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Abstract: Freshly harvested Boletus edulis mushrooms are subjected to rapid loss of quality due to the
high moisture content and enzymatic activity. Drying time, quality characteristics, microstructural
and thermal properties were studied in mushrooms ground to puree subjected to hot air drying
(HAD), freeze drying (FD) and centrifugal vacuum drying (CVD). The influence of hot water blanch-
ing and UV-C pretreatments was additionally investigated. The rehydration ability of mushroom
powders was improved by FD, especially without pretreatment or combined to UV-C exposure. The
HAD and CVD, with no pretreatment or combined to UV-C, ensured good preservation of phenolics
and antioxidant activity of dried mushrooms. The total difference in color of mushroom pigments
extracted in acetone was lower in samples dried by CVD and higher in ones by FD. Blanching before
HAD produced whiter product probably due to the reduced polyphenoloxidase activity. Scanning
Electron Microscopy (SEM) analysis showed fewer physical changes in FD-samples. Heat-induced
structural changes were noticed by Differential Scanning Calorimetry (DSC), Thermogravimetry
(TG) and Derivative Thermogravimetry (DTG) analysis, in particular of biopolymers, confirmed by
ATR-FTIR analysis. Based on our complex approach, the UV pretreatment of mushrooms could be a
better alternative to water blanching. Centrifugal vacuum emerged as a new efficient drying method
in terms of bioactive compounds, color and thermal stability, while FD led to better rehydration
ability and microstructure.

Keywords: Boletus edulis puree; hot air drying; centrifugal vacuum drying; freeze drying;
pretreatment; antioxidant; color; ATR-FTIR; SEM; DSC

1. Introduction

Wild-grown edible Boletus edulis mushrooms, also known as porcini, Steinpilz, king bo-
lete or penny bun, are widely consumed and appreciated for their flavor, nutritional value,
and extra health benefits as functional foods or ingredients, as well [1,2]. These mushrooms
may be consumed as such or in a form of preservation commonly by thermal processing.
Mushrooms are subjected to rapid loss of quality characteristics and bioactive compounds
due to their high moisture content (87–95%), respiratory rate and polyphenoloxidase activ-
ity [3], the recommendation being that fresh mushrooms be stored at 20–25 ◦C up to three
days or at 4 ◦C for seven days [4]. Preservation strategies become essential for assuring the
consumption of B. edulis not only seasonally (summer-autumn) but throughout the year.
The appropriate preservation technique either thermal or physical-chemical [5], should
be evaluated for each type of mushrooms. The thermal treatment by drying is one of the
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most common preservation methods used for extending the shelf life of mushrooms. The
conventional drying methods involve heating (solar, convective, conductive, radiative,
dielectric) being operated individually or in combination [6]. When using such techniques,
the optimization of process parameters (temperature, time, air velocity, etc.) should be
applied to produce a minimal impact on the quality of the final product. It has been shown
that air and freeze drying of mushrooms produces little or no change in the proximate
composition of B. edulis, and the final dried products can be stored up to 12 months at 4 ◦C
or 20 ◦C [7]. However, freeze drying (lyophilisation) has been considered an expensive
method, being usually employed for high-value products [8] despite it being one of the
most product-friendly method based on vacuum drying without thawing.

Hereby, we have investigated for the first time a thermal method of centrifugal vacuum
drying of B. edulis mushrooms, also known as speed-vacuum drying, which represents
a less expensive alternative of drying based on the combination of vacuum drying and
centrifugation. Every single drying method has advantages and limitations, related either
to the final product (loss of nutrients and bioactive compounds, color change, texture
modification, rehydration capacity) or to the applied technology (energy cost, time and
sample amount requirements), so that each technique should be individually assessed in
relation to the specific starting food material. Most studies investigating the drying process
of various mushrooms reported results obtained from the dehydration of mushroom
slices, whose thickness highly influence the process among other input parameters [9].
By our knowledge, no reported scientific study on drying the mushroom puree has been
found, industrial processing involving the drying of slices of mushrooms. With regard to
mushroom puree, the study of Pasban et al. [10] reported that xanthan or cress seed gums
added to white button mushroom puree were suitable for obtaining a good, stabilized
mushroom foam which may be further processed, e.g., by drying, but without reporting
the drying application. However, pureeing has been considered an efficient pretreatment
in terms of reduced drying time or increased bioactive content of various food (chokeberry,
strawberry, orange, kiwi, cranberry, kale, banana, papaya), being applied before different
drying technologies, such as freeze drying [11] or refractance window technology [12].
Such application guided us to conduct drying on mushroom puree.

Pretreatments of fresh mushrooms prior to drying, using physical thermal or non-
thermal methods (water/steam blanching, microwave, pulsed electric field, gamma or
UV irradiation, ultrasounds, high hydrostatic pressure) or chemical processes (soaking in
chemical solutions) is often practiced, in order to reduce the numbers of contaminating
microorganisms, to inactivate the enzymes responsible for the browning reactions or to
positively influence the drying process [13–15]. An inadequate pretreatment may negatively
influence the quality of the final mushroom product, due to nutrient loss, reduction of
the level of antioxidant compounds or antioxidant activity, sensory/color changes or
rehydration ability.

Considering that knowledge of appropriate preservation technology is essential to
define product quality, the present study aimed to investigate the drying behavior of
B. edulis mushroom subjected to three methods of drying, convective and vacuum, the
effects of thermal and non-thermal pretreatments and drying type on the rehydration ratio,
phenolic content, antioxidant activity, color and thermal properties. The studies were
completed by ATR-FTIR and SEM analysis of mushroom powders. Distinctively from other
published works, we have tested drying of mushrooms in the form of blend/puree and
applied for the first time the centrifugal vacuum as drying method.

2. Results
2.1. Drying Behavior of B. edulis Mushrooms Subjected to Various Methods of Pretreatment
and Drying

Physical thermal and non-thermal pretreatments of mushroom samples by blanching
and UV-C irradiation respectively were applied prior to drying in order to control the
quality of the final products (microbial load decrease, enzyme inactivation, toxic elements
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removal or color retention) [16]. Our previous results showed that exposure of Boletus dried
mushrooms to UV-C light contributed to a good retention of antioxidant compounds of
polyphenolic structure [15].

Three types of drying of B. edulis mushrooms were performed in order to obtain
mushroom powders useful as food/functional ingredient: hot air drying (HAD), freeze
drying (FD) and centrifugal vacuum drying (CVD), the latter for the first time hereby ap-
plied. In contrast to most published studies dealing with mushroom drying, we conducted
such processes on mushroom blend/puree samples instead of mushroom slices. All the
applied methods enable the control of the main process parameters; thus the drying process
is reproducible.

Our results showed that both applied pretreatments (conventional hot water blanching
and UV irradiation) did not influence the HAD total time but led to an increase of ~54% of
the total drying time by CVD in order to reach ~7% moisture, compared to control (without
pretreatment). The initial moisture content of all pretreated samples was slightly higher
(~87%) than that of control (84.585%), which influenced the drying characteristics. Most
published studies on pretreated fruits, vegetables or herbs, in particular by blanching,
showed a reduction of the drying time. However, results may vary significantly indicating
even lower drying rates in relation to the product, the type of pretreatment and subsequent
drying processes [14,17]. The study of Argyropoulos et al. [2] on dried slices of B. edulis
mushrooms showed no effect of water and steam blanching, as well as chemical pretreat-
ment, on the total time of drying by HAD compared to untreated samples. Similarly, other
results on button mushrooms (Agaricus bisporus) confirmed that HAD times of blanched
whole mushrooms did not statistically shorten as compared to untreated ones [18]. Due
to the lack of studies on CVD time in relation to water blanching or UV pretreatment of
mushrooms or other food products, the comparison of our results could not be made for
these results.

The different drying methods had significant effects on the total drying time required
to reduce the moisture content from 86.585–87.066% to ~8%, irrespective of the applied
pretreatment, as shown in Figure 1. FD required the longest drying time (19 h), while
HAD determined the shortest time (275 min). These results are in accordance with other
published data on food products [19]. The effect of pretreatment on the total drying
time of investigated samples, irrespective of the drying method, showed a time increase
(1.39 ÷ 1.49-fold) for UV-pretreated and blanched mushrooms, respectively.

Figure 1. Total drying time of B. edulis samples under different drying methods to reach moisture
content of 6.55% (HAD), 6.31% (FD) and 7.78% (CVD).

By carrying out linear regression on experimental data for samples dried by HAD
and CVD, considering drying time as predictor variable and pretreatment and drying
methods as response (dependent) variables, we found significant regressions between these
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variables. Control samples did not undergo any pretreatment except drying. The obtained
results (regression coefficients, F-statistic, degree of freedom and p values) are given in
Table 1.

Table 1. Summary results of regression analysis for the effect of different pretreatment/drying
methods on drying time of B. edulis mushrooms.

Sample Pretreatment Drying Method/Regression r2 F-Statistic df p-Value

Control
HAD~drying time 0.984 617.2 9 <0.05 ***
CVD~drying time 0.798 40.67 9 0.00012

UV
HAD~drying time 0.972 352.40 9 <0.05 ***
CVD~drying time 0.803 41.83 9 0.00011

Blanching HAD~drying time 0.949 190.70 9 <0.05 ***
CVD~drying time 0.724 27.26 9 0.0005

*** highly significant.

Very strong relationships were found between the HAD method and drying time of
pretreated and control samples. In the case of CVD method, strong relationships were
found for all the pretreatment methods. Yet, the values of the regression coefficients are
slightly lower than those for the HAD method. Regarding the CVD method, a logarithmic
regression model fits for all types of pretreatment methods, showing a logarithmic decrease
of the moisture content with drying time. The model is significant, yet the relationship is
weak (p = 0.0017, r2 = 0.249, F = 11.66, df = 31).

2.2. The Effects of Pretreatment and Drying Methods on the Rehydration Ratio, Phenolic Content
and Antioxidant Activity

To further investigate the influence of different pretreatment and drying methods on
the structural quality properties of dried B. edulis mushrooms, the rehydration ratio of the
final products have been evaluated. The higher the rehydration ratio, the better the quality
of the product. The values of the rehydration ratio varied from 4.259 to 10.819 for different
operating conditions. As shown in Figure 2, there are no statistically significant differences
between the rehydration ratio of dried mushrooms and the different pretreatment methods
(ANOVA p = 0.992, F = 0.009, df = 2). This statistical analysis was performed on experimen-
tal data for samples dried by all studied drying technologies. However, UV pretreatment
seems to improve the rehydration ratio, especially when combined with FD (7.77 ± 0.09).
Instead, statistically significant differences were found for rehydration ratio according
to the drying methods (ANOVA p = 0.0061, F = 13.39, df = 2). This statistical analysis
was performed on experimental data for samples pretreated by all studied pretreatments.
Moreover, applying the Tukey post-hoc test, statistically significant differences between FD
and HAD methods (p-adj = 0.008014) and between FD and CVD methods (p-adj = 0.012901)
were noticed. The rehydration ability of dried mushrooms was improved by using the FD
method compared to HAD and CVD which produced similar rehydration ratios of lower
values. The values of the rehydration ratios of the freeze-dried samples varied from 8.61 to
10.81 according to the applied pretreatment. This efficacy of rehydration is related to the
porous structure created by solid water during FD [8]. Other researchers reported similar
rehydration ratio values for freeze-dried A. bisporus mushrooms (7.87 ± 0.08) compared to
air dried ones at 60 ◦C (3.17 ± 0.06) [20], values of 5.45 ± 0.107 for freeze-dried shiitake
mushrooms (Lentinula edodes) [21] or substantially higher rehydration capacity of freeze-
dried B. edulis, Pleurotus ostreatus, Pleurotus sajor-caju, Coprinus comatus than hot air dried
samples [7,22–24].
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Regarding the rehydration ratio, FD with no pretreatment or combined to UV-C
exposure as non-thermal pretreatment is a good choice of mushroom processing.

The fruiting bodies of B. edulis mushrooms contain various antioxidant compounds,
such as polyphenols. Our present investigation showed that the total phenolic content
(TPC) expressed as mg gallic acid equivalents (GAE) per 100 g of dry weight (DW) of the
ethanol extracts obtained from the raw B. edulis untreated samples stored at −70 ◦C, was
1319.227 ± 33.285 mg GAE/100 g DW for control (no treatment), slightly lower than that
of the UV pretreated sample (1387.091 ± 41.115 mg GAE/100 g DW), the results being
in accordance to our previously published paper [15]. The TPC of control sample was
significantly higher than that of the blanched sample (459.391 ± 12.421 mg GAE/100 g DW).
Our findings regarding the TPC of fresh wild B. edulis mushrooms are similar to other
reported ones based on comparable analysis approach, e.g., 1277.5 mg GAE/100 g DW [25],
1250 mg GAE/100 g DW [26], despite that lower [27] or greater contents have also been
reported [28,29].

The average TPC of raw samples were 14–18% higher than that of the corresponding
dried samples by HAD, FD or CVD. A decrease of the TPC of B. edulis mushrooms by FD
was found by other researchers but an increase by air drying [7].

The results regarding the evaluation of the phenolic content of dried mushrooms in
relation to the pretreatment and drying method are presented in Figure 3.
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The statistical analysis confirmed the significant differences of TPC of dried samples
in relation to the pretreatment (ANOVA p = 0.00011, F = 59.7 df = 2). This statistical
analysis was performed on experimental data for samples dried by all studied drying
technologies. Moreover, applying the Tukey post-hoc test, significant differences of TPC
were observed in dried mushrooms between control (no pretreatment) and blanched sam-
ples (p-adj = 0.00013), and between blanched and UV-pretreated samples (p-adj = 0.00031),
showing that non-thermal UV-C exposure of mushrooms may be an efficient alternative to
other physical pretreatments. The significant loss of phenolic compounds probably due to
leaching during hot water blanching has also been observed by other authors [30].

Among different drying methods, no statistically significant differences were found in
relation to TPC. This statistical analysis was performed on experimental data for samples
subjected to all studied pretreatments. The control sample dried by HAD registered the
highest TPC (1169.602 ± 17.325 mg GAE/100 g DW), while the blanched sample dried by
HAD showed the lowest value (447.617 ± 5.121 mg GAE/100 g DW). HAD determined a
slightly higher TPC by 5% compared to FD, despite that FD has been generally considered
a proper method for preserving several bioactive compounds including high-molecular-
weight polyphenols, compared to heat-drying methods. However, in the literature there
are studies that suggest reconsideration of freeze drying in relation to pharmacological
properties of medicinal plants [31]. A study on dried B. edulis mushroom found that FD
caused a slight reduction of the level of polyphenols compared to air drying at temperature
gradients of 40 and 60 ◦C for 15 h [7].

Regarding the total antioxidant activity (TAA) as measured by the Ferric Reducing
Antioxidant Power (FRAP) assay, and expressed as mg ascorbic acid (AA) per 100 g of dry
weight (DW), our results showed that the average TAA of ethanol extracts obtained from
the raw B. edulis mushrooms stored at −70 ◦C (720.039 ± 14.575 mg AA/100 g DW) were
24–28% higher compared to the corresponding dried samples by HAD, FD or CVD. Similar
to TPC, the obtained TAA of raw untreated samples (864.631 ± 18.137 mg AA/100 g DW)
was lower than that of the UV pretreated sample (940.316 ± 15.468 mg GAE/100 g DW),
which is in accordance to our previously published paper [15], but higher than that of the
blanched sample (355.171 ± 10.120 mg GAE/100 g DW). These results indicate that the UV-
C irradiation of wild B. edulis mushrooms is a better choice for pretreatment while blanching
leads to a considerable loss of the antioxidant activity, due to high temperature involved.

The results regarding the evaluation of the antioxidant activity of dried mushrooms in
relation to the pretreatment and drying method are presented in Figure 4.
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The pretreatment method highly influences the TAA of dried samples. Statistically
significant differences of TAA in relation to the pretreatment method were found (ANOVA
p = 0.0369, F = 6.014. df = 2). This statistical analysis was performed on experimental
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data for samples dried by all studied drying technologies. Moreover, applying the Tukey
post-hoc test, statistically significant differences among dried samples subjected to dif-
ferent pretreatments were observed, such as between the control and blanched samples
(p-adj = 0.0376) and marginal significant differences between blanched and UV samples
(p-adj = 0.093).

2.3. Color Changes in Extracts of Pretreated Dried Mushrooms

The color characteristics of the raw and the pretreated dried (HAD, FD and CVD) B.
edulis mushrooms were measured based on pigments soluble in acetone using the software
of the spectrophotometer according to DIN EN ISO 1164 (xyz, CIE, L*a*b) and ASTM E
313 (yellowness and whiteness indices). The color characteristics using the CIELAB system
(luminosity L*, red-green a*, yellow-blue b*, color differences ∆E) and ASTM method E313
(whiteness and yellowness indices) are presented in Table 2.

Table 2. The color characteristics and changes of B. edulis mushrooms under various pretreatment
and drying methods.

Pretreatment Drying L* a* b* ∆E* Whiteness
Index

Yellowness
Index

Control −
Raw 91.67 ± 1.68 −11.38 ± 0.64 81.41 ± 1.85 - −185.53 83.02

Blanching −
Raw 97.83 ± 2.21 −13.39 ± 1.43 42.14 ± 1.44 - −104.16 52.58

UV −
Raw 96.80 ± 2.01 −12.39 ± 1.66 43.77 ± 1.11 - −107.95 54.37

Control
HAD 81.58 ± 1.07 4.42 ± 0.47 79.02 ± 1.33 18.91 −145.06 85.71
CVD 83.33 ± 1.87 0.57 ± 0.11 91.33 ± 2.04 17.63 −164.60 90.38
FD 92.43 ± 1.30 −7.52 ± 0.75 28.57 ± 0.61 52.98 −49.09 40.03

Blanching
HAD 98.54 ± 3.22 −4.32 ± 0.70 9.64 ± 0.75 33.91 39.83 14.65
CVD 97.64 ± 2.50 −10.30 ± 1.89 25.13 ± 0.86 17.41 −36.44 34.69
FD 98.71 ± 2.25 −6.88 ± 0.53 15.95 ± 1.01 27.16 7.29 23.11

UV
HAD 94.04 ± 1.86 −5.16 ± 0.42 24.76 ± 0.97 20.52 −34.37 35.06
CVD 96.90 ± 2.10 −3.65 ± 0.21 17.41 ± 0.82 27.78 −0.86 25.23
FD 96.56 ± 2.05 −5.32 ± 0.78 15.73 ± 1.03 28.93 6.87 23.11

All applied pretreatment and drying methods led to color changes in the mushroom
powders compared to the raw samples.

The values of lightness/darkness (L*) changed in relation to the type of pretreatment
and drying. Blanching and UV exposure of mushrooms determined an increase in the
lightness either in raw or dried samples. The HAD and CVD drying methods led to an
increase in the darkness of the untreated mushrooms, while untreated FD-samples were
brighter than the raw untreated ones. Blanching before drying determined a slight decrease
of L* value in case of CVD method and a slight increase in case of HAD and FD methods
compared to the values obtained for the raw blanched sample. Similar results of lighter
colors of freeze-dried A. bisporus mushrooms firstly subjected to water blanching has been
reported [32]. Other authors showed a decrease in the lightness of B. edulis mushroom
slices subjected to chemical pretreatment and water and steam blanching [2]. However,
authors concluded a remarkable stability of lightness of the pretreated samples during
drying using hot air (50 ◦C, 60 ◦C and 70 ◦C). The distinct reported results may be related
to the different color evaluation technique [33], the present approach being based on the
acetone extraction of pigments and not surface reflectance method used for mushroom
slices. The UV exposure followed by drying process did not significantly influence the
L* values of samples dried by CVD and FD, compared to HAD which determined darker
colors. As shown in Table 2, all samples displayed colors from yellow-yellow to greenish-
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green (negative a* and positive b*), with the exception observed for the control HAD-
and CVD-dried samples, which exhibited positive values of both a* and b* characteristics
(red-orange-yellow). The calculated red-green differences ∆a* observed for dried samples
according to various pretreatment and drying methods showed positive values, indicating
a deeper red chroma due to browning reactions. Concerning the yellow-blue difference ∆b*,
all samples were found bluer than their corresponding reference (negative values) with the
exception observed for the control CVD-dried mushrooms, which exhibited positive value
indicating samples yellower than the reference (raw untreated). The total difference in
color (∆E*) ranged from 17.41 to 52.98, depending on the pretreatment and drying method.
The values indicate greater color changes in control FD-dried mushrooms, followed by
blanched HAD-dried and UV-FD-dried samples. Drying by CVD method, in particular for
untreated and blanched samples, caused the least color changes. However, considering the
mean ∆E values, the least color changes were noticed for UV pretreated samples in relation
to the pretreatment method, while the least color changes were observed for CVD-dried
samples with respect to the drying method.

The whiteness index of mushrooms increased during the pretreatment and drying
processes, the least change being registered in control CVD-dried samples while the greater
one in the blanched HAD-dried sample which produced whiter product probably due to
the involved temperature (60 ◦C) which reduced the polyphenoloxidase activity responsible
for browning reactions [32]. The yellowness index decreased in all dried samples subjected
to different pretreatments (blanching, UV) or drying processes (HAD, CVD, FD). Untreated
raw samples and CVD-dried samples showed the highest yellowness indices, probably
due to the greater enzymatic activity.

2.4. Microstructural Properties of Mushroom Powders by SEM Analysis

The microstructure of mushroom raw and powder samples subjected to different pre-
treatment and drying procedures illustrated in Figure 5 was observed under the “Variable
Pressure” mode using the Backscattered Electron Detector (BSD). This detector allows
identifying different phases or distribution of elements throughout the sample depending
on their atomic number: the higher the Z number, the lighter the area due to the strong
signal. A rather homogeneous distribution of elements was noticed from the micrographs.
The thermal treatment determined physical changes in the sample microstructures due
to the disruption of cell walls which determined a disordered structure [33]. The images
of all samples show breakages, cracks and holes due to the grinding process causing the
breakage of intermolecular bonds. A homogenous compact structure was observed in
samples pretreated by UV exposure before drying. Among different types of drying, freeze
drying, in particular in untreated or UV-treated samples, led to the fewest physical changes
compared to the raw control samples, showing microporous and fibrous structures. Lewicki
and Pawlak [34] confirmed that the microstructure changes of food samples subjected to
drying are mostly due to the tissue thermal and hydro stress being noticeable by macro-
and micro-alterations of size, shape and internal structure.
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2.5. Evaluation of Chemical Changes in Dried Mushrooms Using the Fourier Transform-Infrared
(FTIR) Spectroscopy

In this study, a reflectance FTIR spectroscopy (ATR-FTIR) analysis was performed for
raw B. edulis samples stored at −70 ◦C (without pretreatment and subjected to pretreatments
by blanching and UV) and for the corresponding dried samples. The obtained spectra are
presented in Figure 6.
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The FTIR spectra of the raw samples of mushrooms show four regions (Figure 6a), as fol-
low [35]: (I) Region I 3700-2800, containing the following absorption bands: 3500–3700 cm−1

medium sharp bands due to stretching of free alcohol O-H, N-H stretching (3503 cm−1),
3281 cm−1 weak band alcohol O-H stretching intramolecular bonded, 3064–2854 cm−1

strong bands assigned to carboxylic O-H stretching (broad), amine N-H stretching, C-H
stretching (CH3, CH2, CH) of acyl chains of lipids; (II) Region II 1700-1500, with medium-
strong sharp two bands: the amide I band of proteins due to stretching of C = O (1626 cm−1),
and the amide II band due to bending of N-H (1554 cm−1); absorptions in this region are
also assigned to stretching vibrations of aromatic C = C in phenols or C = C of unsaturated
fatty acids, as well; (III) Region III 1500-1200 (proteins, phenols, polysaccharides and
lipids), with 1455 cm−1, 1408 cm−1 due to bending/deformation of C-H (CH2, CH3 of
alkanes chain and aldehydes); the peak at 1408 cm−1 is also assigned to the symmetric
stretching vibration of COO- in fatty and amino acids, 1379 cm−1 due to bending vibrations
of phenol/alcohol O-H, C-O-H of carboxylic groups and C-H of aldehyde group (the latter
associated with the weak band at 1734 cm−1 due to aldehyde C = O stretching), 1321 cm−1,
1253 cm−1 due to stretching of O-C of carboxylic acids and derivatives, phosphorus groups,
sulphur C = S groups probably of ergothioneine, and C-N of amine, and bending of N-H
assigned to amide III of proteins, as well (1253 cm−1); (IV) Region IV 1200-1000 (mainly
polysaccharides), due to stretching of C-OH of glycosidic bonds, C-O-C of pyranosyl
rings of α- and β-glucans (1151 cm−1, 1107 cm−1), various carbohydrates/cellulose or
due to stretching of PO2

− and C-O-P of phospholipids (strong bands at 1075 cm−1 and
1035 cm−1); absorption in this region may be also due to thiocarbonyl C = S of the amino
acid ergothioneine.
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Differences in the region I of absorption spectra were observed in dried mushroom
samples without pre-treatment (Figure 6b), in particular for samples dried by HAD or
CVD methods, where peaks at 2923 cm−1 and 2853 cm−1 attributed to C-H stretching of
carbohydrates, were of higher intensity. Regarding the changes observed in the region II,
additional peaks at 1744 cm−1 due to C = O stretching of phospholipids [36], 1582 cm−1,
1516 cm−1 (amide II, C-C stretching of phenyl ring, C-H bending) were evident in samples
dried by CVD method. In the region IV, the peak at 1075 cm−1 disappeared in all dried
samples without pretreatment, compared to control. All dried mushrooms displayed broad
bands in the region IV compared to control (raw sample), probably due to heat-induced
structural changes of carbohydrates. In dried samples pretreated by blanching or by UV
irradiation (Figure 6c,d), an additional peak at 1744 cm−1 assigned to C = O stretching of
phospholipids [36] was observed, with exception of sample pretreated by UV and dried
by FD method. The drying method determined some structural changes in carbohydrates,
as indicated by the differences registered in the absorption spectra region IV, compared to
raw sample, where the peak at 1075 cm−1 is no more well-defined. The sample pretreated
by UV irradiation followed by HAD showed notable changes in the region II of the IR
absorption spectra (amide I and II), in particular for amide II band associated to N-H
bending of secondary amides (the peak at 1554 cm−1 disappeared) and C-N stretching of
peptide bond, probably due to protein conformational changes [37,38].

2.6. Thermal Properties and Mass Loss of Dried Mushrooms

The DSC investigation performed under N2 atmosphere was used to study the thermal
behavior and postharvest quality of B. edulis mushrooms dried by various methods, while
the TG analysis was carried out to determine the chemical mass changes.

The DSC thermograms and TG curves of dried samples using different drying methods
(HAD, FD and CVD) and pretreatments (blanching, UV) are shown in Figure 7.
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The DSC curves indicate five thermal transitions of dried mushrooms, of which
2 endothermic and 3 exothermic peaks. The broad first endothermic peak in the temper-
ature range of 42–57 ◦C, observed in all DSC curves, except for that of UV-HAD sam-
ple, was mainly attributed to the gelatinization of polysaccharides [39]. Regarding other
biomolecules such as proteins, their thermal behavior is complex due to the presence of
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hydrocolloids and other components in the mushroom matrix, so that DSC method may
have limitations in such complex foods. However, proteins undergo gelation upon heating,
consisting in endothermic transitions (denaturation, 50–85 ◦C) and exothermic processes
(intermolecular aggregation), as studied on different types of proteins [40]. The lack of the
first endothermic peak for the UV-HAD sample is correlated with changes associated with
protein conformational modification observed by FTIR analysis.

As noted in Figure 7, an additional second endothermic event in the temperature
range of 106–145 ◦C was predominant for samples (control, UV) dried by HAD and CVD
methods. These events might be due to changes of chitin, a structural polysaccharide
present in mushrooms [41–43]. Three exothermic peaks were further observed in DSC
curves at temperature >105 ◦C. The first exothermic stage in the temperature range of
105–172 ◦C is probably due to melting of oligosaccharides and changes in other mushroom
polysaccharides such as hemicellulose, as shown by other authors [43,44], as well as
denatured protein aggregation [45]. The next two exothermic peaks at temperatures >250 ◦C
correspond to the sample decomposition, pyrolysis of polysaccharides with generation of
volatile substances and are in relation to significant weight loss in the TG curve. Considering
that dried B. edulis mushrooms may be used as functional ingredients in various food
products, heating of such products at temperatures >250 ◦C is not recommended due to the
thermal decomposition.

The DSC-based values of thermal characteristics and the enthalpy change (∆H) of the
thermal transitions are presented in Table 3.

Table 3. Characteristic temperatures and enthalpy from the DSC investigation of dried
B. edulis mushrooms.

Peak DSC
Values

Sample
(Pretreatment and Drying Methods)

Control
HAD

Control
CVD

Control
FD

Blanched
HAD

Blanched
CVD

Blanched
FD UV-HAD UV-CVD UV-FD

P1 Tp, ◦C 57.08 46.73 46.26 50.76 42.11 51.85 n.d. 42.27 47.66

P2
To, ◦C 113.55 106.89 n.d. n.d. n.d. n.d. 114.38 121.19 n.d.
Tp, ◦C 130.12 145.30 n.d. n.d. n.d. n.d. 136.72 141.21 n.d.

∆H, J/g 6.18 34.78 n.d. n.d. n.d. n.d. 11.65 28.03 n.d.

P3
To, ◦C 133.59 150.02 123.66 105.67 118.44 106.34 144.72 146.56 136.97
Tp, ◦C 166.20 172.02 143.05 143.36 157.59 145.42 167.17 168.58 167.50

∆H, J/g 22.20 20.48 13.37 89.53 40.25 147.90 21.59 26.11 21.87

P4
To, ◦C 299.56 300.68 293.13 318.95 295.97 325.32 289.52 274.15 292.75
Tp, ◦C 331.84 353.12 333.96 369.45 343.67 363.58 335.73 330.84 332.30

∆H, J/g 79.24 324.20 580.70 205.70 227.70 171.00 215.80 113.20 190.20

P5
To, ◦C 465.52 n.d. 408.24 468.02 450.09 444.06 n.d. 407.49 455.08
Tp, ◦C 474.30 n.d. 464.68 472.96 455.86 455.26 n.d. 435.81 462.73

∆H, J/g 9.00 n.d. 195.80 4.01 7.42 57.69 n.d. 15.22 7.31

n.d. = not detected.

As shown in Table 3, the Tp response of the mushroom powders for the first endother-
mic peak was affected by the drying conditions, showing higher values for HAD and FD.
For the second stage of thermal transitions (P2), in the temperature range of 106–145 ◦C,
mushrooms without pretreatment or previously exposed to UV-C and then dried by CVD
showed higher values of To and Tp and ∆H of 34.78 J/g and 28.03 J/g, respectively. The
lowest ∆H was found for control samples dried by HAD (6.18 J/g), indicating higher levels
of changes in those biomolecules (polysaccharides, proteins) that remained native-like
in the dried sample. The thermal stability of dried mushrooms was altered during the
third stage (exothermic events, P3) in the temperature range of 106–172 ◦C in blanched
samples, given the lower values of To and Tp. The lowest ∆H value among dried samples
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without pretreatment was found for FD-dried mushrooms (13.37 J/g), while values among
pretreated samples were lower in case of UV exposed samples, especially when HAD or
FD were applied (21.59–21.87 J/g). The next exothermic decomposition stage (P4) for the
temperature range 274–370 ◦C, indicates that blanched samples, particularly dried by FD
and HAD, reached higher values of To, probably because these samples had already been
subjected to heat-through water blanching-before drying. The enthalpy changes ∆H for
this stage (P4) were significantly higher than those for the previous exothermic stage (P3).
Considering the first two exothermic events (P3 and P4) and the To and Tp responses, it
seems that drying mushrooms by CVD, especially without any pretreatment, produced
more thermally stable products.

The TG and DTG curves of dried B. edulis mushrooms are presented in Figure 8.
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Figure 8. TG and DTG curves of B. edulis mushrooms subjected to different pretreatment and drying
methods for the temperature range of 25–500 ◦C.

The characteristics of the TG analysis of mushroom powders are illustrated in Table 4.

Table 4. Results of TG investigation of B. edulis mushrooms subjected to different pretreatment and
drying methods.

Peak TG
Values

Sample
(Pretreatment and Drying Methods)

Control
HAD

Control
CVD

Control
FD

Blanched
HAD

Blanched
CVD

Blanched
FD UV-HAD UV-CVD UV-FD

P1
Ti (◦C) 32.91 26.89 35.84 40.18 40.54 38.73 n.d. n.d. 35.29
Tf (◦C) 37.57 28.52 61.18 82.15 110.83 78.52 n.d. n.d. 66.24
∆m, % 0.87 0.69 8.01 7.51 8.48 8.35 n.d. n.d. 6.63

P2
Ti (◦C) 120.71 111.35 n.d. n.d. n.d. n.d. 124.04 118.89 130.11
Tf (◦C) 150.34 155.63 n.d. n.d. n.d. n.d. 150.70 147.64 154.27
∆m, % 8.79 19.88 n.d. n.d. n.d. n.d. 9.41 12.89 8.21

P3
Ti (◦C) 188.63 194.75 180.47 191.45 190.43 190.26 181.40 183.34 179.36
Tf (◦C) 221.28 214.23 204.45 213.97 213.90 210.54 206.33 211.06 192.38
∆m, % 11.43 6.80 6.48 2.97 4.21 3.24 7.14 9.51 3.60

P4
Ti (◦C) 251.97 250.02 243.37 264.16 260.13 248.19 257.58 258.35 249.62
Tf (◦C) 309.78 351.51 341.85 335.53 336.17 350.46 335.38 330.31 339.71
∆m, % 24.17 38.54 57.57 47.57 47.02 57.61 34.31 30.66 41.34

P5
Ti (◦C) 347.88 401.39 426.14 n.d. n.d. n.d. 400.31 397.27 403.40
Tf (◦C) 364.61 434.66 472.37 n.d. n.d. n.d. 435.28 439.17 435.23
∆m, % 10.36 7.23 14.10 n.d. n.d. n.d. 8.11 8.87 5.76

n.d. = not detected.

The TG-DTG analysis indicated weight loss during the whole temperature range, the
derivative DTG curves showing the five identified peaks. The residual water removal
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from mushroom powders, as well as physical bond disruption [41] was evidenced at
temperatures < 110 ◦C. At this stage, the DTG curves do not show peaks for UV-pretreated
samples dried by HAD and CVD methods. The weight loss was <1% in case of control
samples dried by HAD and CVD, while samples dried by FD and samples subjected to
blanching showed higher values of ∆m. The weight and volatile substance losses continued
in the next stage, except for the blanched dried samples. The samples dried by CVD method
showed higher values of ∆m compared to those of HAD or FD. The TG determined initial
(Ti) and final (Tf) temperature values were higher compared to peak values in DSC curves.
Such differences between DSC and TG values have also been observed by other researchers,
being explained by preventing the gas elimination from inside to outside of particles [44].
At temperatures > 180 ◦C, the next three peaks of the DTG curves, which correspond to
the three exothermic peaks of the DSC curves, were attributed to the decomposition of
polysaccharides (hemicellulose, cellulose) in mushrooms. Hemicellulose decomposes at
lower temperatures than cellulose due to the lower degree of polymerization. Dorez et al.
(2014) showed that the weight losses due to cellulose degradation, in the second exothermic
stage (250–370 ◦C), are higher than those recorded in the first stage [46]. Our results are
similar to their findings. Thus, the highest weight losses, at this stage, occurred in samples
dried by FD method irrespective of the applied pretreatment. As shown in Figure 8 (DTG),
the peaks recorded at temperature of ~300 ◦C corresponding to control dried samples or
dried samples previously pretreated with UV-C, were broader. This might be explained
by the degradation of polysaccharides/chitin, lignin, which occurs over a wide range of
temperatures [42,46]. The third stage indicating the complete degradation of the mushroom
biopolymers was not identified in dried samples previously subjected to water blanching.

3. Materials and Methods
3.1. Materials

Wild edible mushrooms (B. edulis L.) were manually harvested from Avrig forest,
Sibiu, Romania, located at 45.661123 N, 24.445704 E and altitude of 500 m, during the
mushroom season in 2021. All the mushroom samples were collected from the same natural
forest (deciduous forest), with small distance between samples, on the same day. A total
of 20 samples of the same species, B. edulis (cap and stipe) were sliced and divided into
three portions of ~500 g. One portion was subjected to UV irradiation, a second one was
blanched, while the third portion was kept as such. All samples were stored at −70 ◦C
until analysis. Before drying, mushrooms were blended (Blendforce BL 438831) into a
puree form such as to get a homogeneous sample containing cap and stipe. After drying,
samples were grounded into powder using the knife mill (Grindomix GM 200, Retsch,
Haan, Germany). The moisture content of fresh and dried samples was determined at
105 ◦C using the moisture analyzer (Mac 210/NP Radwag, Radom, Poland).

Chemical reagents of analytical grade without further purification were used.

3.2. Pretreatments
3.2.1. UV-C Exposure

Fresh mushrooms were subjected to UV-C light at 254 nm, using a low pressure
UV lamp with an illuminating intensity of 14 µW·cm−2 (6 KLU 254 + 366 nm, NeoLab,
Heidelberg, Germany), in a closed box, for 30 min exposure time, at 20 cm exposure
distance, conditions previously described by our group [15].

3.2.2. Blanching

Fresh mushrooms were immersed into boiling water at 100 ◦C for 3 min, after which
samples were drained on a stainless sieve and cooled.

All pretreated and control (untreated) samples were further dehydrated to an av-
erage moisture content of ~7% using different procedures, convective and vacuum, as
described below.
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3.3. Drying Procedures of Mushroom Blend

Convective drying using hot air was performed to efficiently dehydrate samples,
this technique being widely used in food industry because of its simplicity and relatively
low cost. Two vacuum drying methods were also performed, freeze drying as a friendly
technique that preserves the nutritional quality of products, and centrifugal/rotational
vacuum drying, which is an economical technique used especially for aqueous materials
containing thermally unstable compounds.

HAD and CVD were conducted at 60 ◦C, a value at which drying time is lower than
that of lower applied temperatures, and in agreement with most studies that have shown
a decrease in the quality of products which have been dried at temperatures higher than
60 ◦C [47].

3.3.1. Hot Air Drying (HAD)

Fresh mushroom blend of 200 g, distributed in Petri glass dishes of Φ7 cm in a layer
of 1 cm thickness, was stored in a forced-air oven preheated at 60 ◦C (UFE 400 with
forced air circulation, Memmert, Schwabach, Germany) at a maximum fan speed (100%).
Aliquots were periodically removed for moisture analysis. Samples were dried until the
final moisture content was <10%.

3.3.2. Freeze Drying (FD)

Fresh mushroom blend of 100 g was dried under vacuum of 0.011 mbar at −60 ◦C
using a freeze drier (Alpha 1-4 LDplus, Christ, Osterode am Harz, Germany). Drying was
performed for 19 h until the moisture content reached 5.631% for control sample, 5.002%
for UV-pretreated sample and 8.284% for blanched sample.

3.3.3. Centrifugal Vacuum Drying (CVD)

Fresh mushroom blend of 200 g distributed in conical glass vials was subjected to
rotational/centrifugal vacuum drying using a speed dry vacuum concentrator (RVC 2-18
CD plus, Christ, Osterode am Harz, Germany), at 60 ◦C and speed of 1200 rpm. Aliquots
were periodically removed for moisture analysis. Drying was performed until the moisture
content was <10%.

3.4. Quality Evaluations

Extracts of fresh and dried mushrooms were prepared in ethanol 70% (v/v) at a
solvent/solid ratio of 10/1, at room temperature for 24 h. The mixture was then centrifuged
at 4 ◦C at 8000 rpm for 10 min using the refrigerated centrifuge (Universal 320, Hettich,
Berlin, Germany).

3.4.1. Total Phenolic Content (TPC)

The total phenolic content was determined spectrophotometrically according to the
Folin–Ciocalteu method [48]. The Specord 200 Plus UV-Vis spectrophotometer (Analytik
Jena, Jena, Germany) was used. The results were expressed as mg gallic acid equivalents
(GAE) per 100 g dry weight (DW).

3.4.2. Total Antioxidant Activity (TAA)

The total antioxidant activity was determined spectrophotometrically according to the
Ferric Reducing Antioxidant Power (FRAP) assay [49]. The results were expressed as mg
ascorbic acid equivalents (AAE) per 100 g dry weight (DW).
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3.4.3. Rehydration Ratio

The rehydration ratio was determined by immersing 1 g of dried mushroom into
boiling water for 10 min [50]. The mixture was then centrifuged at 7000 rpm and weighed.
The rehydration ratio of the dried mushroom was calculated following the relation:

Rehydration ratio =
g of rehydrated sample

g of dried sample
(1)

3.4.4. Color Measurements

The color of the acetone mushroom extracts was measured using the WinASpect Plus
software version 4.0.0.0 (Analytik Jena, Jena, Germany) module of the Specord 200 Plus UV-
Vis spectrophotometer (Analytik Jena, Jena, Germany) for the analysis of color according to
DIN EN ISO 1164 (xyz, CIE, L*a*b) and ASTM E 313 (yellowness and whiteness indices)
using the standard illuminant D65, field of view 2◦.

The color was expressed as L* (lightness/darkness), a* (red/green) and b* (yel-
low/blue). The color difference between dried and raw mushrooms (∆E*) was determined
according to the equation:

∆E∗ =

√
∆L∗2 + ∆a∗2 + ∆b∗2 (2)

The whiteness and yellowness indices were also measured for standard CIE illuminant
C and 2◦ field of view using the same software.

3.4.5. SEM Analysis

Scanning electron micrographs were obtained with a Variable Pressure (VP) Field
Emission Scanning Electron Microscope (Carl Zeiss, Oberkochen, Germany) operating at
30 kV for various magnifications, for microstructural analysis. In order to minimize beam
damage and charging, the analysis of mushroom samples was performed in the VP mode
and Backscattered Imaging.

3.4.6. ATR-FTIR Analysis

Fourier Transform-Infrared (FT-IR) measurements were carried out using an ALPHA
FT-IR spectrometer with the combined QuickSnapTM sampling modules and ZnSe ATR
(Attenuated Total Reflectance) (Bruker, Ettlingen, Germany) with a resolution of 4 cm−1.
An average of 32 scans was recorded in the ATR mode.

3.5. Thermal Analysis by Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG)

The thermal behavior of fresh and dried mushrooms was evaluated by DSC analysis
using the SDT Q600 calorimeter (TA Instruments) at a heating rate of 10 ◦C/min, under
nitrogen flow of 20 mL/min. The instrument was calibrated using indium and zinc. Each
sample weighing 5 ± 0.5 mg was put in an open DSC pan and heated up to 500 ◦C. The
onset temperature (To), the peak transition temperature (Tp) and the enthalpy (the peak
area of the DSC transition curve, ∆H) were calculated from the graphical representation of
the heat flow against temperature. The software Universal Analysis 2000 supplied by TA
Instruments was used to determine the values. The thermal weight loss (∆m), the initial
temperature (Ti) and the final temperature (Tf) were determined by TG analysis using the
same calorimeter. The first derivative of the TG curve was plotted (DTG) to determine the
inflection points.

3.6. Statistical Analysis

The reported results are expressed as mean ± standard deviation (SD). In the present
study, the data obtained from the three replications were analyzed using linear regressions
and mathematical models to fit the data, and analysis of variance. An additional post-hoc
test (Tukey test) was applied in the case of significant ANOVA. All analyses were performed
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using the R 4.1.1. statistical software (R Core Team 2021, https://www.r-project.org/
accessed on 17 May 2022). The mean values were considered significantly different at 95%
confidence level (p < 0.05).

4. Conclusions

In the present study, the rehydration ratio, total phenolic content, antioxidant activity,
color changes, microstructure, FTIR and thermal alterations were investigated in B. edulis
mushroom puree subjected to different drying and pretreatment methods. The results
showed that UV-C pretreatment of mushrooms proved to be a better alternative to water
blanching, indicating good retention of phenolics and antioxidant activity and least total
color changes. Structural changes of carbohydrates and proteins were confirmed by ATR-
FTIR analysis. Centrifugal vacuum drying at 60 ◦C emerged as a new efficient mushroom
drying technology in terms of phenolic content and antioxidant activity, color and thermal
stability, but with low rehydration ratio of the final products. Freeze drying led to better
rehydration ability and microstructure of dried samples, but prolonged drying time. Hot air
drying at 60 ◦C proved to be an efficient method for dehydrating mushrooms, considering
processing time, phenolic content and antioxidant activity.

Author Contributions: Conceptualization, S.O.; methodology, S.O., M.P., I.T., O.D. and A.S.; formal
analysis, I.T.; investigation, S.O., M.P., A.S. and O.D.; data curation, S.O., I.T., O.D. and M.P.; writing–
original draft preparation, M.P. and S.O.; writing–review and editing, S.O, M.P., I.T. and O.D.;
supervision, S.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

References
1. Cheung, P.C.K. Mushrooms as Functional Foods; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008.
2. Argyropoulos, D.; Khan, M.T.; Müller, J. Effect of Air Temperature and Pre-Treatment on Color Changes and Texture of Dried

Boletus Edulis Mushroom. Dry. Technol. 2011, 29, 1890–1900. [CrossRef]
3. Novakovic, S. The Potential of the Application of Boletus Edulis, Cantharellus Cibarius and Craterellus Cornucopioides in Frankfurters:

A Review. IOP Conf. Ser. Earth Environ. Sci. 2021, 854, 012068. [CrossRef]
4. Castellanos-Reyes, K.; Villalobos-Carvajal, R.; Beldarrain-Iznaga, T. Fresh Mushroom Preservation Techniques. Foods 2021,

10, 2126. [CrossRef]
5. Zhang, K.; Pu, Y.-Y.; Sun, D.-W. Recent Advances in Quality Preservation of Postharvest Mushrooms (Agaricus Bisporus): A

Review. Trends Food Sci. Technol. 2018, 78, 72–82. [CrossRef]
6. Chakraverty, A.; Mujumdar, A.S.; Ramaswamy, H.S. Handbook of Postharvest Technology: Cereals, Fruits, Vegetables, Tea, and Spices;

CRC Press: New York, NY, USA, 2003; pp. 167–182.
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