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Purpose: The aim of this study was to examine the expression of genes related to the Wnt signaling pathway, such as β-
catenin (CTNNB1) and secreted frizzled-related protein-1 (sFRP1), in human trabecular meshwork (TM) cells. In addition,
the effect of oxidative stress on Wnt signaling was evaluated.
Methods: All experiments were conducted using second- or third-passaged human TM cells. cDNA was prepared from
total RNA extracted from cells by means of reverse transcription. PCR was then performed to determine the presence of
Wnt genes. For oxidative stress, TM cells were treated with 1 mM of H2O2 for 30 min. Actin staining was carried out to
verify cell response to oxidative stress. Western blotting was used to measure Wnt-related protein levels after H2O2

treatment.
Results: Positive PCR products were detected for a total of 25 Wnt and Wnt-related genes in human TM cells. Most of
the genes identified belonged to the Wnt/β-catenin pathway. Members of the β-catenin-independent noncanonical
pathways were also found. Oxidative stress did not result in significant changes in β-catenin and sFRP1 protein levels.
Conclusions: Genes related to canonical and noncanonical Wnt pathways are expressed in human TM cells. It appears
that all three Wnt pathways are operative in the TM system. Oxidative stress, while thought to play a role in the development
of glaucoma, had little effect on the Wnt activity in TM cells.

The trabecular meshwork (TM) located at the chamber
angle of the eye is the major site for regulation of the aqueous
humor outflow [1]. Cells in the TM are believed to play an
essential role in maintenance of the outflow system and
control of intraocular pressure (IOP). Dysfunction or
alteration of TM cell activities may be responsible for the
development of glaucoma, a disease frequently associated
with IOP elevation and neural and visual loss.

The Wnt gene family encodes secreted glycoproteins that
are highly conserved across a variety of species [2]. These
proteins have been shown to be involved in diverse biologic
processes, including embryonic induction, generation of cell
polarity, and the specification of cell fate [3]. Many Wnt genes
have also been implicated in proto-oncogenic activities [4].

The Wnt genes signal through a β-catenin-dependent
canonical pathway as well as two β-catenin-independent
noncanonical pathways. Central to the canonical pathway is
the regulation of β-catenin activity. In the absence of Wnt
ligands, β-catenin accumulated in the cytoplasm is
phosphorylated by glycogen synthase kinase3β (GSK3β) in a
multiprotein destruction complex composed of proteins,
including axin and the adenomatous polyposis coli (APC)
tumor suppressor protein, and is thereby marked for
degradation through the ubiquitin–proteasome system. When
the Wnt ligand binds to membrane receptor frizzled (Fzd) and
the low-density lipoprotein receptor-related protein 5/6
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(LRP5/6), the cytoplasmic target of Fzd, disheveled (Dsh), is
activated to suppress the GSK3β activity. As a result, β-
catenin is neither phosphorylated nor degraded, and the excess
β-catenin is translocated into the nucleus [5]. Once there, β-
catenin associates with the T-cell factor (TCF)/lymphoid
enhancer factor (Lef) transcription factors to induce specific
gene expression [6]. In the noncanonical planar cell polarity
(PCP) pathway, Dsh is connected to downstream effectors,
such as small GTPase Rho, to regulate cytoskeletal
organization and cell polarity. The second noncanonical
pathway Wnt/Ca2+ leads to release of intracellular Ca2+ and
involves activation of protein kinase C and Ca2+/calmodulin-
dependent protein kinase II. The Wnt/Ca2+ pathway has
implications on cell proliferation and cell movement [7].

Many extracellular inhibitors of Wnt signaling have been
reported. One example is the secreted frizzled-related protein
(sFRP), which antagonizes Wnt signaling by sequestering the
Wnt protein in the extracellular matrix [8]. Another inhibitor,
Dickkopf (Dkk), antagonizes Wnt through interactions with
LRP5/6 [9], although it can also act as an activator of the
noncanonical Wnt/PCP pathway [10].

A possible role of Wnt signaling in the outflow system
has been suggested recently [11]. An increased expression of
sFRP1 appeared to result in IOP elevation in mice [11]. In
search of Wnt and Wnt-related genes, six of them were
identified in the TM [11]. To extend these previous efforts,
we comprehensively examined the expression patterns of
genes in Wnt signaling pathways in human TM cells.
Additionally, we undertook an investigation to determine
whether Wnt signaling was altered by oxidative stress in TM
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cells. Oxidative stress has long been thought to be involved in
the development of glaucoma [12-16]. Regulation of Wnt
activity by oxidative stress has previously been reported in
several other cell types [17-19].

METHODS
Cell culture: TM tissues were dissected from corneo-scleral
rims obtained from donors 32, 33, 43, 51, and 58 years of age
(Illinois Eye Bank, Chicago, IL). The tissues were plated onto
Falcon Primaria flasks (Becton-Dickinson Co., Oxnard, CA).
At least 2 ml of complete medium [20,21] containing Eagle’s
minimum essential medium (Sigma, St. Louis, MO), 5% calf
serum (Sigma), 10% fetal bovine serum (Sigma), essential
(Invitrogen, Carlsbad, CA) and nonessential (Sigma) amino
acids, and antibiotics (Sigma) was added to each flask. Cells
were trypsinized and subcultured at confluence. Second- or
third-passaged cells were used in all the experiments. All
experiments were conducted when cells were at confluence
for at least 2 days.
Hydrogen peroxide treatment: To study the effects of
oxidative stress, cells at confluence for at least 2 days were
treated with 1 mM hydrogen peroxide (H2O2; Sigma) in
serum-free complete medium (Sigma) for 30 min [22]. Total

RNA and cell lysates were collected at the subsequent 0-, 1-,
2-, or 4-h time points. Untreated cells were used as controls.

cDNA synthesis and PCR: Total RNA was isolated from
cultured TM cells, using the RNeasy mini kit (Qiagen,
Valenica, CA). The RNA concentration was measured using
an ND-1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE). At least 1 μg of RNA was used for cDNA
synthesis, employing random hexamers and the Superscript
RT first strand synthesis kit (Invitrogen). PCR was conducted
on aliquots of cDNA samples by using Multigene
thermocycler (Labnet International, Woodbridge, NJ). Each
reaction mixture contained 5–10 μM of gene-specific primer
pairs, 0.5–1 μg of cDNA, and PCR master mix containing
1.5 mM MgCl2 and 200 µM of dNTPs (Promega, Madison,
WI) in a volume of 50 μl. The primers, designed using the
OligoPerfect™ Designer (Invitrogen) program, were
purchased from either Sigma or IDT (Coralville, IA). The
sequences of primer pairs for target genes along with the
annealing temperatures and expected product sizes are listed
in Table 1.

Thermocycling conditions were 94 °C for 5 min,
followed by 35 cycles of 94 °C for 30 s, primer-specific

TABLE 1. PRIMER PAIR SEQUENCES, ANNEALING TEMPERATURE, AND PRODUCT SIZES OF WNT-RELATED GENES.

Genes
examined

Forward primer Reverse primer Annealing
temperature (°C)

Expected product
size (bp)

Wnt1 5’-TCCTCCACGAACCTGCTTAC-3’ 5’-GCCTCGTTGTTGTGAAGGTT-3’ 54 491
Wnt2 5’-GGTGATGTGCGATAATGTGC-3’ 5’-GCCAGCTCTGTTGTTGTGAA-3’ 52 404
Wnt2b 5’-AAGATGGTGCCAACTTCACC-3’ 5’-GGCCACAGCACATGATTTCAC-3’ 54 188
Wnt3 5’-CTGTGAGGTGAAGACCTGCTG-3’ 5’-GATGCAGTGGCATTTTTCCT-3’ 54 357
Wnt3a 5’-GGTGGCTGTAGCGAGGACAT-3’ 5’-ATGCCGTGCGAGCTGACGTT-3’ 56 454
Wnt4 5’-GCATCTCAGAGGAGGAGACG-3’ 5’-TCAGAGCATCCTGACCACTG-3’ 56 363
Wnt5a 5’-ATTTTTCTCCTTCGCCCAGGT-3’ 5’-GGCTCATGGCGTTCACCAC-3’ 55 358
Wnt5b 5’-CCAAAGGATCAGAGGAGCAG-3’ 5’-TACACCTGACGAAGCAGCAC-3’ 56 483
Wnt6 5’-TGGTTATGGACCCTACCAGCA-3’ 5’-CGTCCATAAAGAGCCTCGAC-3’ 54 467
Wnt7a 5’-CTGGAGGAGAACATGAAGC-3’ 5’-ACAGCACATGAGGTCACAGC-3’ 54 354
Wnt8a 5’-TCCCAAGGCCTATCTGACCTAC-3’ 5’-CCGGCCCTGTTGTTGTGA-3’ 57 407
Wnt10b 5’-AATGCGAATCCACAACAACA-3’ 5’-ACAGCACATAGCAGCACCAG-3’ 54 448
Wnt11 5’-CTACACAACAGTGAAGTG-3’ 5’-CCCACCTTCTCATTCTTCATGC-3’ 55 298
Dsh1 5’-CACCCTGAACCTCAACAGTGG-3’ 5’-CCCTTCACTCTGCTGACTCC-3’ 56 201
Dsh2 5’-CCTTCAGCAGCGTCACAGATTCC-3’ 5’-AGTGGGCAGCAGGGGCC-3’ 59 895
Dsh3 5’-CAGCCCCCTTCTGTGCTGATAA-3’ 5’-AGAAGGTGATCTTGTTGA-3’ 59 1196
Fzd1 5’-TGCGAGGCGCTCATGAACAA-3’ 5’-CCTCGGCGAACTTGTCATTA-3’ 54 570
Fzd2 5’-CGTCCTCAAGGTGCCATCCTA-3’ 5’-CAGCCCGACAGAAAAATGAT-3’ 54 248
Fzd4 5’-CTCGGCTACAACGTGACCAAGAT-3’ 5’-AATATGATGGGGCGCTCAGGGTA-3’ 57 604
Fzd5 5’-CTGCTACCAGCCGTCCTTCAGT-3’ 5’-CCATGCCGAAGAAGTAGACCA-3’ 59 319
Fzd7 5’-CGACGCTCTTTACCGTTCTC-3’ 5’-GCCATGCCGAAGAAGTAGAG-3' 54 246
Fzd8 5’-GGACTACAACCGCACCGACCT-3’ 5’-ACCACAGGCCGATCCAGAAGAC-3’ 59 406
LRP5 5’-AAGATCATTGTGGACTCGGAC-3’ 5’-GAAAGGCTCGCTTGGG-3’ 52 395
LRP6 5’-ACTGTATCCCTGTGGCTTGG-3’ 5’-CCCTTCATACGTGGACACA-3’ 54 426
CTNNB1 5’-CATGGAACCAGACAGAAAAGC-3’ 5’-GCTACTTGTTCTTGAGTGAAG-3’ 52 200
GSK3β 5’-GCAGCAGCCTTCAGCTTTTGG-3’ 5’-CCGGAACATAGTCCAGCACCAG-3’ 59 358
APC 5’-TCCACAACATCATTCACTCACAG-3’ 5’-TGCTCGCCAAGACAAATTCC-3’ 53 505
TCF1 5’-GAGCAAAGAGGCACTGATCC-3’ 5’-CTGGTTGAGGCCAGTGGTAT-3’ 54 361
TCF3 5’-GGGTCTTCCATCCTCGGTGTA-3’ 5’-GAGTAGATCGAGGCCAGTGC-3’ 56 488
TCF4 5’-GTTTGTATTTTTTGGCG-3’ 5’-GAATGGCTGCCTTAGGG-3’ 49 467
TCF7 5’-GAGCCAAGGTCATTGCAGAGT-3’ 5’-GTGGTGGATTCTTGGTGCTT-3’ 54 222
Dkk1 5’-GATCTGTAAACCTGTCCT-3’ 5’-GAAGAATTACTGGCTTGATG-3’ 50 149
Dkk2 5’-CTGATGGTGGAGAGCTCACAG-3’ 5’-ATTATTGCAGCGGGTACTGG-3’ 56 311
sFRP1 5’-CAACCTGCTGGAGCACGAGAC-3’ 5’-CGCTGGCACAGAGATGTTCA-3’ 58 379
sFRP2 5’-CACGGCATCGAATACCAGAAC-3’ 5’-GATGCAAAGGTCGTTGTCCT-3’ 58 308
sFRP3 5’-GGGCTGTGAGCCCATACTCAT-3’ 5’-GGCAGCCAGAGCTGGTATAG-3’ 57 379
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annealing temperature for 30 s, 72 °C for 30 s, and a cycle of
72 °C for 10 min. Negative controls with RNA samples that
were not subjected to reverse transcription were included for
all PCR experiments. PCR products, along with Marker VI
(Roche Laboratories, Nutley, NJ) or GeneRulerTM 100-bp
ladder markers (Fermentas, Hanover, MD) were resolved on
1% agarose gels. The gel images were captured with the Gel
Doc 2000 image analyzer (Bio-Rad, Hercules, CA).
Sequencing analyses were performed to verify the identities
of all PCR products. At least two independent experiments,
using cells from two different donors, were performed.

A human breast adenocarcinoma cell line, MCF-7, is
known to express Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4,
Wnt10b, Wnt11, sFRP1, sFRP2, β-catenin (CTNNB1), and
LRP5 [23-29]. MCF-7 cDNAs were used as positive control
for these genes. Human embryonic kidney 293 (HEK293)
cells were used as a positive control for TCF1 gene expression
as this transcription factor has been shown to be expressed in
the kidney [30].
Western blotting: Lysate was prepared from TM cells after
H2O2 treatment, using the CelLytic M reagent (Sigma) in the
presence of protease inhibitors (Roche). Total protein was
quantified by the bicinchoninic acid assay (Thermo Scientific,
Rockford, IL). At least 10 µl of cell lysate was used to
determine the protein content. Bovine serum albumin was
used as a standard. Protein concentration was determined
using Tecan GeniosPro microplate reader (Tecan, Research
Triangle, NC). Equal amount of protein from each sample
resolved on a 10% sodium dodecyl sulfate (SDS)-
polyacrylamide gel under reducing conditions was
electroblotted onto a Protran nitrocellulose membrane
(Midwest Scientific, St. Louis, MO). The membrane was
blocked with 5% nonfat dry milk and incubated with
monoclonal anti-β-catenin (1:1,000; Santa Cruz
Biotechnology, Inc., Santa Cruz, CA) or polyclonal anti-
sFRP1 (1:1,000; Abcam, Cambridge, MA). Horseradish
peroxidase-conjugated anti-rabbit or anti-mouse IgG
(1:10,000; Jackson ImmunoResearch Laboratories, West
Grove, PA) was used as the secondary antibody. Protein bands
were detected using HyGLO Chemiluminescent HRP
antibody detection kit (Denville Scientific, Metuchen, NJ).
The blot was also stripped using ImmunoPure IgG Elution
buffer (Thermo Scientific) for 30 min at room temperature and
reprobed with polyclonal anti-glyceraldehyde 3-phosphate
dehydrogenase (GAPDH; 1:5,000; Trevigen, Gaithersburg,
MD) for protein loading control. Densitometry was performed
and Wnt protein levels were normalized against that of
GAPDH. At least three independent experiments were
conducted. Statistical analyses were performed using the
Student’s t test.
Actin staining: After a 30-min treatment with 1 mM H2O2, TM
cells in chamber slides were fixed immediately after (0 h) or
4 h later with fixative containing 2% paraformaldehyde, 0.08

M lysine, and 10 mM sodium periodate [22] for 20 min. The
cells were permeabilized in 0.1 M sodium phosphate buffer
containing 0.2% Triton X-100, 0.1% bovine serum albumin
for 8 min, and were allowed to react at room temperature with
Alexa Fluor 488 phalloidin (1:30; Invitrogen) for 30 min.
They were then mounted in Vectashield (Vector Laboratories,
Burlingame, CA) and photographed, using Axioscope (Carl
Zeiss MicroImaging, Thornwood, NY).

RESULTS
The expression in human TM cells of a total of 36 genes (Table
2) in the Wnt signaling pathway that included 13 Wnt ligands,
three transduction (Dsh) genes, eight receptors, CTNNB1,
GSK3β, APC, four TCF transcription factors, and five
inhibitors was examined by PCR analyses. All PCR products
were subjected to gel electrophoresis. Positive products of
expected sizes for 25 Wnt and Wnt-related genes were
detected (Figure 1 and Table 2). The identities of these
products were confirmed through sequence analysis.

To confirm that the primer sets and the PCR conditions
were optimal, MCF-7 and HEK293 cDNAs were used as
positive controls. Indeed, products undetected in TM cells,
such as those for genes Wnt2, Wnt3a, Wnt10b, and Wnt11,
were positively identified using MCF-7 DNA as the template.
TCF1 was found expressed in HEK293 cells. Most of the
genes expressed in TM cells belong to the Wnt/β-catenin
pathway (Table 3). However, genes linked to the β-catenin-
independent pathways were also found. A few genes were
members of more than one pathway (Table 3).

To investigate whether changes in protein levels of Wnt-
components occur after acute H2O2 treatment, western blot
analyses were performed. Results indicated that there was no
significant change in either β-catenin or sFRP1 protein levels
(Figure 2). The ratio of β-catenin protein level relative to
GAPDH for the untreated control and the 0-, 1-, 2-, and 4-h
time point samples was, respectively, 1, 1.2±0.2, 1.1±0.2,
1.0±0.1, and 1.2±0.1 and that for sFRP1 was 1, 1.1±0.2,
0.9±0.2, 0.9±0.2, and 0.9±0.1.

Actin staining was conducted to verify cell response to
oxidative stress (Figure 3). A reduction in actin stress fibers
was observed immediately following the treatment with 1 mM
H2O2 for 30 min (0-h time point). The reduction persisted for
at least 4 h (4-h time point).

DISCUSSION
In the present study we examined the expression of Wnt
components in human TM cells. Wnt signaling is documented
to play an important role in various biologic processes,
including differentiation, development, regulation, and
apoptosis of cells [31-33].

Four Wnt ligands (Wnt2b, Wnt3, Wnt5a, and Wnt5b),
three Dsh genes (Dsh1, Dsh2, and Dsh3), seven members of
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Figure 1. Expression profile of Wnt ligands and Wnt-related genes in human trabecular meshwork cells. Total RNA extracted from cells was
reverse transcribed and amplified with specific primers for Wnt-related genes listed in Table 1. PCR products were resolved on a 1% agarose
gel and visualized by ethidium bromide staining. Positive PCR products were obtained for Wnt2b, Wnt3, Wnt5a, Wnt5b, Dsh1, Dsh2, Dsh3,
Fzd1, Fzd2, Fzd4, Fzd5, Fzd7, LRP5, LRP6, CTNNB1, GSK3β, APC, TCF3, TCF4, TCF7, Dkk1, Dkk2, sFRP1, sFRP2, and sFRP3. Negative
controls with RNA samples that were not subjected to reverse transcription were included for all PCR reactions. No PCR products were seen
with any of the negative controls (representative results are shown for Wnt2b and Wnt5a). When applicable, positive controls, using MCF-7
(shown for Wnt3 and Wnt5b) and HEK293 cDNAs, were performed in parallel. All PCR products were confirmed by sequence analyses, and
all the experiments were performed in at least two different cell lines from two different donors.
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the receptor complex (Fzd1, Fzd2, Fzd4, Fzd5, Fzd7, LRP5,
and LRP6), CTNNB1, GSK3β, APC, three transcription
factors (TCF3, TCF4, and TCF7), and five inhibitors (Dkk1,
Dkk2, sFRP1, sFRP2, and sFRP3) are expressed (Figure 1 and
Table 2) in human TM cells. There is a notable overlap in the
Wnt and receptor genes. It is possible that the Wnt ligands
bind different receptors with different affinities, resulting in
different downstream effects.

Among the 25 genes we identified, most are members of
the canonical β-catenin-dependent pathway (Table 3). Several
others, such as Wnt5a, Wnt5b, Dsh3, Fzd2, and Fzd4, have
been shown to be members of the noncanonical Wnt/PCP and/
or Wnt/Ca2+pathways. Still another few have been linked to
more than one pathway (Table 3). One example is Wnt5b,
which is a key ligand in the Wnt/Ca2+ pathway and acts as an
antagonist in the Wnt/β-catenin pathway in 3T3-L1
preadipocytes [34]. In addition, several Dsh and Fzd genes are
common members of all three pathways (Table 3). These
results suggest that all three Wnt pathways are operative in
human TM cells.

The identification of Wnt2b, Wnt5a, Fzd1, Fzd2, Fzd7,
and sFRP1 is consistent with that reported previously by
Wang and co-workers [11]. Dkk2 and Fzd7 were additionally
found in a gene microarray study by Zhao et al. [35]. We have
expanded the repertoire and indicated that, in addition to
components of the Wnt/β-catenin pathway, those of the two

noncanonical β-catenin-independent pathways also exist in
human TM cells.

Genes, including Wnt1 and TCF1, were not found in the
current study. Their absence, however, is not surprising.
Wnt1 expression is observed during early development and its
activity is important in determining the fate of differentiating
cells [36,37]. In differentiated cells, such as TM cells, Wnt1
activity may be of limited significance. TCF1 expression is
mostly restricted to cells of T-cell lineage [38-40] and
therefore may not be expected in TM cells.

The role of acute oxidative damage in modulating Wnt
signaling in TM cells was also assessed. Two proteins, namely
β-catenin and sFRP1, were chosen for western blot analysis.
The former is a key element in Wnt/β-catenin signaling, and
numerous studies in the literature examined the β-catenin
level as a measure of Wnt activation [19,41]. The latter is of
particular significance to glaucoma. As stated earlier, an
increased expression of sFRP1 has been shown to induce IOP
elevation in mice [11]. Our results, however, revealed no
significant changes in the levels of these two proteins upon
H2O2 treatment (Figure 2). Further experiments also showed
no alterations in the level of activated β-catenin (data not
shown).

In the present study, the effects of oxidative stress on
sFRP1 and β-catenin protein levels were evaluated for time
points up to 4 h. In the literature, changes in β-catenin and

TABLE 2. WNT COMPONENTS IDENTIFIED IN HUMAN TRABECULAR MESHWORK (TM) CELLS.

Components in Wnt pathway Genes examined Genes identified
Wnt ligand Wnt1, Wnt2*, Wnt2b, Wnt3, Wnt3a*, Wnt4, Wnt5a,

Wnt5b, Wnt6, Wnt7a, Wnt8a, Wnt10b*, Wnt11*
Wnt2b, Wnt3, Wnt5a, Wnt5b

Transduction protein Dsh1, Dsh2, Dsh3 Dsh1, Dsh2, Dsh3
Receptor Fzd1, Fzd2, Fzd4, Fzd5, Fzd7, Fzd8, LRP5, LRP6 Fzd1, Fzd2, Fzd4, Fzd5, Fzd7, LRP5, LRP6
β-Catenin and Degradation complex CTNNB1, GSK3β, APC CTNNB1, GSK3β, APC
Transcription factor TCF1*, TCF3, TCF4, TCF7 TCF3, TCF4, TCF7
Inhibitor Dkk1, Dkk2, sFRP1, sFRP2, sFRP3 Dkk1, Dkk2, sFRP1, sFRP2, sFRP3

RT–PCR experiments were performed to detect Wnt-related gene transcripts. Primers used for the analyses are given in Table
1. The asterisk indicates that positive PCR products were obtained using MCF-7 or HEK293 cDNAs but not with cDNA from
human TM cells.

TABLE 3. CATEGORIZATION OF WNT COMPONENTS IDENTIFIED IN HUMAN TRABECULAR MESHWORK (TM) CELLS.

Component in Wnt pathway Wnt/β-catenin pathway Wnt/planar cell polarity
pathway

Wnt/Ca2+ pathway

Wnt ligand Wnt3, Wnt2b Wnt5a, Wnt5b Wnt5a, Wnt5b
Transduction protein Dsh2 Dsh1, Dsh2, Dsh3 Dsh3
Receptor Fzd1, Fzd5, Fzd7, LRP5, LRP6 Fzd2 Fzd4, Fzd2
β-Catenin and Degradation complex CTNNB1, GSK3β, APC NA NA
Transcription factor TCF3, TCF4, TCF7 NA NA
Inhibitor Dkk1, Dkk2, sFRP1, sFRP2, sFRP3 NA NA

Wnt genes that are shown to have roles in all three Wnt signaling, canonical Wnt/β-catenin, and noncanonical Wnt/planar cell
polarity and Wnt/Ca2+ pathways were identified in human TM cells. Some of the genes such as Wnt5a, Wnt5b , Dsh2 , Dsh3 , and
Fzd2  have been shown to have functional roles in more than one of the pathways.
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sFRP1 protein levels have been shown to arise within a
relatively short period of time. For instance, Aberle and co-
workers [42] detected that β-catenin protein level changed 1
h after treatment with a proteosome inhibitor. Cowling et al.
[43] also demonstrated that treatment with 4-
hydroxytamoxifen resulted in downregulation of sFRP1
protein within 1 h. Therefore, alterations in β-catenin and
sFRP1 levels, should they occur, would have been observed
in our study within the time periods examined.

Previously, NIH3T3 and HEK293 cells treated with
300 μM H2O2 for 20 min were reported to yield a modest but
significant activation of TCF [18]. Accumulation of β-catenin
was also observed in L cells following H2O2 exposure [18].
However, in other investigations, oxidative stress was shown
to negatively modulate the Wnt signal pathway [17,19]. It was
documented that treatment for 24 h with 100 μM H2O2

suppressed TCF activity in murine skeletal muscle C2C12
myoblast [17], osteoblastic OB-6 [17], and HEK293 [19]

Figure 2. β-catenin and secreted
frizzled-related protein 1 (sFRP1)
protein levels in human trabecular
meshwork (TM) cells. β-catenin (A) and
sFRP1 (B) protein levels were assayed
in human TM cells. Cells were treated
with 1 mM H2O2 for 30 min. Lysates
were harvested 0, 1, 2, or 4 h later.
Control cells (C) were left untreated.
Protein levels are expressed as ratios
relative to those of glyceraldehyde 3-
phosphate dehydrogenase (GAPDH).
All experiments were conducted in at
least three different cell lines from three
different donors. Data from one
representative experiment are
presented.

Figure 3. Actin staining in human trabecular meshwork cells. Cells were treated with 1 mM H2O2 for 30 min and were fixed immediately after
(0 h) or 4 h later (4 h), and stained with Alexa Fluor 488-phalloidin. Cells untreated were used as controls. Results showed a significant
reduction in actin stress fibers upon H2O2 treatment, a previously documented cell response [22] to oxidative stress. Scale bar represents 20
µm.
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cells. It seems, therefore, that the H2O2 effect may be
concentration, cell-type, and/or context dependent. The
1 mM, 30 min-H2O2 treatment in our experiments had little
impact on Wnt activity (Figure 2), but it did induce changes
in the cytoskeletal structure in TM cells (Figure 3), as was
seen in our previous experiments [22].

In conclusion, the current study revealed the existence of
many Wnt elements that had not been previously tested or
reported and demonstrated the presence of canonical as well
as noncanonical Wnt components in human TM cells. Our
results in addition indicated that the protein levels of two key
Wnt signaling components, β-catenin and sFRP1, are
unmodified by oxidative stress, a possible causal factor
thought to be involved in glaucoma. This suggests that Wnt
signaling may not be a factor related to oxidative damage in
the TM system.
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