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Accurate gait event detection is necessary for control strategies of gait rehabilitation

robots. However, due to personal diversity between individuals, it is a challenge for robots

to detect a gait event at various stride frequencies. This paper proposes a novel method

for gait event detection of a gait rehabilitation robot using a single inertial sensor mounted

on the thigh. A self-adaptive threshold for detecting heel strike is obtained in real time

via a linear regression model. Observable thresholds for toe off detection are constant at

various stride frequencies. Experiments are conducted based on 20 healthy subjects and

six hemiplegic patients wearing a gait rehabilitation robot and walking at various kinds of

stride frequencies. The experimental results show that the proposed method can detect

heel strike and toe off gait events within an average 2% gait cycle temporal errors and

never miss two-gait event detection. Compared to the conventional thresholdingmethod,

this work presents a simple and robust application for gait event detection in healthy and

hemiplegic subjects by one inertial sensor. The linear regression model can be applicable

to different subjects walking at various stride frequencies.

Keywords: gait event detection, inertial sensor, adaptive threshold, gait rehabilitation robot, adaptive method

INTRODUCTION

In the field of gait rehabilitation robots, synchronization between motion of robots and actual
human gait is very important. This requires that the robot can accurately identify the current gait
event, and then it automatically adjusts its gait phase to achieve human–robot synchronization.
Besides, a gait cycle of human walking consists of a stance phase and a swing phase (Perry, 2010).
There are different control strategies for the two phases of gait rehabilitation robots. For example,
during a stance phase, stability and high damping are requisite, and for a swing phase, high velocity
and low damping are necessary (Ledoux, 2018). The stance and swing phases are separated by heel
strike (HS) and toe off (TO) gait events. Accurate HS/TO gait event detection decides which control
strategy to use for gait rehabilitation robots; otherwise, it is likely to cause harm to patients.

More recently, many algorithms based on the inertial measurement unit (IMU) have been
proposed to identify gait events. Thresholding is the most simple and practical method, and various
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algorithms for gait event detection have been developed
(Mansfield and Lyons, 2003; Sabatini et al., 2005; Jasiewicz et al.,
2006; Lau and Tong, 2008; Lau et al., 2008; Hanlon andAnderson,
2009; Anna andWickström, 2010; Catalfamo et al., 2010; Kotiadis
et al., 2010; Rueterbories et al., 2010; Varol et al., 2010; Tao et al.,
2012; Goršič et al., 2014; Ledoux, 2018). Ledoux developed a
thresholding method for gait event detection of human walking
using a single IMU mounted on the shank (Ledoux, 2018).
This method detected gait events using a set of fixed observable
thresholds of shank angle, shank angular velocity, and axial
acceleration. It can detect 100% of HS/TO gait events within
an average of 2% gait cycle error for both healthy subjects and
amputees. Catalfamo et al. proposed a fixed thresholding method
for ambulatory gait analysis (Catalfamo et al., 2010). In this
method, mean difference between the proposed method and the
reference was <25ms for HS and <75ms for TO. Detection
success was over 98%. However, the fixed thresholds are not
adaptive regulation.

In addition, with the improvement of computational
efficiency, machine learning methods have been used to detect
gait events. Some groups have implemented gait event detection
via hidden Markov models (HMM) or Gaussian mixture models
(Mannini and Sabatini, 2010, 2012, 2013; Wang et al., 2010;
Bae and Tomizuka, 2011). For instance, Mannini and Sabatini.
presented a classifier based on an HMM model. The model was
applied to identify four adjacent gait events by using a uniaxial
gyroscope that measured foot instep angular velocity in the
sagittal plane (Mannini and Sabatini, 2012). Bae and Tomizuka.
described an HMM model for six gait phases detection (Bae and
Tomizuka, 2011). Smart shoes embedded four air bladder–type
force sensors that were utilized to obtain the ground reaction
forces as observed data in the HMM. However, these methods
based on an HMMmodel are used to detect adjacent gait events,
and they do not identify non-adjacent gait events (such as HS
and TO) in time sequence.

The above researches are most focused on information
analysis from sensors mounted on the shank or foot. The reason
is that foot signals can directly reflect gait event information,
and shank signals are less variable between subjects (Wu, 1995;
Tong et al., 1998; Catalfamo et al., 2010). However, we find
that, compared to the thigh, the motion of the shank and
foot have higher speed and variable acceleration while walking,
which may cause higher accumulated error when calculating
the shank or foot angle based on angular velocity detected
by IMU. For humans, the thigh segment plays an important
role for transmitting force to walk a step, and an IMU sensor
mounted on the thigh is always required to detect various human
motion intentions (Hornero et al., 2013; Lewis and Sahrmann,
2015; Borghetti et al., 2017). For patients with hemiplegia,
monitoring the thigh angle obtained from an IMU sensor can
detect abnormal postures and quantify patients’ inabilities. If HS
and TO gait events are also detected by an IMU sensor fixed on
the thigh, it will make the sensor system simple and inexpensive.
Thus, it is necessary to propose a method for gait event detection
via one IMU sensor mounted on the thigh. Besides, Borghetti
et al. shows that ranges of thigh angle have significant differences
between different subjects (Borghetti et al., 2017). The fixed

thresholds for gait event detection cannot meet the requirements
of high accuracy. They need to be adjusted adaptively in different
subjects and various stride frequencies. If the adaptive thresholds
can achieve adequate real-time accuracy for walking, the method
for gait event detection will become more convenient and robust
in the practical application for gait rehabilitation robots. In this
paper, the gait rehabilitation robot that refers to BEAR-H1 is
self-developed in order to help patients with hemiplegia conduct
rehabilitation training.

The focus of this paper is to build a linear regression model,
which can detect an HS gait event for different subjects walking
at various stride frequencies. Besides, it obtains a set of observable
fixed thresholds for TO gait event detection. The proposed
method is based on only one three-axis IMU mounted on the
thigh of BEAR-H1. The IMU provides three signals: thigh angle,
thigh angular velocity, and forward axial acceleration. The linear
regression (LR) model and the set of observable fixed thresholds
are achieved by the data set from 20 healthy subjects and six
patients with hemiplegia. The data set shows that the HS gait
event happens after the thigh angle peak. HS is detected when
the current thigh angle is below the threshold obtained via
the LR model, whose inputs are the three signal values at the
thigh angle peak. TO is detected when the current three signal
values are within the set of fixed thresholds. Accuracies of the
proposedmethod are validated against two pressure sensors fixed
in insoles.

The rest of this paper is organized as follows: Section
Method for Gait Event Detection briefly introduces the data
acquisition process and describes the proposed method for HS
and TOdetection based on the adaptive thresholdingmethod and
observable thresholds. Section Experiments presents experiments
in hemiplegic subjects and results from the proposedmethod and
the conventional thresholding method in healthy and hemiplegic
subjects. Section IV is the discussion, and this paper ends with a
conclusion in Section Conclusion.

METHOD FOR GAIT EVENT DETECTION

The conventional thresholding method for gait event detection
is based on fixed thresholds (Catalfamo et al., 2010; Ledoux,
2018). The proposed method adopts adaptive thresholds for HS
detections and observable thresholds for TO detections. In this
paper, three signals are used for the gait event analysis: thigh
angle θz, thigh angular velocity ζz, and forward axial acceleration
ax. The coordinate system is presented in Figure 1A. In this
section, first, the data acquisition system and data acquisition
process for 20 healthy subjects are described. Second, based on
these data, the sharing characteristics for HS and TO gait events
between different subjects are summed up, and then, according
to these characteristics, the adaptive thresholding method for HS
gait event detection and an observable thresholding method for
TO gait event detection are proposed. Finally, model training and
parameter selection are discussed in detail.

Data Acquisition System
A gait rehabilitation robot is selected to acquire the data for gait
event detection. The robot named BEAR-H1 is self-developed,
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FIGURE 1 | Data acquisition system. (A) A subject wearing the BEAR-H1

robot; (B) two pressure sensors.

which is used to help patients with hemiplegia do rehabilitation
training. It has three training modes, including training mode,
weight loss mode, and intelligent mode. The training mode is
a passive mode, and the others are active modes. For training
mode, stride frequency can be changed within 3% of the set
gait cycle frequency. For intelligent mode, stride frequency can
be adjusted in real time to achieve synchronization of human–
robot interaction.

The robot has three active degrees of freedoms (DOFs) and
a passive DOF in each leg. The three DOFs are rotations along
the hip joint, knee joint, and ankle joint in the sagittal plane,
separately. They are actuated by motors. The adduction and
abduction of the hip joint is a passive DOF. Each thigh of
the robot has an IMU (YIS100-V), shown in Figure 1A. Two
pressure sensors are fixed in insoles of the robot at the toe and
the heel, shown in Figure 1B. The sensors are used to validate the
accuracy of the proposed method.

Specifically, the angle in the sagittal plane between thigh
segment and vertical direction is denoted as the hip joint
angle. There is a vertical standing calibration for the lower
extremity exoskeleton robot before using. During the calibration
process, the robot is hanging on a holder, and two thigh
segments are parallel with the vertical direction, and that is the
standing state (as the neutral position). In this state, hip joint
angle is recorded as 0◦. The walking process is begun at the
standing state, and real-time hip joint angles are calculated by
accumulating the product of angular velocity and 1t, where
angular velocity is given by gyroscopes in real time and 1t is
sampling interval.

Data Acquisition and Protocol
In order to obtain the sharing characteristics for HS and TO
gait events between different subjects, 20 healthy subjects’ data
were acquired. The detail process is described as follows. Twenty
healthy subjects (average ages 26.5 ± 3.7 years) wearing the
BEAR-H1 were recruited to perform walking on a level surface
in the training mode. Each subject performed a series of trials

at three kinds of stride frequencies: slow, normal, and fast (0.25,
0.3, 0.4Hz). Each trial lasted 6min and 30-s intervals under
each of the three walking patterns. Only data were collected for
analysis of gait events when subjects adapted their walking styles
to the rhythm of the BEAR-H1, and almost 50 strides from each
walking pattern were used in the analysis for a total of 150 strides
per subject.

For the purpose of the present study, only the outputs of
the gyroscope orthogonal to the sagittal plane and the forward
accelerometer orthogonal to the coronal plane were retained for
analysis. The data of thigh angle θ z, thigh angle velocity ̟z ,
forward axial acceleration ax, and the two pressure sensors were
logged at 100Hz on a micro SD card on the PCB. They were
sampled at 100Hz and processed in MATLAB. A digital second-
order Butterworth low-pass filtered with a cutoff frequency of
5Hz was applied off-line to analyze the collected three signals. At
present, there were no clear guidelines on the cutoff frequency to
be used. The cutoff frequency of 5Hz was selected for its adequate
performance by the experimental verification (Catalfamo et al.,
2010).

This protocol was approved by the institutional ethics
committee of The Seventh Affiliated Hospital, Sun Yat-sen
University, and written informed consent was obtained from
all patients.

Sharing Characteristics and Methods for
Gait Event Detection
Based on gait data from 20 healthy subjects, at each stride
frequency, they share the salient characteristics of time delay
relative to thigh angle peaks for HS, low thigh angle for TO, low
thigh angular velocity for HS, positive near zero thigh angular
velocity for TO, low thigh forward axial acceleration for HS,
and high thigh forward axial acceleration for TO. Figure 2A
shows these characteristics on one healthy subject based on foot
pressure sensors. The subject wearing the BEAR-H1 walked for
43 strides on a level surface at 0.3Hz stride frequency. The
black curve and gray shading show the mean and the standard
deviation of 43 gait cycles.

For HS, thigh angle difference among five healthy subjects is
almost 20◦ at the same stride frequency, shown in Figure 2B. We
find that the fixed threshold (thigh angle) method cannot satisfy
the accuracy requirement for HS gait event detection in this case.
Besides, the thigh angle decreases monotonously from the peak
to the trough. After the thigh angle spike is detected, if thigh
angles of HS gait events for different subjects can be obtained
accurately in real time, we will make the thigh angle threshold
be adjusted adaptively. So we calculated the Pearson correlation
coefficient between three features from the thigh angle peak and
HS, shown in Table 1. We find that the thigh angle and the
forward axial acceleration have strong correlation between the
two moments. Therefore, a linear regression model can be used
to obtain the thigh angle of HS gait event. The scatter diagrams
of the two moments are described in the Figure 3. They show
that the three kinds of stride frequencies may share a same linear
regression model.

For HS, the detailed process for gait event detection is
described with the following steps:
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FIGURE 2 | (A) Stride parse signals for 43 strides of normal walking by one healthy subject based on foot pressure sensors. The subject wearing the BEAR-H1

walked a level surface at 0.3Hz stride frequency. The black curve is the mean, and the gray shading shows the standard deviation. (B) Thigh angle curves for HS

moments. The data points for 43 strides of normal walking at 0.3Hz are from five healthy subjects wearing the BEAR-H1. The five colors represent five healthy

subjects. For instance, the lowest point in the green line means that the thigh angle is 15◦ when the 20th heel strikes are detected for the “green” subject.
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Step 1: detect thigh angle peak
if θt > θt−1

repeat θt , ̟t , at are sampled
t = t + 1
until θt < θt−1

end

get ap, θp, ̟pof thigh angle peak
Step 2: obtain the thigh angle threshold for HS
θh = B+W × [ap θp ̟p]T

Step 3: detect HS gait event
if θt ≤ θh
HS gait event is detected
End

Where t is the current sampling time and t-1 is the last sampling
time. θt , ̟t , at represent thigh angle, thigh angular velocity, and
thigh angular acceleration in current sampling time, respectively.
θh represents adaptive thigh angle threshold for HS detection. θp,
̟p, ap, represents thigh angle, angular velocity thigh, and angular
acceleration when the thigh angle reaches the peak. Definition of
B andW can be seen in formula (1) below.

A linear regression model can be described as followes:

Y (X) = B+WX (1)

where X is the input signal vector, B is a one-dimensional
constant, and W is a 1 × 3 vector of constant coefficients. Y is
the output: the thigh angle value of the HS moment. For a linear
regression model, four parameters are required.

For TO event detection, we apply a fixed thresholding
method because there are characteristics for thigh angle θ ,
angular velocity ̟ , and angular acceleration a at TO events.
The coordinate axis demonstrated in Figure 1A, where X, Y,
Z axes are along with the back-to-front, top-to-bottom, and
left-to-right direction, respectively. We calculated the mean and
standard deviation for thigh angle θ z, angular acceleration ax,
and angular velocity ̟z at TO events among all strides from 20
healthy subjects wearing the BEAR-H1 and walking at all stride
frequencies. Based on the statistical results of−8.31± 5.17 for θ z,
1.76 ± 1.32 for ax and 0.32 ± 0.12 for ̟z , the value of θ z should
be negative while the value of ax and ̟z should be positive at
TO events.

Thus, the algorithm of TO event detection can be described
as following:

TABLE 1 | Pearson correlation coefficient.

θh ̟h ah

θp 0.8604 −0.3798 0.5932

̟p −0.2017 −0.1262 0.0828

ap −0.6393 0.0883 −0.7062

θh, θp represent thigh angles at HS moment and peak moment, respectively. ̟H, ̟p

represent the angular velocity at HS moment and peak moment, respectively. ah, ap

represent the forward acceleration at HS moment and peak moment, respectively.

when

̟z(t)≥̟ ∗rad/s (2)

θz(t) < θ
∗

degree (3)

ax(t) > a∗rad/s2 (4)

are satisfied, a TO event is detected.
Where ̟ ∗, θ∗, a∗ represent threshold of angular velocity,

thigh angle, and angular acceleration, respectively. ̟z (t) and
θz (t) represent angular velocity and thigh angle in current
sampling time t, along with the Z-axis. ax (t) represents angular
acceleration in the current sampling time along with the X-axis.

The detailed progress of TO detection is described as the
following steps:

(1) While HS is detected, the algorithm of TO event detection
keeps inactive and waits idly for a period of time td. (2) Once tL =
td, the algorithm of TO event detection is activated. (3) Once TO
is detected, the algorithm of TO event detection will shut down
and wait for the next HS detection; tL is reset as tL = 0, where td
= αT and T = tN – tN−1. T is time duration of a gait cycle. tN and
tN−1 represent time points of theNth and (N-1)th occurrences of
HS. tL is the time period that has lasted after HS is detected in the
current gait cycle. α is a coefficient that determines how long the
algorithm of TO event detection keeps inactive in step 1.

For TO, three threshold parameters are required. The angular
velocity is chosen to be the limiting threshold for its signal feature
directly leads to TO gait event occurrence. The flowchart of the
proposed method used for detection of HS and TO gait events is
described in detail in Figure 4.

Model Training and Parameter Selection
For HS detection, the data from 20 healthy subjects were
classified into training and testing sets for linear regression
models, and five different train:test subject ratios were adopted,
ranging from 9:1 to 5:5. There is a linear regression model in each
train:test ratio. Five linear regression models are obtained based
on the 0.25Hz data set, 0.30Hz data set, 0.40Hz data set, and all
data set, respectively.

For TO detection, threshold parameters were selected for gait
event detection based on observing gait cycle parsed signals of
thigh angle, angular velocity, and forward axial acceleration. The
proposed method thresholds and parameter determined are θ∗ =

0, ̟ ∗ = 0.2, a∗ = 0, and α = 0.4.
Based on the statistics of 20 healthy subjects, we obtain results

of−8.31± 5.17 for thigh angle θz , 0.32± 0.12 for angular velocity
̟z , and 1.76± 1.32 for angular acceleration ax at TO events. ̟ ∗

= 0.2 locates at the lower boundary of standard deviation (mean
minus standard deviation) of angular velocity in order to suit
formula (2). a∗ = 0 locates at below the lower boundary (mean
minus standard deviation) of the standard deviation of angular
acceleration in order to suit different subjects in formula (4). θ∗

= 0 locates at above the upper boundary of the standard deviation
(mean plus standard deviation) of the thigh angle in order to suit
different subjects in formula (3).

HS events are generally defined at 0% of T, and TO events are
at about 58% of T (Perry, 2010), where T is defined in Section
Sharing Characteristics and Methods for Gait Event Detection.
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FIGURE 3 | Scatter diagrams. The black color represents the distribution at 0.4Hz, the red color represents the distribution at 0.3Hz, and the blue color represents

the distribution at 0.25Hz. Each color has 300 strides of normal walking from six healthy subjects. The above one is the scatter diagram of θh and θp. The other one is

the scatter diagram of θh and ap.

Thus, α can be set as 0.58 maximally, which means that the
algorithm of TO detection waits for 58% of T after HS events
occur. Any higher values exceeding 0.58 may lead to the failure
of TO detection because the timing of TO has been lapsed when
the algorithm is activated. However, we set α= 0.4, giving enough
time for the TO detection algorithm in advance in order to ensure
that our algorithm works for different subjects because some
subjects walk with earlier TO events. Meanwhile, α = 0.4 can
avoid potentials of misjudgment. Referring to Figure 2A, there
is fluctuation between HS and TO in the angular velocity curve
and any up-trends may lead to a sharp rise of angular velocity,
causing satisfaction of formula (2) and a wrong TOdetection. α=

0.4 locates at the green dotted line, and there is only an up-trend
of angular velocity after this line, which reduces the potential of
TO misjudgment.

Two performance metrics were number of detected gait event
(frequency) and percentage stride error of gait event detection
(temporal) as compared to foot pressure sensors. For HS, the
test set was used to assess the two performance metrics. For TO,
whole subjects walking at three kinds of stride frequencies were
used to assess the performance metrics. First, the strides were

parsed correctly by data from foot pressure sensors as a reference
and then calculated the averages and standard deviations of
errors of the two performancemetrics from the proposedmethod
and the conventional method for gait event detection.

EXPERIMENTS

The number of detected gait events (frequency) and the
percentage of gait cycle error of gait event (temporal)
were calculated based on the proposed method and the
conventional thresholding method. Detailed descriptions are
described subsequently. For frequency error, a positive number
represents extra gait event detection, and a negative number
means miss of a gait event. For temporal error, a positive
number represents early detection, and a negative number means
delayed detection.

Healthy Subjects
For HS, performance comparisons of each train:test ratio are
summarized in Figure 5. We find that the frequency performance
for HS gait event detection does not improve significantly when
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FIGURE 4 | Flowchart of the method used for detection of HS and TO gait events based on the IMU’s three signals.

the training set becomes bigger. Besides, the accuracy also
does not improve significantly when the model from a data
set of same stride frequency or from a data set of all stride
frequencies is applied to estimate HS gait event detections,
respectively, shown in Figure 5, Table 2 as mean ±1 standard
deviation (7:3 ratio). Thus, the proposed method for HS gait
event detection adopts the linear regression (LR) model from
the data set of all kinds of stride frequencies based on a 7:3
train:test ratio. Error comparisons between the proposed method
and the conventional method are shown in Table 3 as mean ±1
standard deviation. The evaluation index is based on the mean
absolute deviation (MAE). For TO, based on the set of observable

fixed thresholds, temporal, and frequency performances for all
subjects at three kinds of stride frequencies are also described in
Table 3. Temporal absolute errors at different stride frequencies
based on the proposed method are 1.3 ± 1.1% gait cycle for HS
and 1.8 ± 1.1% gait cycle for TO. The proposed method can
detect all HS/TO gait events precisely. However, the conventional
thresholding method misses HS gait event detections when a set
of fixed thresholds is used.

Patients
In order to verify the feasibility of the proposed method for
patients with hemiplegia, six patients with hemiplegia (average
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FIGURE 5 | Blue, green, and red represent mean absolute deviation, mean positive deviation, and mean negative deviation. (A) HS % gait cycle error at 0.25Hz stride

frequencies; (B) HS % gait cycle error at 0.30Hz stride frequencies; (C) HS % gait cycle error at 0.40Hz stride frequencies; (D) HS % gait cycle error at all kinds of

stride frequencies; (E) Patients HS % gait cycle error at all kinds of stride frequencies.

ages 45.5 ± 8.7 years) wearing the BEAR-H1 were recruited to
walk on a level surface. For patients’ safety, they walked at their
preferred stride frequencies in the intelligent mode of BEAR-
H1. All patients signed an informed consent document prior to
participating. The processes of data acquisition and processing
are same as healthy subjects.

For TO gait event detection, the threshold parameters are θ∗

= 0, ̟ ∗ = 0.15, a ∗ = 0, and α = 0.4. Similar to the selection of
θ∗, ̟ ∗, a ∗, and α for healthy subjects in Section Model Training
and Parameter Selection, these parameters are identified based
on statistics from all hemiplegic subjects. Statistical results are
−7.68 ± 4.36 for θz , 0.26 ± 0.11 for ̟z , and 1.27 ± 1.08 for
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TABLE 2 | HS results from different stride frequency training data.

0.25Hz 0.3Hz 0.4Hz All stride frequency

data data data data

Temporal 1.6 ± 1.1 1.5 ± 1.0 1.6 ± 1.2 1.3 ± 1.1

Frequency 0 0 0 0

TABLE 3 | Healthy results from healthy training.

Performance Proposed method Conventional method

Temporal HS error

(%gait cycle)

1.3 ± 1.1 1.7 ± 0.6

TO error

(%gait cycle)

1.8 ± 1.1 1.8 ± 0.6

Frequency HS error

(%gait cycle)

0 −5.6

TO error

(%gait cycle)

0 0

ax at TO events. ̟ ∗ = 0.15 locates at the lower boundary of
standard deviation (mean minus standard deviation) of angular
velocity in order to suit formula (2). a∗ = 0 locates at below the
lower boundary (meanminus standard deviation) of the standard
deviation of angular acceleration in order to suit different subjects
in formula (4). θ∗ = 0 locates at above the upper boundary of the
standard deviation (mean plus standard deviation) of the thigh
angle in order to suit different subjects in formula (3). α = 0.4
avoids the fluctuation between HS and TO in angular velocity,
which may lead to the TO misjudgment.

For HS gait event detection, three different train:test
subject ratios are used, ranging from 5:1 to 3:3. Performance
comparisons of each train:test ratio are summarized in Figure 5E.
Performance based on the LR model from the healthy subject
data set is also described in Figure 5E. We also find that the
performance gap between them is not big. Thus, the proposed
method for HS gait event detection of patients with hemiplegia
still adopts the LR model and error comparisons between the
proposed method and the conventional method are shown in
Table 4 as mean±1 standard deviation.

DISCUSSION

Our study provides an adaptive thresholding method for HS
detection based the LR model at various stride frequencies. It
can realize threshold accurate adjustment. For TO, different
subjects walking at various stride frequencies share a same
characteristic; that is, angular velocity increases above ̟ ∗ rad/s2,
thigh angle is <θ∗ degree (thigh neutral positions), and forward
axial acceleration is higher than a∗ rad/s2. When a sample meets
these three conditions, a TO gait event is detected.

For HS, because stride lengths affect thigh angle spikes, when
a subject wearing the BEAR-H1 walks at one kind of stride
frequency, thigh angles may change within a relatively large

TABLE 4 | Patients results from healthy training.

Performance Proposed method Conventional method

Temporal HS error

(%gait cycle)

1.2 ± 0.7 1.9 ± 0.3

TO error

(%gait cycle)

1.3 ± 0.7 1.8 ± 1.1

Frequency HS error

(%gait cycle)

0 −4.2

TO error

(%gait cycle)

0 0

range. In this case, the model can still detect HS gait events
within 3% gait cycle errors and with −1.2 ± 1.6% as shown in
Figure 6 although the most recent research reports gait cycle
error of −2.1 ± 1.0% at HS detection on the knee exoskeleton
(Xu et al., 2019). Another gait event detection (Schicketmueller
et al., 2019) conducted on low limb exoskeleton robots (Locomat
and Lyra) obtain the highest accuracy, 98.1 ± 5.2%, but they
did not evaluate the time delay problem for their results.
Besides, the LR model can accurately detect HS gait events for
healthy subjects walking at three kinds of stride frequencies and
hemiplegic patients walking at their preferred stride frequency.
The frequency errors are 1.3± 1.1% gait cycle for healthy subjects
(shown in Table 3) and 1.2 ± 0.7% gait cycle for patients (shown
in Table 4), respectively. They are less than frequency errors of
the conventional method (Ledoux, 2018). Thus, we believe that
the proposed method based on the LR model for HS detection is
quite robust.

For HS gait event detection, the frequency error for patients
(1.2± 0.7% gait cycle) is less than the frequency error for healthy
subjects (1.3 ± 1.1% gait cycle). The reason is that patients with
hemiplegia have slightly different gait characteristics due to a
reduced range of motion relative to healthy subjects as well as
reduced lower limb functionality and performance.

Foot pressure sensors used here are considered as a convenient
way to generate the labeled data sheet for HS and TO gait event
detection. The accuracy of gait detection based on foot pressure
sensors may be questioned. There will be irreversible physical
damage for foot switches after the maximum number of uses, and
this will be inconvenient for long-term use. For users who have
suffered from stroke, most of them have strephenopodia, which
may cause uneven pressure on the sole and lead to the failure
of gait event detection. In this paper, judgments for HS and TO
gait events are based on downward and upward trends of foot
pressure sensors but not on their actual values.

Our method shows robustness on gait event detection with
negligible time delay. In our future work, we plan to implant our
method into different devices (BEAR-H1 exoskeleton) because
our previous experiments are only conducted on one device.
Meanwhile, more hemiplegic subjects will be included in our
research to optimize our method for hemiplegic users.
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FIGURE 6 | HS % gait cycle error from one subject. (A) The three signal

normalized values when the subject walks continuously on a level surface at

0.3Hz stride frequency. x-axis represents the time, and y-axis is the

normalized values. (B) Timing percentage errors of the eight gait cycles. y-axis

is cycle number.

CONCLUSION

It is possible to accurately detect HS and TO gait events for
both healthy subjects and patients with hemiplegia using one
IMU sensor mounted on the thigh of gait rehabilitation robots.
The method can detect HS and TO gait events accurately, and
timing errors are within an average 2% gait cycle. For HS gait
event detection, first, the proposed method based on the LR
model can be applied for healthy subjects and patients with
hemiplegia. Second, the LR model can be used at various stride
frequencies. Finally, the LR model can more accurately detect
HS gait event for patients with hemiplegia than healthy subjects.

In the future, we will attempt to detect more gait events based on
the proposed method.
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