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Abstract

Rapidly detecting and responding to new invasive species and the spread of those that are

already established is essential for reducing their potential threat to food production, the

economy, and the environment. We describe a new spatial modeling platform that integrates

mapping of phenology and climatic suitability in real-time to provide timely and comprehen-

sive guidance for stakeholders needing to know both where and when invasive insect spe-

cies could potentially invade the conterminous United States. The Degree-Days, Risk, and

Phenological event mapping (DDRP) platform serves as an open-source and relatively

easy-to-parameterize decision support tool to help detect new invasive threats, schedule

monitoring and management actions, optimize biological control, and predict potential

impacts on agricultural production. DDRP uses a process-based modeling approach in

which degree-days and temperature stress are calculated daily and accumulate over time to

model phenology and climatic suitability, respectively. Outputs include predictions of the

number of completed generations, life stages present, dates of phenological events, and cli-

matically suitable areas based on two levels of climate stress. Species parameter values

can be derived from laboratory and field studies or estimated through an additional modeling

step. DDRP is written entirely in R, making it flexible and extensible, and capitalizes on multi-

ple R packages to generate gridded and graphical outputs. We illustrate the DDRP modeling

platform and the process of model parameterization using two invasive insect species as

example threats to United States agriculture: the light brown apple moth, Epiphyas postvit-

tana, and the small tomato borer, Neoleucinodes elegantalis. We then discuss example

applications of DDRP as a decision support tool, review its potential limitations and sources

of model error, and outline some ideas for future improvements to the platform.

Introduction

Invasive insects in the United States are a significant threat to the economy, environment,

food security, and human health [1–3]. They cause billions of dollars in damage to forests each

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0244005 December 31, 2020 1 / 32

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Barker BS, Coop L, Wepprich T, Grevstad

F, Cook G (2020) DDRP: Real-time phenology and

climatic suitability modeling of invasive insects.

PLoS ONE 15(12): e0244005. https://doi.org/

10.1371/journal.pone.0244005

Editor: Frank H. Koch, USDA Forest Service,

UNITED STATES

Received: May 21, 2020

Accepted: December 1, 2020

Published: December 31, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0244005

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: On GitHub, we have

uploaded the most current version of DDRP along

with a user guide and species parameter files

(github.com/bbarker505/ddrp_v2), Perl and Octave

scripts used for temporal downscaling of monthly

https://orcid.org/0000-0002-2198-8287
https://doi.org/10.1371/journal.pone.0244005
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244005&domain=pdf&date_stamp=2020-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244005&domain=pdf&date_stamp=2020-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244005&domain=pdf&date_stamp=2020-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244005&domain=pdf&date_stamp=2020-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244005&domain=pdf&date_stamp=2020-12-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244005&domain=pdf&date_stamp=2020-12-31
https://doi.org/10.1371/journal.pone.0244005
https://doi.org/10.1371/journal.pone.0244005
https://doi.org/10.1371/journal.pone.0244005
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/


year [1, 2], and their potential cost to food crop production is among the highest of any coun-

try [3]. Insect invasions in the United States also reduce the abundance and diversity of native

species, which negatively impacts ecosystem functions and services such as soil health, nutrient

cycling, and wildlife habitat [1, 2]. Rapidly detecting and responding to new invasive insects

and the spread of those that are already established before they can cause significant economic

and environmental damage has therefore become a major priority [2, 4].

Modeling climatic suitability (risk of establishment) and the timing of seasonal activities

(phenology) of invasive insect species can help stakeholders including farmers, natural

resource managers, and surveillance teams detect and prevent their establishment, slow their

spread, and manage existing populations more sustainably and economically [5]. Estimates of

climatic suitability identify areas to concentrate surveillance or management resources and

efforts [6, 7], whereas real-time (i.e. current) or forecasted predictions of phenology can

improve the timing of surveillance and integrated pest management (IPM) efforts such as

monitoring device installation, pesticide applications, and biological control release [8–10].

Additionally, estimates of climatic suitability, phenology, and voltinism (number of genera-

tions per year) can help growers predict the impact of pests and diseases on agricultural pro-

duction and associated economic losses [11].

Degree-day models that predict insect phenology are an established tool for decision sup-

port systems that assist stakeholders with scheduling surveillance, monitoring or IPM opera-

tions for numerous pest species over the growing season [12–15]. Most degree-day models

predict phenology by measuring linear relationships between temperature and development

rate, and they employ daily time steps to estimate degree-days using daily minimum and maxi-

mum temperature (Tmin and Tmax, respectively) data. In the daily time step, degree-days accu-

mulate if heat exceeds the lower developmental temperature threshold of a species (and below

its upper threshold for some calculation methods) during a 24-hour period [12, 13, 15]. Several

web-based platforms host degree-day models for insect pest species in the United States, offer-

ing users opportunities to model phenology of multiple species at single locations (site-based

model) or across a certain area (spatialized model). These platforms include but are not limited

to Michigan State University’s Enviroweather (https://www.enviroweather.msu.edu), Oregon

State University’s USPEST.ORG (https://uspest.org/wea/), the Spatial Analytic Framework for

Advance Risk Information System (SAFARIS; https://safaris.cipm.info/), and the USA

National Phenology Network (https://www.usanpn.org) [8, 16].

Despite their widespread use, currently available degree-day modeling platforms are in

need of improvements. None of them integrate predictions of phenology and climatic suitabil-

ity, which would provide guidance on the question of both where and when—e.g. is an area at

high risk of establishment, and if so, then when will the species emerge or begin a specific

activity? For most species, addressing this two-part question would require finding, potentially

purchasing, and learning how to use two separate platforms. Additionally, many phenology

modeling platforms use oversimplified models that make broad assumptions about insect biol-

ogy, such as assuming a single lower developmental temperature threshold for multiple spe-

cies, or assuming that an entire population emerges from overwintering at a single time.

However, developmental temperature thresholds may vary widely across insect species, and

development rates often vary within populations [17–19]. A biologically unrealistic model may

produce inaccurate predictions of phenological events (e.g. spring emergence, first adult flight,

egg-hatching) or voltinism. Moreover, most platforms are capable of forecasting phenology

only a week or two into the future in specific states or regions. However, stakeholders may

need to plan operations several weeks in advance, potentially in areas that are outside the geo-

graphic bounds of predictive models.
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In this study, we introduce a new spatial modeling platform, DDRP (short for Degree-Days,

establishment Risk, and Phenological event maps) that generates real-time and forecast predic-

tions of phenology and climatic suitability (risk of establishment) of invasive insect species in

the conterminous United States (CONUS). The objective of DDRP is to provide a multi-spe-

cies modeling tool that can improve the efficiency and effectiveness of programs that aim to

detect new or spreading invasive insect species in the United States, to monitor and manage

species such as IPM insect pests that are already well-established, and to improve programs for

classical biological control insects. The platform is written entirely in the R statistical program-

ming language [20], making it flexible and extensible, and has a simple command-line inter-

face that can be readily implemented for online use. Gridded temperature data for DDRP may

include the entire CONUS or a specific region or state, and may be at any spatial resolution

that can be handled by the user’s computing system. DDRP will generally use observed and

future (forecast or recent average) temperature data because it was designed to be run as a

within-season decision support tool that can provide guidance on where and when to expect

the pest to appear each year, but it will accept temperature data for any time period. Model

outputs include gridded (raster) and graphical (map) outputs of life stages present, number of

generations, phenological events, and climatic suitability.

First, we describe the modeling process and workflow of DDRP, summarize types of model

outputs, and review its system and software requirements. Next, we demonstrate its capabili-

ties and the process of model parameterization using two invasive insect species which

threaten agricultural biosecurity in the United States: the small tomato borer, Neoleucinodes
elegantalis [Guenée (Lepidoptera: Crambidae)], and the light brown apple moth, Epiphyas
postvittana [Walker, 1863 (Lepidoptera: Tortricidae)]. These species were chosen because they

have been well-studied in terms of their developmental requirements, and previous climatic

suitability studies provide a basis for parameterizing the climatic suitability model in DDRP.

Additionally, models for these species are intended to aid surveillance teams at the Cooperative

Agricultural Pest Survey (CAPS) pest detection program, which supports the USDA Animal

and Plant Health Inspection Service (APHIS) as it works to safeguard agricultural and envi-

ronmental resources in the United States. We used population monitoring data for E. postvit-
tana in California to test the hypothesis that DDRP can correctly predict the timing of first

spring egg laying and the generation length of the species. Additionally, we used a validation

data set consisting of presence localities from California (E. postvittana) and Brazil (N. elegan-
talis) to test the hypothesis that DDRP can correctly predict each species’ known distribution

in these areas. The DDRP platform will be a useful decision support tool for preventing, moni-

toring, and managing new and existing invasive pests of agriculture and natural resources in

the United States.

Methods

1) Model inputs

Temperature data. DDRP requires daily Tmin and Tmax data in a gridded format for an

area of interest in CONUS (Fig 1). For real-time modeling, we have been using daily Tmin and

Tmax data at a 4 km spatial resolution from the PRISM (Parameter-elevation Relationships on

Independent Slopes Model) database (available at https://prism.oregonstate.edu) [21]. Daily

PRISM data become available ca. 1 day after weather station observations are reported, and are

typically updated and improve in quality as more observations are added (see PRISM website

for details). The phenology mapping system of the USA National Phenology Network [8] uses

Real-Time Mesoscale Analysis (RTMA) weather data at a 2.5 km resolution, which are avail-

able within hours after data are observed. The daily Tmin and Tmax RTMA data set could
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Fig 1. Schematic of the DDRP model framework. 1) Input data sets (blue shaded boxes) include a) data on the

developmental requirements, climatic tolerances (optional), and emergence times of population cohorts of a species

(Table 1), and b) daily minimum and maximum temperature (Tmin and Tmax, respectively) data. 2) Hollow blue boxes

indicate calculations conducted on each daily time step, where a dashed outline represents calculations for climatic

suitability. Phenological event map (PEM) calculations for each life stage (E = egg, L = larva, P = pupa, A = adult) are

shown in green font. A full generation is counted when adults lay eggs (in red), and the number of generations

subsequently increases. 3) After the daily time step completes, DDRP combines the results across all cohorts and exports

the model outputs as multi-layer raster (“.tif”) and summary map (“.png”) files (orange shaded boxes). Orange shaded

boxes with a dashed line represent model outputs for PEMs and climatic suitability.

https://doi.org/10.1371/journal.pone.0244005.g001
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potentially be used in DDRP; however, the RTMA methodology lacks PRISM’s update and

quality control regimes [21]. Another alternative is Daymet v3, which offers daily climate data

for North America, Hawaii, and Puerto Rico at a very high spatial resolution (1 km) (https://

daymet.ornl.gov) [22]. However, Daymet data are released months after the end of each year,

so they would be less useful for within-season modeling and decision support.

For forecast modeling, DDRP is currently configured to use either monthly-updated, daily-

downscaled NMME (North American Multi-Model Ensemble) 7-month forecasts at a 4 km

resolution [23], or recent 10-year average PRISM daily data that are calculated on a bi-monthly

basis. We consider 10-year average data to be an improvement over 30-year climate normals

for producing forecasts because temperatures in CONUS have significantly increased over the

past 30 years [24, 25]. The match of mean forecasts of the NMME model’s ensemble to the

observed value (i.e. skill) varies both spatially and temporally due to topography, season, and

the presence of an El Niño-Southern Oscillation (ENSO) signal [26, 27]. It may therefore be

more conservative, and provide more consistent predictions, to use 10-year averages instead of

NMME data to avoid potential issues with skill. However, we caution that the 10-year average

data do not simulate variation in daily Tmin and Tmax, which may result in the under-predic-

tion of degree-day accumulation in the spring or fall as daily Tmax only slightly exceeds the

lower developmental threshold of a species, or for cooler sites that have temperatures that are

often near the threshold. We have also prepared and plan to use the National Weather Service

gridded National Digital Forecast Database (NDFD) 7-day forecasts (https://www.weather.

gov/mdl/ndfd_info) [28] for use in DDRP.

Phenology modeling: Species data and parameters. The life history and behavior of a

target species must be considered for appropriateness to model in DDRP. In its current form,

the platform can model four separate life stages (the egg, the larva or nymph, the pupa or pre-

oviposition, and the adult) plus a separately parameterized overwintering stage. As movement

and migration are not handled by DDRP, it is currently limited in its ability to model migra-

tory species, such as those that may establish in southern areas of their potential range and

migrate yearly to more northern areas. Species that lack an overwintering stage, which are

common in tropical and subtropical areas, may be difficult to model because the timing of first

spring activities and stages present cannot be accurately estimated. Currently DDRP is entirely

temperature-driven, so species whose growth and reproduction are strongly influenced by

additional environmental factors such as day length or moisture may not be accurately

modeled.

DDRP requires data on the developmental temperature thresholds (in either degrees Cel-

sius or Fahrenheit) and durations for each life stage of an insect species in degree-days (Fig 1

and Table 1). These data are typically collected in the laboratory by measuring how tempera-

ture influences the rate of development, although data derived from season-long monitoring

studies are also used [14, 29]. We round Fahrenheit values of thresholds to the nearest integer

in all DDRP models because it allows for simpler communication of models to end-users, and

it is a long standing convention for degree-day models in the United States. A different devel-

opmental threshold may be assigned to each stage, although we typically solve for a common

threshold if differences across the stages are minimal. Additionally, applying common thresh-

olds allows a modified version of the DDRP model to be used by the site-based modeling tool

at USPEST.ORG (https://uspest.org/dd/model_app), which requires common thresholds

across stages, and to more easily compare the DDRP and site-based model implementations

for a given species. Presently, the model depends upon a fixed starting date such as January 1,

specified by the user for the entire region of interest. The duration of the overwintering stage

represents the number of degree-days that must accumulate from the start of the year for the

stage to complete.
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Table 1. Species-specific parameters used in DDRP with corresponding values for Epiphyas postvittana (light brown apple moth) and Neoleucinodes elegantalis
(small tomato borer).

Parameter Code E. postvittana N. elegantalis
Lower developmental thresholds (˚C)

Egg eggLDT 7.2 8.89

Larvae larvaeLDT 7.2 8.89

Pupae pupaeLDT 7.2 8.89

Adult adultLDT 7.2 8.89

Upper developmental thresholds (˚C)

Egg eggUDT 31.1 30

Larvae larvaeUDT 31.1 30

Pupae pupaeUDT 31.1 30

Adult adultUDT 31.1 30

Stage durations (˚C degree-days)

Egg eggDD 127 86

Larvae larvaeDD 408 283

Pupae pupDD 128 203

Adult adultDD 71 96

Overwintering larvae OWlarvaeDD varies –

Overwintering adult OWadultDD – varies

Phenological events (˚C degree-days)

Overwintering stage event OWEventDD varies varies

Egg event eggEventDD 126 80

Larvae event larvaeEventDD 203 140

Pupae event pupaeEventDD 128 100

Adult event adultEventDD 22 55

Cold stress

Cold stress temperature threshold (˚C) coldstress_threshold 3 6

Cold degree-day (˚C) limit when most individuals die coldstress_units_max1 875 1150

Cold degree-day (˚C) limit when all individuals die coldstress_units_max2 1125 1600

Heat stress

Heat stress temperature threshold (˚C) heatstress_threshold 31 32

Heat stress degree-day (˚C) limit when most individuals die heatstress_units_max1 375 750

Heat stress degree-day (˚C) limit when all individuals die heatstress_units_max2 550 1000

Cohorts

Degree-days (˚C) to emergence (average) distro_mean 210 50

Degree-days (˚C) to emergence (variance) distro_var 2500 1500

Minimum degree-days (˚C) to emergence xdist1 100 0

Maximum degree-days (˚C) to emergence xdist2 320 111

Shape of the distribution distro_shape normal normal

Degree-day calculation method calctype triangle triangle

Phenology model parameter values were derived from previous studies and an analysis of published data for E. postvittana [30–32], and from an analysis of published

data for N. elegantalis [33]. Climatic suitability model parameter values were estimated by calibrating models in accordance with outputs of a CLIMEX model for each

species. For both species, the phenological events for egg, larvae, and adults are beginning of egg hatch, mid-larval development, and first egg laying, respectively. The

phenological event for pupae is first adult emergence for E. postvittana and mid-pupal development for N. elegantalis. The duration and timing of the phenological

event for the overwintering stage will vary according to the number of cohorts applied in model runs (see text for details). Both models applied the single triangle

method (“triangle”) with upper threshold to calculate degree-days.

https://doi.org/10.1371/journal.pone.0244005.t001
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Users must specify the number of degree-days that are required for the overwintering stage

to complete development and emerge for the growing season. These data are typically gathered

using field monitoring studies, whereby the temporal distribution of emergence times and

number of individuals that emerge on a given date is documented [e.g. 32]. Assigning a single

value to the overwintering stage duration parameter would assume that an entire population

develops simultaneously, which may not be biologically realistic because several intrinsic (with

a genetic basis) and extrinsic (e.g. microclimate, nutrition) factors can produce variation in

development rates within a species [19, 34]. Indeed, phenology models that incorporate devel-

opmental variability in a population may have increased predictive power [17, 19, 35]. DDRP

therefore allows the duration of the overwintering stage to vary across a user-defined number

of cohorts (groups of individuals in a population). Much of the intrinsic variability in insect

development during a generation often occurs in the overwintering stage [36], although devel-

opmental variation may occur in any life stage [17, 37, 38]. DDRP uses five parameters to gen-

erate a frequency distribution of emergence times: the mean, variance, low bound, and high

bound of emergence times, and the shape of the distribution (Gaussian or lognormal; Table 1).

The platform uses these data to estimate the relative size of the population represented by each

cohort, which initializes the population distribution that is maintained during subsequent

stages and generations. Individuals within each cohort develop in synchrony.

Users may specify the timing (in degree-days) of phenological events that are important to

their target system to generate phenological event maps in DDRP, which depict the estimated

calendar dates of the event over a time frame of interest. We typically generate phenological

event maps based on temperature data for an entire year so that events for multiple genera-

tions of each of the five life stages are modeled. For example, phenological event maps that

depict when the overwintering stage would emerge may be useful for identifying start dates for

surveillance operations for a species, whereas maps for subsequent generations could help with

planning operations later in the year. The timing of phenological events may be based on life

stage durations (e.g. the end of the egg stage signifies egg hatching), or on occurrences within a

stage such as the midpoint or peak of oviposition or adult flight. Currently, one user-defined

phenological event for each life stage for up to four generations may be modeled, although the

platform could be modified to predict multiple events for each stage (e.g. first, midpoint, and

end of the stage) for any number of generations.

Climatic suitability modeling: Species data and parameters. Climatic suitability model-

ing in DDRP is based on cold and heat stress accumulation and requires data on temperature

stress threshold and limits of a species (Fig 1 and Table 1). While parameter values may be esti-

mated from laboratory or field experiments, such data are lacking for most species. Addition-

ally, extrapolating laboratory data to the field to project accumulation of stress is difficult due

to oversimplification of the number of variables and the temporal and spatial variation in natu-

ral environments [39]. We have been using the CLIMEX software [40] (Hearne Scientific Soft-

ware, Melbourne, Australia), which is one of the most widely used species distribution

modeling tools for agricultural, livestock and forestry pests and non-pests [6, 7], to assist with

climatic suitability model parameterization in DDRP. Laboratory collected data may help with

parameterizing a CLIMEX model; however, model parameters are fine-tuned and the model is

fitted using observations from the species’ known geographical distribution [40, 41].

DDRP was designed to be complementary to CLIMEX in several ways to facilitate climatic

suitability model parameterization, but the two programs also differ in several respects

(Table 2). Both platforms use a process-based modeling approach in which parameters that

describe the response of a species to temperature stress are included in calculations of climatic

suitability. Certain model outputs, particularly maps of temperature stress accumulation, are

therefore directly comparable. DDRP uses the stress accumulation method of CLIMEX in
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which cold and heat stress units begin to accumulate when temperatures exceed the cold and

heat stress temperature thresholds, respectively. In both platforms, cold stress units are calcu-

lated as the difference between Tmin and the cold stress temperature threshold, and heat stress

units are calculated as the difference between Tmax and the heat stress temperature threshold.

However, DDRP uses daily temperature data and stress accumulates linearly over time,

whereas CLIMEX uses average weekly temperature data and stress accumulates at a weekly

rate that becomes exponential over time (each week’s stress in multiplied by the number of

weeks since the stress first exceeded zero) [40]. These differences appear to be minor in using

CLIMEX outputs and parameters to support calibration of DDRP parameters, as demon-

strated in our case studies (see ‘Case Studies’). Similar to CLIMEX, DDRP uses a single cold

and heat stress temperature threshold for all life stages, and stress units accumulate across the

entire time period of interest (i.e. across all life stages and generations). We apply the cold and

heat stress threshold of the life stage that would be most likely to experience the coldest or hot-

test temperatures of the year, respectively. DDRP assumes that stress could indirectly kill

Table 2. Comparison of the characteristics, parameters, and outputs of climatic suitability models in DDRP and CLIMEX.

Attributes DDRP CLIMEX

Temporal range (time

frame)

Any–historical, real-time, near forecast, and climate change forecasts Historical (1961–1990), and future climate change forecasts for 2030,

2050, 2070, 2080, 2090, and 2100

Temporal scale (time

step)

1 day (daily) for PRISM data–others potentially accommodated Typically weekly values interpolated from monthly data

Spatial scale Any–default is a 2´ resolution (ca. 4 km) for PRISM data CliMond data at a 30´ (ca. 55 km at equator) or 10´ (ca. 20 km)

resolution; others potentially accommodated

Factors influencing

climatic suitability

Cold and heat stress Cold, heat, dry, and wet stress plus population growth

Modeling process

overview

Estimates daily cold and heat stress accumulation and determines

whether total accumulations exceed the moderate (max1) or severe

(max2) cold and heat stress limits

Estimates weekly population growth and the accumulation of stress

(cold, heat, dry, and wet); population growth is reduced when

accumulations are too low or too high to maintain metabolism

Climate stress

parameters

Temperature stress

thresholds

Upper and lower cold and heat stress thresholds in Celsius units Upper and lower cold and heat stress thresholds in Celsius or degree-

day units

Temperature stress

rates

Cold and heat stress accumulation limits (max1 and max2); stress

units accumulate linearly over time (consecutive days not weighted

higher than non-consecutive days)

Weekly cold and heat stress accumulation rate based on thresholds in

Celsius units (similar to DDRP) or degree-day units; stress units

accumulate exponentially over time (consecutive weeks are weighted

higher than non-consecutive weeks).

Moisture stress

thresholds

None Upper and lower dry and wet stress thresholds

Moisture stress

rates

None Weekly dry and wet stress accumulation rate

Total no. of

parameters possible

6 38

Total no. of

parameters typically

used

6 21

Depiction of the

potential distribution

Areas not under moderate or severe cold and heat stress exclusions Typically areas with an Ecoclimatic Index� 1 (the Ecoclimatic Index

is calculated using annual growth and stress indices)

Outputs Gridded and graphical outputs of 1) cold and heat stress unit

accumulation, and 2) cold, heat, and all (cold plus heat) stress

exclusions

Tabular and graphical outputs of 1) cold, heat, dry, and wet stress unit

accumulation, and 2) the temperature, moisture, growth, and

ecoclimatic index

For simplicity, we do not show CLIMEX parameters related to interaction stress indices (hot-wet stress, hot-dry stress, cold-wet stress, and cold-dry stress) or to

radiation, substrate, light and diapause indices.

https://doi.org/10.1371/journal.pone.0244005.t002
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individuals by restricting their activity, or directly cause mortality through extreme cold or

heat events such as a hard freeze.

Importantly, DDRP was designed to model climatic suitability based on daily current or

forecast temperature data at fine spatial scales (e.g. a single state or region), which would give

users insight into the potential risk of establishment or spread during a particular season or

year. In contrast, CLIMEX is normally used to estimate a species’ potential distribution using

coarse-scale (10´ and 30´ resolution) global gridded 30-year monthly climate normals centered

on 1975 (1961–1990) or future projections from selected global circulation models (GCMs)

[42]. In theory CLIMEX could be used for real-time climatic suitability, but it has no native

ability to import and process common gridded formats and is incapable of using daily resolu-

tion climate data. Thus, DDRP’s climatic suitability models are intended to improve the effi-

ciency of surveillance and trap deployment at a relatively small focal area for a current or near-

future time period, whereas CLIMEX models provide a more general and coarse-scale assess-

ment of suitability based on averaged climate data.

Relying on real-time climatic suitability models for decision support on where to employ

pest management and eradication operations for a given year or season is preferable to using

models based on 30-year climate normals. A model that uses current climate data is more bio-

logically relevant because the risk of establishment in an area would be affected by the condi-

tions that a species physically experiences, not by averages of historical climate. Additionally,

climate in CONUS is changing rapidly, so models based on climate normals may produce

unrealistic predictions of present-day climatic suitability. Over the past ca. 30 years, the aver-

age annual temperature in CONUS has increased by 1.2˚F (0.7˚C), the number of freezing

days has declined, and extreme temperature events have increased in frequency and intensity

[24, 25]. Nonetheless, DDRP is not currently capable of including moisture factors in the

modeling process like CLIMEX, so model predictions for moisture-sensitive species in very

arid or wet areas should be interpreted with caution. We discuss the potential implications of

generating a climatic suitability model based solely on temperature in the ‘Discussion.’

We compare CLIMEX’s predictions of temperature stress accumulation and overall cli-

matic suitability to similar outputs in DDRP to help parameterize a DDRP climatic suitability

model. Temperature stress thresholds may be calibrated so that predictions of cold and heat

stress accumulation at the end of the year are spatially concordant with CLIMEX’s predictions.

Climatic suitability in CLIMEX is estimated with the Ecoclimatic Index (EI), which is scaled

from 0 to 100, and integrates the Annual Growth Index and the Annual Stress Index (all cli-

mate stress indices) to give an overall measure of favorableness of a location or year for long-

term occupation by the target species [40, 41]. An EI� 1 is often used as a threshold for defin-

ing whether a location is suitable for long-term survival, although an EI exceeding 20 or 30

(depending on the species) is sometimes used to indicate a highly suitable climate [40, 41]. As

discussed in more detail in ‘Case Studies’, temperature stress limits in DDRP can be adjusted

so that areas predicted to be suitable by CLIMEX are also included in DDRP’s prediction of

the potential distribution.

Comparing DDRP climatic suitability model outputs to those of CLIMEX for model fitting

purposes is naturally more appropriate when temperature data are derived from the same time

period. We have therefore been using a PRISM Tmin and Tmax 30-year average data set centered

on 1975 (1961–1990) to match the time-schedule of the CliMond CM10 (also 1961−1990)

world climate data set currently supplied with CLIMEX [42]. We temporally downscaled

monthly PRISM estimates for 1961–1990 because DDRP requires daily data and PRISM daily

temperature data for years prior to 1980 are not available. For each month of a given year, a

bilinear interpolation method was used to assign each day an average temperature value that

was iteratively smoothed and then adjusted so that the monthly averages were correct.
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2) Daily time step

DDRP models insect phenology and climatic suitability by stepping through each day of a

specified time period and calculating degree-day and temperature stress accumulation at each

grid cell of a focal area (Fig 1). The time period may span the entire year of interest, or include

only a subset of days such as those during the growing season. Users may sample and save

daily modeling results every 30 days, 14 days, 10 days, seven days, two days, or one day. Results

are saved in multi-layer rasters that are processed and analyzed after the daily time step to pro-

duce final model outputs. We describe the phenology and climatic suitability modeling process

and outputs in more detail in the following sections.

Phenology model. DDRP calculates daily degree-days over the specified time period

using developmental temperature threshold information and gridded temperature data that

have been cropped to the extent of the focal area (Fig 1). Currently DDRP has two methods to

calculate degree-days: the simple average using an upper threshold with a horizontal cutoff,

and the single triangle method with upper threshold [43–45]. The single triangle method is

also used as a close approximation to the more complex sine-curve calculation method [45].

With the exception of phenological event maps, which are computed only for the last day of

the daily time step, DDRP saves the following phenology model results for each sampled day:

1. Accumulated degree-days. While daily degree-days are calculated for each life stage, the

cumulative degree-days are summed only for the first cohort of the larval stage, as these

degree-day maps are representative for all cohorts and life stages. Accumulated degree-days

calculated for larva will be the same for other life stages if common developmental thresh-

olds are used.

2. Life stages. The life stage present (overwintering stage, eggs, larvae, pupae, and adults) for

each cohort.

3. Number of generations. The current generation count for each cohort. If the model is run

for an entire year, then the output for the last day of the year would represent the potential

voltinism of the species. The generation count increases when adults progress to the egg

stage (i.e. oviposition occurs).

4. Phenological event maps (optional). The timing of phenological events is estimated by com-

puting daily degree-day totals from the gridded temperature data, and storing the day of

year when an event threshold is reached. Event results are generated only on the last day of

the daily time step (typically, the last day of the year) because the entire time period must be

analyzed for all potential event days to be considered.

Climatic suitability model. Independently from the phenology model simulations,

DDRP calculates daily cold and heat stress accumulations and compares these estimates to

user-defined moderate and severe stress limits to delineate the potential distribution of the

species (Fig 1). We opted to use moderate and severe stress limits to reflect two distinct

themes. First, they may provide a way to depict the potential for short term vs. longer term

establishment. For most species, the potential distribution could be represented by areas where

cold and heat stress have not exceeded the severe or moderate stress limits, as these should

allow for long-term survival. DDRP depicts these areas with maps of cold stress exclusion, heat

stress exclusion, and all stress exclusion (cold plus heat stress exclusions; Fig 1). Areas under

moderate stress exclusion may represent temporary zones of establishment in which a species

establishes only during a favorable season, such as after an annual migration event. Conversely,

areas under severe stress exclusion do not allow for even short-term establishment. Typically

we visualize exclusion maps calculated for the last day of the year (day 365) under investigation
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to provide insight into the potential distribution for an entire growing season. For CONUS,

the northern range limit is typically delineated by cold stress and the southern range limit, if

any, is delineated by heat stress.

Second, using two levels of stress may provide a way to represent uncertainty for estimating

the potential distribution. As discussed in more detail in the ‘Discussion,’ several sources of

uncertainty and error in the modeling process may bias model predictions, such as applying

inappropriate parameter values, using climate data with low skill or poor spatial resolution,

ignoring biotic factors such as species interactions, or ignoring non-temperature abiotic fac-

tors such as microclimate effects, moisture, and photoperiod [34, 46]. Defining the potential

distribution as areas under severe stress only would typically provide a broader estimate than a

definition based on both stress levels. While this approach may over-predict the risk of estab-

lishment, conducting surveys over too broad an area is probably better than surveying too

small of an area, which may allow a new invasive species to establish and spread.

3) Post time step processing

After the daily time step has completed, DDRP combines and analyzes results across cohorts

and generates final multi-layer rasters (“.tif” GeoTIFF files) and summary maps (“.png” image

files) for each sampled day. If multiple cohorts were modeled, then DDRP uses estimates of

the relative size of the population represented by each cohort to calculate the relative size of

the population (totaling 100%) in any given life stage and generation. For phenological event

maps, the earliest and average day of year that an event occurs across cohorts is calculated, and

these are displayed as calendar dates (month-day) on summary map outputs (Fig 1). DDRP

also generates a summary map that depicts the life stages of each generation that are present

on a given day. Owing to complexities involved with depicting estimates of the relative size of

the population that is represented by each generation and stage, these maps are produced only

for the middle cohort because it should represent a large proportion of the population if a nor-

mal distribution of emergence times is applied.

DDRP integrates mapping of phenology and climatic suitability so that users can use a sin-

gle model output to obtain guidance on their “where” and “when” questions (Fig 1). For exam-

ple, a user involved with planning surveys may want to know where a target species may

establish, and within those areas, when populations may emerge from overwintering. Each

output of the phenology model with the exception of accumulated degree-days will be associ-

ated with two additional outputs for each sampled day (or the last day for a phenological event

map): 1) one that includes severe stress exclusion only, and 2) one that includes both severe

and moderate stress exclusions. For example, a phenological event map with severe and mod-

erate stress exclusions for 2018 (all 365 days) would present predicted dates of the selected

event only in areas where long-term establishment is predicted (Fig 2).

System and software requirements. DDRP requires the R statistical software platform

and can be run from the command line or within RStudio [47]. It takes advantage of functions

from several R packages for data manipulation, analysis, and post-model processing. The raster

package [48] is used to crop daily temperature rasters to the focal area, store and manipulate

daily loop raster results, and process and further analyze results for each cohort. Many non-spa-

tial data manipulations are conducted with functions in the dplyr, tidyr, and stringr packages

[49–51]. The ggplot2 package [52] is used to generate and save summary maps of raster outputs,

and options from the command line argument are parsed using the optparse package [53].

DDRP capitalizes on the multi-processing capabilities of modern servers and computers to

run multiple operations in parallel, which is made possible with the R packages parallel and

doParallel [54]. This significantly reduces computation times, particularly in cases where
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modeling is conducted with multiple cohorts and across large areas. For example, parallel pro-

cessing is used to crop rasters for multiple dates, run multiple cohorts in the daily time step,

and to analyze time step outputs for multiple days or files simultaneously. For very large areas

(currently defined as the Eastern United States and CONUS), temperature rasters are split into

four tiles and both the tiles and cohorts are run in parallel in the daily time step.

We recommend running DDRP on a server or computer with multicore functionality

because certain processes are very memory intensive and may execute slowly or stall without

parallel processing. The platform was designed to run on a Linux server, but we have also suc-

cessfully used it on a Windows OS with eight cores. As an example, a model that was run on a

Linux server with 48 cores completed ca. 3.5 times faster than it did on a Windows OS with

eight cores.

Fig 2. Phenological event maps generated by DDRP for (A) Epiphyas postvittana (light brown apple moth) and (B)Neoleucinodes
elegantalis (small tomato borer) in CONUS in 2018. The map for E. postvittana shows the average date of egg laying by first generation

females, whereas the map forN. elegantalis shows the average date of first generation beginning of egg hatch. Both maps include

estimates of climatic suitability, where long-term establishment is indicated by areas not under moderate (excl.-moderate) or severe

(excl.-severe) climate stress exclusion.

https://doi.org/10.1371/journal.pone.0244005.g002

PLOS ONE DDRP: A new modeling tool for invasive insects

PLOS ONE | https://doi.org/10.1371/journal.pone.0244005 December 31, 2020 12 / 32

https://doi.org/10.1371/journal.pone.0244005.g002
https://doi.org/10.1371/journal.pone.0244005


Case studies

Climatic suitability, voltinism, and phenological events in Epiphyas postvittana. The

light brown apple moth, E. postvittana (Walker 1863) (Lepidoptera: Tortricidae), is a leafroller

pest native to southeastern Australia, including Tasmania [30]. The species invaded Western

Australia, New Zealand, New Caledonia, England, and Hawaii more than 100 years ago [55–

57], and has been established in California since 2006 [58, 59]. It poses a significant threat to

agricultural production in the United States because it feeds on more than 360 host plants,

including economically important fruits such as apple, pear, citrus and grapes [30, 31, 60]. For

example, an economic risk analysis of E. postvittana to four major fruit crops (apple, grape,

orange, and pear) in CONUS estimated an annual mean cost of US$105 million associated

with damage to crops and control, quarantine, and research [60]. The CAPS program at

APHIS conducts annual surveys for E. postvittana at various counties across CONUS.

A summary of phenology and climatic suitability model parameters used for E. postvittana
in DDRP is reported in Table 1. We assigned all life stages a lower developmental threshold of

7.1˚C (45˚F) [30] and an upper developmental threshold of 31.1˚C (88˚F). Laboratory studies

revealed small differences in the lower developmental threshold (< 1˚C) across different life

stages [30, 31]. The upper developmental threshold value is based on studies showing that all

life stages cease development between 31–32˚C [30–32]. We derived life stage durations (in

degree-days Celsius; hereafter, DDC) for E. postvittana based on an analysis of published data

[30], which resulted in 127, 408, 128, and 71 DDC for eggs, larvae (females on young apple

foliage), pupae, and adults to 50% egg laying, respectively (S1 Appendix).

We set the overwintering stage to larva because the predominant overwintering stage of E.

postvittana in the United States are the late larval instars [61, 62]. We applied seven cohorts to

approximate a normal distribution of emergence times that spanned 100 to 320 DDC (aver-

age = 210 DDC) based on a report that overwintering larvae at four sites in California required

between 102 and 318 DDC to finish development [61]. This would correspond to the time

required for mid-stage (3rd−5th instars, average 4th instar) female larval feeding on old foliage

(0.45 × 494 DDC = 210 DDC), after a January 1 start date. The single triangle method was

used to calculate degree-days.

We tested the hypothesis that DDRP can correctly predict the timing of first spring egg lay-

ing and generation length for E. postvittana by analyzing three monitoring data sets that were

collected in and around the San Francisco Bay Area in California over a 12 year time frame

(2008–2009, 2011–2014, and 2019–2020). All three data sets were comprised of moth count

data that had been collected via pheromone trap surveys on a bi-weekly or monthly basis by

USDA APHIS or the University of California Cooperative Extension. For each data set, we

estimated the difference between the date of the peak in first spring flight and DDRP predic-

tions of the average date of first spring egg laying. This event was chosen because peak flight

would likely happen at about the same time that peak egg laying is occurring [63]. Addition-

ally, we used DDRP to calculate the number of degree-days that accumulated between the last

peak fall flight and first peak spring flight for four winters (2011–2012, 2012–2013, 2013–2014,

and 2019–2020), which should serve as a rough estimate of generation time. These estimates

were compared to the generation time that is used by the DDRP model (823 DDC for the over-

wintering generation; 734 DDC are used for later generations that have young foliage to feed

upon [30]). Model runs for each year used PRISM data and applied seven cohorts and a nor-

mal distribution of emergence times. Additional details about the data sets and methods for

this analysis are presented in S2 Appendix.

We generated a CLIMEX model for E. postvittana using CLIMEX version 4.0 [40] to help

parameterize the climatic suitability model in DDRP. The model applied a combination of
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parameter values (Table 3) derived from two previous CLIMEX studies of this species [64, 65].

However, we used a cold stress threshold (TTCS) of 3˚C, which is lower than He et al.’s (2012)

value (5˚C) [64], and higher than Lozier and Mill’s (2011) value (1.5˚C) [65]. We applied a

top-up irrigation (additional simulated rainfall) rate of 2.5 mm day−1 for the winter and sum-

mer season because irrigation mitigates the hot-dry climate that limits distribution of E. post-
vittana within CLIMEX. We fit the CLIMEX model using a data set of 393 georeferenced

locality records from Australia (N = 317) and New Zealand (N = 76), which were obtained

from GBIF.org (18th July 2019; GBIF Occurrence Download https://doi.org/10.15468/dl.

a4ucei) and Nick Mills at UC Berkeley (pers. comm.).

For model validation, we used locality records from 14,949 sites in California where the

California Department of Food and Agriculture detected E. postvittana between 2007 and

2013, and from an additional 47 localities in California where it was positively diagnosed

between 2011 and 2017. We removed localities that occurred within the same CLIMEX grid

cell, which resulted in 140 unique localities. Of these, 95% (133/140) were in areas predicted to

have high suitability (EI> 20), 4% (6/140) were in areas predicted to have low suitability

(0< EI < 20), and 0.007% (1/140) were in unsuitable areas (S1 Fig). These findings suggest

that the CLIMEX model accurately predicted suitable climates at the majority of localities

where the species is known to be established in CONUS, and it is therefore a useful tool for cal-

ibrating a climatic suitability model in DDRP.

Table 3. Parameter values used to produce a CLIMEX model for Epiphyas postvittana (light brown apple moth) and Neoleucinodes elegantalis (small tomato

borer).

E. postvittana N. elegantalis
CLIMEX parameter Code Lozier & Mills (2011) He et al. (2012) This study da Silva et al. (2018) This study

Temperature

Limiting low temperature (˚C) DV0 7.5 7 7 8.8 8.8

Lower optimal temperature (˚C) DV1 15 13 13 15 15

Upper optimal temperature (˚C) DV2 25 23 23 27 27

Limiting high temperature (˚C) DV3 31 30 31 30 31

Degree-days per generation (˚C days) PDD 673.6 673.6 673.6 588.2 588.2

Moisture

Limiting low moisture SM0 0.15 0.25 0.15 0.35 0.35

Lower optimal moisture SM1 0.5 0.8 0.8 0.7 0.7

Upper optimal moisture SM2 0.8 1.5 1 1.5 1.5

Limiting high moisture SM3 1.4 2.5 2.5 2.5 2.5

Cold stress

Cold stress temperature threshold (˚C) TTCS 1.5 5 3 – 6

Cold stress temperature rate (week–1) THCS −0.005 −0.0005 −0.0005 – −0.0005

Cold stress degree-day threshold (˚C days) DTCS – – – 15 –

Cold stress degree-day rate (week–1) DHCS – – – 0.001 –

Heat stress

Heat stress temperature threshold (˚C) TTHS 31 31 31 30 31

Heat stress temperature rate (week–1) THHS 0.0045 0.01 0.002 0.0007 0.00084

Dry stress

Dry stress threshold SMDS 0.15 0.2 0.15 0.35 0.35

Dry stress rate (week–1) HDS −0.005 −0.01 −0.005 −0.001 −0.001

Wet stress

Wet stress threshold SMWS 1.4 2.5 2.5 2.5 2.5

Wet stress rate (week–1) HWS 0.001 0.002 0.001 0.002 0.002

https://doi.org/10.1371/journal.pone.0244005.t003
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In DDRP, we generated a climatic suitability model for E. postvittana using the daily down-

scaled PRISM Tmax and Tmin estimates for 1961–1990 and calibrated model parameters in

accordance with the CLIMEX model (Fig 3). Specifically, we compared maps of temperature

stress accumulation, and adjusted temperature stress limits so that most areas predicted to be

under moderate and severe climate stress by DDRP had low (20 > EI> 0) or zero (EI = 0)

Fig 3. Predictions of cold stress, heat stress, and climatic suitability for Epiphyas postvittana (light brown apple moth) in CONUS produced by CLIMEX (A–C)

and DDRP (D–F) based on 1961–1990 climate normals. Climatic suitability is estimated by the Ecoclimatic Index (EI) in CLIMEX, and by combining cold and

heat stress exclusions in DDRP. In DDRP, long-term establishment is indicated by areas not under moderate (excl.-moderate) or severe (excl.-severe) climate

stress exclusion. Cold and heat stress units in DDRP were scaled from 0 to 1000 to match the scale in CLIMEX. CLIMEX maps were generated for this study

based on parameters documented in Table 3 and have not been previously published.

https://doi.org/10.1371/journal.pone.0244005.g003
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suitability according to CLIMEX, respectively. Additionally, we modeled climatic suitability

for the species in California for each year between 2010 and 2019 and calibrated stress parame-

ters to maximize the fit of the model to 144 georeferenced records that were collected over the

same time period (N = 144 from GBIF, N = 77 from Nick Mills). For each modeled time

period, we extracted climate stress exclusion values for presence localities in the California

Department of Food and Agriculture data set to test our hypothesis that DDRP could correctly

predict the potential distribution of the species. We removed localities that occurred within

the same 4 km grid cell, which resulted in 872 unique validation localities.

Finally, we modeled phenology and climatic suitability for E. postvittana in 2018 to provide

insight into its potential voltinism, seasonal activities, and risk of invasion in particularly

warm temperatures. The summer of 2018 in the United States was the warmest since 2012 and

tied for the fourth-warmest on record (NOAA website https://www.noaa.gov/news/summer-

2018-ranked-4th-hottest-on-record-for-us; last accessed 11/21/19). We generated a phenologi-

cal event map that depicted the date of first egg laying by first generation females, because this

activity is relevant to monitoring both eggs and the emergence of adults, which typically occurs

two to three days prior to egg laying.

Climatic suitability, voltinism, and phenological events in Neoleucinodes elegantalis.
The small tomato borer, N. elegantalis (Guenée) (Lepidoptera: Crambidae), is native to South

America and is distributed throughout the Neotropics including in Mexico, Central America,

and the Caribbean [66, 67]. A major insect pest of tomato (Solanum lycopersicum), it also

attacks fruits of other plants belonging to the family Solanaceae including eggplant, paprika,

naranjilla, and green and red pepper [67]. There are at least 1175 recorded interceptions of the

species from the United States, where it is considered a serious threat to agricultural biosecu-

rity because it lowers tomato production in South America [68]. The CAPS program has con-

ducted surveillance for N. elegantalis since at least 2011.

A summary of phenology and climatic suitability model parameters used for N. elegantalis
in DDRP is reported in Table 1. We re-analyzed data from a laboratory study on the develop-

ment of N. elegantalis on hybrid tomato (Paronset) at five temperatures [33] to estimate a com-

mon lower temperature threshold for all life stages, which involved adding a point to force the

x-intercept to an integer value in degrees Fahrenheit. We weighted the analysis to select a com-

mon lower threshold for immature stages, which are the longest in duration, because this

should produce the lowest error for the overall life cycle. The lower threshold values for imma-

ture stages were very similar to the overall egg-to-adult value of 8.89˚C (48˚F), so we chose

8.89˚C as the common threshold instead of a higher one solved for the adult pre-oviposition

stage (11.5˚C). We estimated the duration for eggs, larvae, pupae, and adults to peak oviposi-

tion as 86, 283, 203, and 96 DDC, respectively. This analysis is presented in S3 Appendix.

Neoleucinodes elegantalis has no apparent photoperiodic response, diapause, or specific

overwintering stage. In subtropical climates in Brazil, the insect remains active throughout the

year if host plants are available [33]. We defined adults as the overwintering stage and used

January 1 as the model start date for CONUS because few host plants would be available for

immature stages at this time. We assumed that adult feeding and host search activities could

begin immediately if temperatures are suitable, and that first egg laying would subsequently

occur after the estimated pre-oviposition period of ca. 55 DDC. The durations of later events

(first to peak oviposition, immature development, etc.) were estimated from previously pub-

lished data [33, 69]. We applied seven cohorts to approximate a normal distribution of emer-

gence times that spanned 0 to 111 DDC (average = 50 DDC) because overwintered adults

begin finding hosts over this time frame, and we used the single triangle method to calculate

degree-days. Unfortunately, we were unable to find monitoring data that were suitable for vali-

dating the DDRP phenology model for N. elegantalis. Population monitoring studies of the
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species have been conducted in Brazil; however, the species at these locations does not have a

discrete overwintering stage so peaks in flight are more or less sporadic and not indicative of

first spring activity or voltinism.

We used two different approaches to parameterize a DDRP climatic suitability model for N.

elegantalis for CONUS. First, we used a similar approach taken for E. postvittana in using a

CLIMEX model to help calibrate temperature stress parameters in DDRP. As detailed in S4

Appendix, we re-parameterized a previously published CLIMEX model for N. elegantalis [70]

because it appeared to underpredict suitability in warmer areas where the species is known to

occur. Briefly, this involved fitting a CLIMEX model using 228 locality records from the Neo-

tropics and validating it using a separate set of 54 localities (S1 Table). CLIMEX correctly pre-

dicted suitable conditions (EI� 1) at 96% of the validation localities (51/53) that fell within a

unique grid cell (S2 Fig), which suggests that the model is robust at predicting climatic suitabil-

ity. We therefore compared DDRP maps of temperature stress accumulation to those of CLI-

MEX, and adjusted temperature stress limits so that most areas predicted to be suitable by

CLIMEX were also included in the potential distribution by DDRP (Fig 4). We considered any

area that had an EI� 1 to potentially be suitable because some localities occurred in areas that

had only marginal suitability (S2 Fig).

We further calibrated the DDRP climatic suitability model forN. elegantalis by fitting a

model for Brazil using 83 locality records and daily gridded Tmin and Tmax data for 2005 to 2016

at a 0.25˚ (ca. 28 km) spatial resolution [71]. To our knowledge, Brazil is the only country within

the range of N. elegantalis for which daily gridded meteorological data are available. We did not

use temperature data for earlier years (1980 to 2004) because they had lower accuracy [71]. A

random subsample of 70% of locality records (S1 Table) were used to fit the DDRP model

(N = 58), and the remaining 30% (N = 25) were used for model validation. We modeled climatic

suitability for each year between 2005 and 2016 and iteratively adjusted heat stress parameters

to maximize model fit. Brazil represents a relatively warm part of the distribution ofN. eleganta-
lis, so we were unable to calibrate cold stress parameters. During this process, we also consid-

ered how well DDRP predictions of suitability and heat stress aligned with those of CLIMEX

(Fig 5). Despite DDRP’s use of climate data for different time periods than CLIMEX for this

analysis (i.e. individual recent years vs. 30-year climate normals), its predictions of heat stress

accumulations and climate stress exclusions over several years were often spatially concordant

with CLIMEX’s estimates (Fig 5). This finding provided some additional reassurance beyond

the validation analysis that DDRP could correctly model climatic suitability of the species.

Finally, we modeled phenology and climatic suitability in DDRP using temperature data for

2018. We generated a phenological event map for the average date of the beginning of egg

hatch of the first generation (Fig 2B). Predictions of egg hatch could enhance population con-

trol of N. elegantalis because this species is most vulnerable to pesticides before larvae enter the

fruit of host plants [72].

Results

DDRP predictions of the timing of first spring egg laying for E. postvittana were consistent

with estimates of first spring peak flight derived from three population monitoring data sets

for most years. Predicted dates of first spring egg laying differed by fewer than six days from

the peak date for 2013, 2014, 2019, and 2020, with some occurring later than the peak (2014,

2020) and others occurring earlier (2013, 2019; S2 Table). Model prediction error was larger

for 2012 (ca. 3 weeks later than peak spring flight). For 2008 and 2009, DDRP predictions for

three of the four analyzed counties were consistent with the observed month of peak spring

flight. Estimates of degree-day accumulation between the last peak fall and first spring flights
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across four winters (S3 Table) were similar to or slightly lower (average = 722 DDC,

range = 693–827 DDC) than the generation time assumed by the DDRP model (822 DDC).

For all modeled years, DDRP predictions of the potential distribution of E. postvittana were

in agreement with the vast majority of validation localities. The model based on 30-year cli-

mate normals predicted suitable conditions at 99.7% (871/874) of validation localities. On

Fig 4. Predictions of cold stress, heat stress, and climatic suitability forNeoleucinodes elegantalis (small tomato borer) in CONUS produced by CLIMEX (A–C)

and DDRP (D–F) based on 1961–1990 climate normals. Climatic suitability is estimated by the Ecoclimatic Index (EI) in CLIMEX, and by combining cold and

heat stress exclusions in DDRP. In DDRP, long-term establishment is indicated by areas not under moderate (excl.-moderate) or severe (excl.-severe) climate

stress exclusion. Cold and heat stress units in DDRP were scaled from 0 to 1000 to match the scale in CLIMEX. CLIMEX maps were generated for this study

based on parameters documented in Table 3 and have not been previously published.

https://doi.org/10.1371/journal.pone.0244005.g004
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average, models based on climate data for each year between 2010 and 2019 predicted suitable

conditions at 97.4% (range = 92.4−99.4%) of validation localities, whereas only 2.3%

(range = 0.6−6.8%) and 0.4% (range = 0.2−0.8%) were predicted to be excluded by moderate

and severe heat stress, respectively.

Similarly, DDRP models forN. elegantalis in Brazil predicted suitable conditions at most valida-

tion locations where the species is known to occur (Fig 5B). On average, models based on climate

data for each year between 2005 and 2016 predicted suitable conditions at 92.4% (range = 87−-

100%) of validation localities. Conversely, 4.7% (range = 0−13%) and 2.9% (range = 0−8.7%) were

predicted to be excluded by moderate and severe heat stress, respectively. Two localities which

were incorrectly excluded by heat stress in 13 of the 15 modeled years occurred in the Serra de Ibia-

paba, which is a high-elevation region (maximum of 850 m) in the state of Ceará where elevations

change quickly across relatively short distances (e.g. ca. 30 km in many areas). The coarse spatial

resolution of input climate data (ca. 28 km2) relative to the scale of these elevational changes most

likely explains inaccurate predictions. For relatively warm years since 2011, heat stress was pre-

dicted to excludeN. elegantalis from warmer regions of Brazil (e.g. in the states of Maranhão, Piauı́,

and Tocantins; Fig 5B) where the species has not been documented to our knowledge.

Fig 5. CLIMEX (A) and DDRP (B) predictions of heat stress and climatic suitability forNeoleucinodes elegantalis in Brazil. The CLIMEX model is based on

1961–1990 climate normals whereas DDRP models are presented for all years between 2011 and 2016. Locality records that were used to fit (blue triangles) and

validate (black circles) the DDRP climatic suitability model are depicted. Both models predicted suitable conditions in regions whereN. elegantalis is

widespread, including in the states of Espı́rito Santo (ES), Goiás (GA), Minas Gerais (MG), Pernambuco (PE), Rio de Janeiro (RJ), Paraná (PR), Rio Grande do

Sul (RS), Santa Catarina (SC), and São Paulo (SP). The pink and blue lines in DDRP heat stress maps depict the moderate and severe temperature stress limits,

respectively.

https://doi.org/10.1371/journal.pone.0244005.g005
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Cold stress was the major determinant of the potential distribution of E. postvittana andN. ele-
gantalis in CONUS according to DDRP analyses based on 30-year climate normals (1961–1990).

Both species were excluded from the northern half of CONUS by cold stress, with the exception

of (mostly) western parts of Oregon and Washington (Figs 3D and 4D). Heat stress excluded E.

postvittana from most of southern Arizona and California, and in parts of Texas (Fig 3E). Con-

versely,N. elegantaliswas excluded only from the hottest parts of southern Arizona and California

(Fig 4E). When considering both cold and heat stress exclusions, the potential distribution of

both species included western parts of the Pacific states (California, Oregon, and Washington),

the Southeast, and southern parts of the Northeast (in Delaware, Maryland, and New Jersey). The

predicted northern range limit of E. postvittana extended farther north thanN. elegantalis and

included parts of some Midwestern states (Kansas, Missouri, Illinois, and Indiana).

DDRP predicted a smaller potential distribution for E. postvittana and N. elegantalis in

2018 compared to 1961–1990 (Figs 2 and 6). According to model runs for 2018, E. postvittana
was excluded by heat stress from warm areas of CONUS that were included in its potential dis-

tribution under historical conditions, including parts of Arizona, New Mexico, Texas, and the

Central Valley of California (S3 Fig). Conversely, the more heat tolerant N. elegantalis experi-

enced only small reductions in its potential distribution in southeastern California and south-

western Arizona due to heat stress (S3 Fig). In the East, the northern range limit for each

species was predicted to be slightly farther south in 2018 than in 1961–1990 due to higher lev-

els of cold stress (S3 Fig).

Predictions of potential dates for phenological events and voltinism for E. postvittana and

N. elegantalis in 2018 varied substantially by latitude in eastern CONUS (Figs 2 and 6). The

earliest date of egglaying for the first generation of E. postvittana was predicted to be as early as

mid-March in Florida to as late as December in the Pacific Northwest (Fig 2A). The average

date of first generation beginning of egg hatch for N. elegantalis was predicted to begin in the

first week of January in Florida but not until mid-June in the Pacific Northwest (Fig 2B). Thus,

the timing of monitoring trap installation to detect ovipositing adults and eggs of E. postvit-
tana, or larvae of N. elegantalis, could vary widely across CONUS. For both species, DDRP

predicted as many as seven to nine generations in coastal areas of the Southeast, compared to

only one or two generations in colder parts of the Pacific Northwest (Fig 6). Three to six gener-

ations were predicted for most other regions of CONUS. These findings may indicate that the

Southeast would experience the longest duration of pest pressure.

Discussion

DDRP as a decision support tool

An improved understanding of where an invasive species could potentially establish as well as

when developmental stages are expected to occur have the potential to support and dramati-

cally improve strategic and tactical pest management decisions [6–8]. DDRP is a new spatial

modeling platform that integrates real-time and forecast predictions of phenology and climatic

suitability (risk of establishment) of invasive insect pests in CONUS, providing insights into

both where and when to focus detection efforts for a given year or growing season. These pre-

dictions may help with detecting the presence of invasive species in the shortest time possible

after they arrive and reproduce, which increases the chance of eradication success and makes

other rapid response measures (e.g. deployment of biological control) possible and less costly

[4]. For example, phenological event maps for E. postvittana and N. elegantalis (Fig 2) identify

high-risk areas where surveillance activities could be concentrated, in addition to providing

estimated dates of activities that can ensure timely trap placement. Thus, users can use a single

program to address decision support needs for early pest detection.
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Additionally, DDRP may be a useful decision support tool for monitoring and managing pop-

ulations of IPM pests and classical biological control agents. For example, growers have used pre-

dictions of the timing of first egg hatch for codling moth [Cydia pomonella (Linnaeus)], first

emergence of western cherry fruit fly [Rhagoletis indifferens (Curran)], and first spring oviposi-

tion of spotted wing drosophila [Drosophila suzukii (Matsumura)] to help monitor and reduce

populations of these major crop pests [73–76]. Phenology models for biological control insects

can help managers schedule sampling trips to coincide with insect presence on the target organ-

ism, and to estimate the synchrony of insect and host phenology at a given location [77, 78].

DDRP’s estimates of voltinism may provide insights into expected pressure on target organisms,

as higher voltinism should translate to greater agent population growth and biocontrol success.

Our hypothesis that DDRP can correctly predict the timing of first spring egg laying and the

generation length of E. postvittana was generally supported, although there was variation in

Fig 6. DDRP model predictions of voltinism (number of generations per year) in (A) Epiphyas postvittana (light brown apple moth)

and (B) Neoleucinodes elegantalis (small tomato borer) in CONUS for 2018. Maps include estimates of climatic suitability, where long-

term establishment is indicated by areas not under moderate (excl.-mod) or severe (excl.-sev) climate stress exclusion.

https://doi.org/10.1371/journal.pone.0244005.g006
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prediction error across years and regions. DDRP predictions were averaged across several grid

cells for two of the three monitoring data sets because they lacked precise location information,

which would likely contribute to prediction errors. Additionally, errors in predictions of spring

egg laying may reflect either differences in the effects of evening temperatures and wind speeds

on flight activity [79], differences in diet which affects development rates [80], or a lack of con-

sistent correspondence between male flight and peak egglaying, albeit the two events are often

found to correlate well enough at least during the springtime to use as a biofix for models

informing treatment decisions. Most estimates of generation length that we obtained by mea-

suring degree-day accumulation for the overwintering generation across four years were higher

than the value used by the DDRP phenology model, which may in part be due to the model’s

assumption that overwintering larvae feed on old apple leaves, which slows development [30].

DDRP predictions of the potential distribution of E. postvittana and N. elegantalis in simula-

tions for multiple recent years were in agreement with the vast majority of validation localities,

a finding which supports our hypothesis that DDRP can correctly predict the known distribu-

tion of each species. Our models for 2018 indicated that heat stress excluded populations of

both species from a greater area of the Southwest compared to 1961–1990, which is consistent

with studies showing that global warming may reduce species’ distributions in warmer parts of

their range [81]. However, determining whether these putative range shifts are persistent or

temporary would require combining model runs for multiple recent years or seasons. For exam-

ple, trends in the geographic distribution of climate stress exclusions over several years or sea-

sons could be visualized with a probability surface map. Estimating the direction of range shifts

may also provide insights into the response of the species to future climate change. Nonetheless,

the differences that we documented in predictions of climatic suitability based on climate data

for 1961–1990 compared to 2018 suggests that an area’s contemporary risk of establishment is

different than it was ca. 30 years ago. DDRP’s ability to produce climatic suitability models in

real-time may provide more meaningful insights into areas that are presently suitable for an

invasive species, and therefore allow for more effective placement of surveillance operations.

Additionally, the ability to capture interannual variability of pest risk in space-time may allow

decision-makers in pest management to react more adaptively to risk.

There are numerous opportunities for improving and extending the applications of DDRP.

The platform can be readily modified to use daily temperature data for a different region than

CONUS, as we demonstrated in our analysis of climatic suitability for N. elegantalis in Brazil.

Additionally, DDRP could be modified to model other types of temperature-dependent organ-

isms such as non-insect invertebrates, plants, plant-pathogenic bacteria and fungi, and insect

plant and animal virus vectors. The platform has been tested for and could be used through an

on-line web interface, although there is the potential that memory intensive processes could

overload a server host. This issue, as yet untested, could be addressed by using a cloud comput-

ing platform. We describe some additional features that could be added to potentially improve

model accuracy and expand the list of outputs in more detail below. The most recent code for

DDRP is available at GitHub (https://github.com/bbarker505/ddrp_v2.git), where we invite

scientists and practitioners to jointly develop the platform and database of species models.

Comparison of DDRP to other platforms

From a historical perspective, DDRP could be considered a partial descendant and spatialized

version of the PETE (Predictive Extension Timing Estimator) phenological modeling platform

that was established as a standard in the mid-1970s [82]. Features in common include a cohort

approach to population phenological modeling using daily degree-days as the main input, pro-

vision for major insect life stages and a separately parameterized overwintering distribution,
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an open-source non-proprietary standard for sharing, and a focus on agricultural extension

(applied decision support). Unlike PETE, DDRP is spatialized and therefore able to produce a

variety of mapping outputs including phenological event maps, and it also includes options to

use separate thresholds for different life stages and to generate climatic suitability models.

DDRP could be improved by adding certain features of the PETE platform including the use

of a diapause trigger, and a distributed delay function that would allow population spread to

increase with each subsequent generation.

Web-hosted daily degree-day maps and degree-day lookup table maps for pest management

are available from several platforms including USPEST.ORG, SAFARIS, and Enviroweather,

but none of these are capable of predicting climatic suitability like DDRP. Additionally, degree-

day lookup tables have certain underlying assumptions which may result in an oversimplified

model that is lacking in biological realism, such as assuming that multiple species or life stages

within a species have a common lower temperature threshold, and that early season develop-

ment in a population begins at the same time (i.e. no developmental variation). In contrast,

DDRP uses species specific parameters including stage-specific lower and upper developmental

temperature thresholds, and it can account for developmental variation within populations by

generating and combining results across multiple cohorts that complete the overwintering stage

at different times. Compared to a simple model based on generation time degree-days, a well-

parameterized DDRP model would likely produce more accurate predictions of voltinism and

spring activity because different temperature thresholds for multiple life stages may be used, the

overwintering stage is parameterized separately from the post-winter stage (e.g. overwintering

adult vs. adult), and the timing of spring activity is summarized across multiple cohorts.

The Insect Life Cycle Modelling (ILCYM) [83, 84] and phenModel [85] software packages

are open-source R programs that use life stage specific parameters to model temperature-

based insect phenology, and both incorporate parameters that describe developmental varia-

tion within a population. ILCYM is similar to DDRP in its ability to predict phenology and cli-

mate based establishment risk in a spatial context. However, ILCYM is a full population

dynamics modeling platform that requires life table data at constant and variable temperatures,

which are seldom available for anticipated but not yet present invasive insect species. Addi-

tionally, published ILCYM risk model simulations use climate normals or GCMs at global or

regional scales [83, 86], whereas DDRP was designed to use real-time and forecast climate data

for within-season decision support in CONUS. The phenModel package is not spatialized nor

capable of modeling climatic suitability, and it would need to be modified to use for an insect

species other than the blue willow beetle Phratora vulgatissima [85].

Uncertainties, limitations, and other considerations

Linear (degree-day) modeling. DDRP uses a relatively simple degree-day modeling

approach, whereas some platforms including ILCYM, phenModel, and devRate [87] offer com-

plex functions to model nonlinear responses of insects to temperature. Degree-day models are

ideal for multi-species platforms like DDRP because there are sufficient data to parameterize a

degree-day model for most insect pest species of economic importance in the United States [18,

88]. Linear degree-day models are also readily calibrated and sometimes constructed entirely

using field data, making them more practical for extension and decision support use [14]. Addi-

tionally, degree-day models require only daily Tmin and Tmax data (as opposed to hourly data for

most nonlinear models), which are available at a high spatial resolution for CONUS from multi-

ple sources including PRISM and RTMA. Nonetheless, it is important for users to recognize

potential sources of error and lack of precision in degree-day models, such as their limited abil-

ity to accurately model development at supra-optimal temperatures [13, 14, 89].
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Environmental inputs. DDRP is intentionally parameterized in a simple, conservative

manner, which will hopefully achieve the goal of a parsimonious balance of both model sim-

plicity and accuracy [14, 90]. Nonetheless, DDRP is driven entirely by temperature, and there-

fore ignores other factors that may affect the development and distribution of insects such as

photoperiod, moisture, dispersal, resources, disturbance, and biotic interactions [7, 91]. The

potential consequences of this limitation will depend on the biology of the organism under

study. For example, dry stress is a major factor restricting the current distribution of N. elegan-
talis in its native range [92–94], and it limits the distribution of E. postvittana both in its native

range [30, 95] and in Southern California and Arizona [96]. Our CLIMEX model for N. elegan-
talis predicted higher dry stress in arid parts of the Southwest than the rest of CONUS (S4

Fig), which suggests that an absence of moisture factors in DDRP may result in over-predic-

tions of climatic suitability in this region. However, this conservative-leaning error may in fact

better reflect human manipulation of the landscape (e.g. greenhouse and irrigation usage) that

may allow the species to exist in such regions. Future versions of DDRP that can process

gridded moisture data and incorporate moisture stress factors into climatic suitability models

may help overcome our current limitations in matching CLIMEX models, and may improve

predictions for moisture-sensitive species such as N. elegantalis. Additionally, we are develop-

ing a version of DDRP that incorporates photoperiodically induced life history events such as

winter diapause and summer aestivation, which builds on earlier phenology modeling work

that estimated voltinism of photoperiod-sensitive insects [97].

Presumptive models. Uncertainties regarding the accuracy of temporal or spatial predic-

tions of invasive species that are not yet established is inevitable, in part because no validation

data are yet available, and species interceptions do not imply establishment [7, 98]. DDRP

models for species for which only presumptive models exist should therefore be used conserva-

tively. For example, surveillance or management actions could be implemented in advance of

predicted phenological events as a precautionary measure (e.g. installing traps even earlier

than estimates for the earliest date of overwintering adult emergence). To potentially avoid

under-predicting the risk of establishment, the potential distribution could be defined as areas

not under severe climate stress as opposed to defining it using both stress levels. Additionally,

climatic suitability models generated by DDRP could be combined with those produced using

different modeling methods (e.g. correlative, semi-mechanistic, or mechanistic) to create a

“hybrid” model, which may increase the reliability of predictions [7, 91].

Web platforms that support sharing of pest observations from the United States will be

valuable resources for validating and increasing the predictive performance of DDRP models

for species that are already established in CONUS. For example, the iPiPE and its sister plat-

forms (http://www.ipipe.org, https://ipmpipe.org) have created a national information tech-

nology infrastructure for sharing pest observations in near real-time and contributing them to

a national repository [99]. Similarly, the USA National Phenology Network provides a reposi-

tory of plant and insect phenology observations contributed by citizen scientists [16]. The

National Agricultural Pest Information System (NAPIS; https://napis.ceris.purdue.edu/home)

currently has over 5.17 million records from pest detection surveys, and is another potential

source of validation data.

Geographic variation. Populations of an invading species may exhibit geographic varia-

tion in temperature dependent development if genetically divergent individuals are introduced

to different areas or rapid evolutionary changes occur in new environments [100, 101]. If the

geographic distribution of variation in a relevant thermal trait is well understood, then model

accuracy may be improved by building separate models for each genotype. For example, an

egg hatch phenology model for a subspecies of the Asian gypsy moth, Lymantria dispar asiatica
(Vnukovskij), had reduced error compared to a similar model constructed for the European
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subspecies that has invaded North America, Lymantria dispar dispar (Linnaeus), which has a

markedly different predominant phenotype [102]. An alternative approach may be to run sev-

eral models, each with a different value for the parameter of interest, and present a range of

model predictions. Conversely, DDRP could be modified to accept a grid of parameter values

so that geographic variation would be accounted for in a single model run.

A lack of knowledge on how early-season environmental conditions or events that initiate

the first spring activity of a species (biofix) vary geographically may be a source of error because

the model start date affects all downstream predictions. For example, how does first spring

activity vary across the wide range of warming conditions possibly encountered for a large

region such as CONUS? As a case in point, our phenology model forN. elegantalis assumes that

moths have only 55 DDC before egg laying behaviors may occur. This assumption may not be

valid for sub-tropical zones of the United States, where flight and reproduction could occur

even earlier. Conversely, a much longer spring warm-up may be needed in temperate zones

because commercial tomatoes are transplanted much later in the year. Studying how first spring

activity (adult flight) in N. elegantalis potentially varies geographically in Central or South

America would help to refine a range of model start times. The phenology model for DDRP

could then be parameterized using a necessarily conservative selection of start dates or by input-

ting a grid of start dates. Using a broad distribution of emergence times to initiate the cohorts

could be another approach to accommodate uncertainty in first spring activity.

Distributed delay. There is currently no distributed delay function in DDRP, meaning

that the overlap in generations and life stages of cohorts does not increase over multiple gener-

ations. This is particularly an issue for species that have significant overlap in generations

because they continue to develop throughout winter months or lack a temperature or photope-

riodic event that synchronize populations, such as E. postvittana [31, 57, 61]. DDRP may accu-

rately predict peak events in each generation for these species, but inaccurately predict the first

appearance of one or more life stages after the first or second generations because of increasing

overlap in generational cohorts. Consequently, phenological event maps should be most reli-

able for the first few generations. This will be among the high priority issues in development of

future versions of the platform.

Conclusion

DDRP is a new multi-species modeling platform that can integrate mapping of phenology and

climatic suitability in real-time to provide timely and comprehensive guidance for stakeholders

needing to know both where and when an invasive insect species could potentially invade.

When used for surveillance, the platform will hopefully increase chances for early detection of

new or spreading invasive threats in the United States, and therefore help pest management

programs mitigate their potential damage to agricultural and environmental resources. Addi-

tionally, DDRP may help plan monitoring and management efforts for IPM pests and biologi-

cal control insects, and to predict pest pressure on host plants.

The case studies we presented provided examples of how DDRP models may be parameter-

ized and then run to produce various outputs including gridded and graphical predictions of

the number of generations, life stages present, dates of phenological events, and areas of climatic

suitability based on two levels of climate stress. We encourage users of DDRP to consider the

limitations of the platform, to report the conditions that their model was designed to work

under (e.g. a particular region, life stage event, or generation), and to document any known

sources of model error that could not be accounted for when providing validation and other

feedback reports. Additionally, models should be validated whenever possible, as we did for the

E. postvittana and N. elegantalismodels presented in this study. The flexible and open-source
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nature of DDRP will facilitate making modifications and improvements, such as adding new

environmental factors, using it for other regions besides CONUS, modeling non-insect organ-

isms, expanding the types of model products, and adding features to improve model accuracy.
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66. Dı́az-Montilla AE, Suárez-Baron HG, Gallego-Sánchez G, Saldamando-Benjumea CI, Tohme J. Geo-

graphic differentiation of Colombian Neoleucinodes elegantalis (Lepidoptera: Crambidae) haplotypes:

evidence for Solanaceae host plant association and Holdridge life zones for genetic differentiation.

Ann Entomol Soc Am. 2013; 106: 586–597. https://doi.org/10.1603/AN12111

67. Bulletin OEPP/EPPO. Neoleucinodes elegantalis. 2015;45: 9–13. https://doi.org/10.1111/epp.12189

68. Dı́az-Montilla AE, Solis MA, Kondo T. The tomato fruit borer, Neoleucinodes elegantalis (Guenée)

(Lepidoptera: Crambidae), an insect pest of neotropical Solanaceous fruits. In: Peña JE, editor. Poten-

tial Invasive Pests of Agricultural Crops. Boston, Massachusetts: CABI; 2013. pp. 137–159. https://

doi.org/10.1079/9781845938291.0137

69. Moraes CP, Foerster LA. Development and reproduction of Neoleucinodes elegantalis (Lepidoptera:

Crambidae) on tomato (Solanum licopercum) cultivars. Rev Colomb Entomol. 2014; 40: 40–43.

70. da Silva RS, Kumar L, Shabani F, Picanço MC. An analysis of sensitivity of CLIMEX parameters in

mapping species potential distribution and the broad-scale changes observed with minor variations in

parameter values: an investigation using open-field Solanum lycopersicum and Neoleucinodes ele-

gantalis as an example. Theor Appl Climatol. 2018; 132: 135–144. https://doi.org/10.1007/s00704-

017-2072-2

71. Xavier AC, King CW, Scanlon BR. Daily gridded meteorological variables in Brazil (1980–2013). Int J

Climatol. 2016; 36: 2644–2659. https://doi.org/10.1002/joc.4518

72. Eiras AE, Blackmer JL. Eclosion time and larval behavior of the tomato fruit borer, Neoleucinodes ele-

gantalis (Guenée) (Lepidoptera: Crambidae). Sci Agric. 2003; 60: 195–197. https://doi.org/https://doi.

org/10.1590/S0103-90162003000100030

PLOS ONE DDRP: A new modeling tool for invasive insects

PLOS ONE | https://doi.org/10.1371/journal.pone.0244005 December 31, 2020 30 / 32

https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=optparse
https://CRAN.R-project.org/package=optparse
http://users.iems.northwestern.edu/~nelsonb/Masterclass/gettingstartedParallel.pdf
http://users.iems.northwestern.edu/~nelsonb/Masterclass/gettingstartedParallel.pdf
https://doi.org/10.1111/j.1442-9993.1976.tb01102.x
https://doi.org/10.1111/j.1442-9993.1976.tb01102.x
https://doi.org/10.1146/annurev-ento-112408-085311
https://doi.org/10.1146/annurev-ento-112408-085311
http://www.ncbi.nlm.nih.gov/pubmed/19728834
https://doi.org/10.3733/ca.v062n02p57
https://doi.org/10.1007/s10530-013-0631-8
https://www.nrs.fs.fed.us/pubs/gtr/gtr-nrs-p-75papers/47fowler-p-75.pdf
https://www.nrs.fs.fed.us/pubs/gtr/gtr-nrs-p-75papers/47fowler-p-75.pdf
https://doi.org/10.1603/en11165
http://www.ncbi.nlm.nih.gov/pubmed/22217751
https://doi.org/10.1016/j.jinsphys.2010.06.009
http://www.ncbi.nlm.nih.gov/pubmed/20600083
https://doi.org/10.1080/03015521.1987.10425586
https://doi.org/10.1016/j.aspen.2012.01.004
https://doi.org/10.1007/s10530-011-0052-5
https://doi.org/10.1603/AN12111
https://doi.org/10.1111/epp.12189
https://doi.org/10.1079/9781845938291.0137
https://doi.org/10.1079/9781845938291.0137
https://doi.org/10.1007/s00704-017-2072-2
https://doi.org/10.1007/s00704-017-2072-2
https://doi.org/10.1002/joc.4518
https://doi.org/https://doi.org/10.1590/S0103-90162003000100030
https://doi.org/https://doi.org/10.1590/S0103-90162003000100030
https://doi.org/10.1371/journal.pone.0244005


73. van Kirk JR, Aliniazee MT. Determining low-temperature threshold for pupal development of the west-

ern cherry fruit fly for use in phenology models. Environ Entomol. 1981; 10: 968–971. https://doi.org/

10.1093/ee/10.6.968

74. Brunner JF, Hoyt SC, Wright MA. Codling moth control—a new tool for timing sprays. Washington

State University Cooperative Extension Bulletin. 1982;1072.

75. Jones VP, Alston DG, Brunner JF, Davis DW, Shelton MD. Phenology of the western cherry fruit fly

(Diptera: Tephritidae) in Utah and Washington. Ann Entomol Soc Am. 1991; 84: 488–492. https://doi.

org/10.1093/aesa/84.5.488

76. Zerulla FN, Augel C, Zebitz CPW. Oviposition activity of Drosophila suzukii as mediated by ambient

and fruit temperature. PLoS One. 2017; 12: e0187682. https://doi.org/10.1371/journal.pone.0187682

PMID: 29121635

77. Gramig GG, Burns EE, Prischmann-Voldseth DA. Predicting developmental timing for immature Can-

ada thistle stem-mining weevils, Hadroplontus litura (Coleoptera: Curculionidae). Environ Entomol.

2015; 44: 1085–1094. https://doi.org/10.1093/ee/nvv089 PMID: 26314053

78. Herrera AM, Dahlsten DD, Tomic-Carruthers N, Carruthers RI. Estimating temperature-dependent

developmental rates of Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent of

saltcedar (Tamarix spp.). Environ Entomol. 2005; 34: 775–784. https://doi.org/10.1603/0046-225x-34.

4.775

79. Danthanarayana W. Diel and lunar flight periodicities in the light brown apple moth, Epiphyas postvit-

tana (Walker) (Tortricidae) and their possible adaptive significance. Aust J Zool. 1976; 24: 65–73.

80. Tomkins AR. Tortricid moth pest management in Canterbury apple orchards. Ph.D. thesis, University

of Canterbury, Canterbury, New Zealand. 1984.

81. Menéndez R. How are insects responding to global warming? Tijdschr voor Entomol. 2007; 150: 355–

365.

82. Welch SM, Croft BA, Brunner JF, Michels MF. PETE: an extension phenology modeling system for

management of multi-species pest complex. Environ Entomol. 1978; 7: 487–494. https://doi.org/10.

1093/ee/7.4.487

83. Sporleder M, Chavez D, Gonzales JC, Juarez H, Simon R, Kroschel J. ILCYM-Insect life cycle model-

ing: software for developing temperature-based insect phenology models with applications for regional

and global pest risk assessments and mapping. Proceedings of the 15th Triennial ISTRC Symposium

of the International Society for Tropical Root Crops (ISTRC). Lima, Peru; 2009. pp. 216–223. Available

from: http://www.istrc.org/images/Documents/Symposiums/Fifthteenth/s7_sporleder.pdf (Accessed

2020 Dec 04)

84. Sporleder M, Tonnang HEZ, Carhuapoma P, Gonzalez JC, Juarez J, Kroschel J. Insect life cycle

modeling (ILCYM) software—a new tool for regional and global insect pest risk assessments under

current and future climate change scenarios. In: Peña JE, editor. Potential Invasive Pests of Agricul-

tural Crops. Boston, Massachusetts: CABI; 2013. pp. 412–427. https://doi.org/10.1079/

9781845938291.0412

85. Pollard CP, Griffin CT, de Andrade Moral R, Duffy C, Chuche J, Gaffney MT, et al. phenModel: A tem-

perature-dependent phenology/voltinism model for a herbivorous insect incorporating facultative dia-

pause and budbsurst. Ecol Modell. 2020; 416: 108910. https://doi.org/10.1016/j.ecolmodel.2019.

108910

86. Fand BB, Tonnang HEZ, Kumar M, Bal SK, Singh NP, Rao DVKN, et al. Predicting the impact of cli-

mate change on regional and seasonal abundance of the mealybug Phenacoccus solenopsis Tinsley

(Hemiptera: Pseudococcidae) using temperature-driven phenology model linked to GIS. Ecol Modell.

2014; 288: 62–78. https://doi.org/10.1016/j.ecolmodel.2014.05.018

87. Rebaudo F, Struelens Q, Dangles O. Modelling temperature-dependent development rate and phenol-

ogy in arthropods: The devRate package for R. Methods Ecol Evol. 2018; 9: 1144–1150. https://doi.

org/10.1111/2041-210X.12935

88. Nietschke BS, Magarey RD, Borchert DM, Calvin DD, Jones E. A developmental database to support

insect phenology models. Crop Prot. 2007; 26: 1444–1448. https://doi.org/10.1016/j.cropro.2006.12.

006

89. Moore JL, Remais JV. Developmental models for estimating ecological responses to environmental

variability: structural, parametric, and experimental issues. Acta Biotheor. 2014; 62: 69–90. https://doi.

org/10.1007/s10441-014-9209-9 PMID: 24443079

90. Logan JA. In defense of big ugly models. Am Entomol. 1994; 40: 202–207. https://doi.org/10.1093/ae/

40.4.202

91. Srivastava V, Lafond V, Griess VC. Species distribution models (SDM): Applications, benefits and

challenges in invasive species management. CAB Rev. 2019;14. https://doi.org/10.1079/

PAVSNNR201914020

PLOS ONE DDRP: A new modeling tool for invasive insects

PLOS ONE | https://doi.org/10.1371/journal.pone.0244005 December 31, 2020 31 / 32

https://doi.org/10.1093/ee/10.6.968
https://doi.org/10.1093/ee/10.6.968
https://doi.org/10.1093/aesa/84.5.488
https://doi.org/10.1093/aesa/84.5.488
https://doi.org/10.1371/journal.pone.0187682
http://www.ncbi.nlm.nih.gov/pubmed/29121635
https://doi.org/10.1093/ee/nvv089
http://www.ncbi.nlm.nih.gov/pubmed/26314053
https://doi.org/10.1603/0046-225x-34.4.775
https://doi.org/10.1603/0046-225x-34.4.775
https://doi.org/10.1093/ee/7.4.487
https://doi.org/10.1093/ee/7.4.487
http://www.istrc.org/images/Documents/Symposiums/Fifthteenth/s7_sporleder.pdf
https://doi.org/10.1079/9781845938291.0412
https://doi.org/10.1079/9781845938291.0412
https://doi.org/10.1016/j.ecolmodel.2019.108910
https://doi.org/10.1016/j.ecolmodel.2019.108910
https://doi.org/10.1016/j.ecolmodel.2014.05.018
https://doi.org/10.1111/2041-210X.12935
https://doi.org/10.1111/2041-210X.12935
https://doi.org/10.1016/j.cropro.2006.12.006
https://doi.org/10.1016/j.cropro.2006.12.006
https://doi.org/10.1007/s10441-014-9209-9
https://doi.org/10.1007/s10441-014-9209-9
http://www.ncbi.nlm.nih.gov/pubmed/24443079
https://doi.org/10.1093/ae/40.4.202
https://doi.org/10.1093/ae/40.4.202
https://doi.org/10.1079/PAVSNNR201914020
https://doi.org/10.1079/PAVSNNR201914020
https://doi.org/10.1371/journal.pone.0244005


92. Dı́az AEM, Solis A, Brochero HL. Distribución geográfica de Neoleucinodes elegantalis (Lepidoptera:
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