (counts per million)

Lo
g2

 fo
ld

 c
ha

ng
e

PH077

PH235

PH291

PH423

PH431

PH443

PH454
PH471

PH503

PH077

PH235

PH291

PH423

PH431

PH443
PH454

PH471
PH503

0.875

0.900

0.925

0.950

Before removing XDGs After removing XDGs

C
or

re
la

tio
n 

co
ef

fic
ie

nt

0.00 0.05 0.10 0.15 0.20 0.25

PH471P

PH471PDX

PH443PDX

PH077P

PH077PDX

PH423PDX

PH454PDX

PH503P

PH443P

PH423P

PH454P

PH235P

PH235PDX

PH503PDX

PH291P

PH291PDX

PH431P

PH431PDX

0.00 0.05 0.10 0.15 0.20

PH471P

PH471PDX

PH235P

PH235PDX

PH291P

PH291PDX

PH431P

PH431PDX

PH077P

PH077PDX

PH503P

PH503PDX

PH443P

PH443PDX

PH454P

PH454PDX

PH423P

PH423PDX

Hiearchical clustering before removing XDGs Hiearchical clustering after removing XDGs

a) b)

c) d)

Figure 3.  Expression differences of donor-PDX tumor pairs and impact on transcriptome pair similarity. 
RNASeq for nine pairs of donor/PDX tumors were processed with patient and PDX pipelines respectively. 
XDGs indicate differentially expressed genes between paired donor/PDX tumors after excluding previously 
identified genes that are sensitive to pipeline differences. (a) MA plot with XDGs in red; (b) Box plot of 
correlation coefficients of paired PDX-donor tumors before and after removing XDGs; (c) Hierarchical 
clustering of donor/PDX tumor pairs before removing XDGs; (d) Hierarchical clustering of donor/PDX tumor 
pairs after removing XDGs. Patient hetrotransplant (PH) numbers represent a single tumor line and the suffix 
indicates either the patient donor (P) or corresponding xenograft (PDX).
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Our study provides the first comparisons of ovarian donor tumors and corresponding PDX tumors using 
RNAseq. Several studies have also provided insights into the molecular differences between donor tumors and 
PDX tumors for other types of cancer36–38. However, most of the studies used hybridization-based microarray 
technologies for transcriptional profiling, which may have limited resolution to separate the molecular contribu-
tions from the murine host and human tumors. In comparison, by using RNAseq, we could separate the mouse 
component from PDX tumors by aligning to both human and mouse reference genomes in-silico. The 1935 XDGs 
that we identified were enriched in various biological processes, such as immune response and cell adhesion 
regulations. In addition, XDGs contain important gene families that are potentially targetable, e.g. 45 oncogenes 
and 48 kinases (Tables S3 and S8) as defined in the Molecular Signatures Database (MSigDB)23. Accordingly, 
PDX models may be well suited for preclinical studies with novel therapies, but interpretation of studies target-
ing XDGs should consider whether the target gene expression is truly a driver of malignancy or consequence of 
xenotransplantation.

This study implicates two contributing factors leading to the observation that XDGs appear “down-” or 
“up-regulated” in PDX tissue compared to the original patient tumors: 1) an adaptive response to environmental 
changes during engraftment (e.g. over-representation of oncogenes in XDGs, p value = 5.5e-3, Table S8) and 2) 
a loss of human immune and stromal cells in PDX tumor (over-representation of cell-differentiation markers in 
down-XDGs, p value = 1.38e-62, Table S8). However, the biological significance of up- or down-XDGs should 
be determined by individual investigators on a case-by-case basis and consider its implications on the design 
and interpretation of PDX in vivo data. For instance, cyclin D2 (CCND2) expression in our PDX cohort has a 
−4.771 log2 fold change expression compared to the primary donor tumor (down-XDG), indicating marked 
downregulation in the PDX. Accordingly, it is possible that the efficacy of inhibitors such as ribociclib (targeting 
CDK4/6, the activated binding partner of CCND2) may be underestimated in ovarian cancer PDX models with 
down-regulated CCND2 expression. However, since PDX models are often chosen based on pre-determined 
expression of a putative biomarker or expression of known target genes, the impact of down-XDGs may be min-
imized because low-expressing tumors would be excluded from investigation. In addition, it may be relevant 
for investigators to explore whether murine ligands can activate human receptor tyrosine kinases and whether 
receptor activation status impacts its own expression through feedback loop mechanisms.

Although the focus of this study was on transcriptomic profiling, fidelity of genetic and genomic alterations 
in PDX tumors are relevant to the broader argument that PDX tumors retain key molecular characteristics of the 
primary donor tumor. Even though copy number alterations (CNA) are largely conserved across several PDX 
generations by array comparative genomic hybridization11,39, an indirect computational algorithm to infer copy 
number alterations based on gene expression found noticeable CNA that may affect treatment responses14. For 
that specific study, due to the lack of DNA copy number data, the authors adopted a computational algorithm to 
infer copy number alterations from a gene expression dataset and successfully demonstrated the effectiveness of 
their approach. This approach, if validated more extensively with DNA copy number data and applied properly, 
potentially will benefit future PDX studies. Given that the current study did not focus on DNA changes, never-
theless, an exploratory analysis of genotype extrapolated from mRNA sequence showed high correlation between 
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Figure 4.  Comparing XDGs with human-stroma and -tumor expression profiles derived from laser micro-
dissected tissues. An independent dataset (GEO#: GSE40595) that measures expression profile for laser micro-
dissected tumor stroma and tumor epithelial tissues were downloaded and processed. (a) Pairwise scatter plot 
of the expression log2 fold changes: ovarian tumor versus stroma differences calculated from GEO#: GSE40595 
(x-axis); PDXs versus donor tumors (y-axis); red dots indicate XDGs; (b) Venn diagram indicating overlapping 
genes across the two sets of differentially expressed genes: (i) XDGs and (ii) Tumor Stroma (TS) vs Tumor 
Epithelial (TE).
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donor tumor and PDX, suggesting that individual gene alterations may be conserved. This has relevance for some 
therapeutic agents, such as poly (ADP-ribose) polymerase (PARP) inhibitors for ovarian cancers with BRCA1/2 
mutations40–42. However, some degree of genetic evolution is expected in higher-passage PDX tumors and con-
servation of specific aberrations should be confirmed prior to PDX model selection, if relevant to the specific 
investigational agent. Despite the differences between donor and PDX, it is not clear if XDGs would impact the 
predictive potential of cytotoxic chemotherapies; correlative studies from an ongoing PDX-directed therapy trial 
(MC1463, clinicaltrials.gov # NCT02312245) may be revealing.

The inclusion of a stage I clear cell histologic subtype (PH471) is in response to the growing call for novel ther-
apies to treat patients who might otherwise be excluded from clinical trials or lack clinical trial options specifically 
for clear cell histology due to the rare nature of this disease43. Since most patients with clear cell ovarian cancer are 
diagnosed at an early stage, models like PH471 address an unmet need.

Limitations in the current study are recognized. For instance, donor/PDX tumor molecular differences may 
be partially attributed to clonal selection and evolution in mice13. Also, inflammatory cell components are lacking 
in current PDX models due to the immunodeficiency of the host mice. Importantly, the significance of identified 
XDGs with regard to drug response requires laboratory and clinical correlation to fully understand the nature and 
extent of influence on drug response.

In summary, standard bioinformatics pipelines to analyze PDX tumor RNA expression data are influenced 
by highly conserved human and mouse genes. Although some of the expression differences between donor and 
PDX tumor can be attributed to the inherent lack of human stroma in PDX tumor tissue, other differences may 
be secondary to expression of growth and pro-survival factors that permit xenotransplantation. As PDX models 
have become an important tool for preclinical drug development, such factors should be considered during study 
design and interpretation.

Data Availability
Datasets and used in this study are available from GitHub at: https://github.com/Liuy12/PDX_paper.
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