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Abstract
Cancer is a leading cause of death worldwide. Nowadays, the therapies are 
inadequate and spur demand for improved technologies. Rapid growth in 
nanotechnology and novel nanomedicine products represents an opportunity to 
achieve sophisticated targeting strategies and multi-functionality. Nanomedicine 
is increasingly used to develop new cancer diagnosis and treatment methods since 
this technology can modulate the biodistribution and the target site accumulation 
of chemotherapeutic drugs, thereby reducing their toxicity. Cancer nanotech-
nology and cancer immunotherapy are two parallel themes that have emerged 
over the last few decades while searching for a cure for cancer. Immunotherapy is 
revolutionizing cancer treatment, as it can achieve unprecedented responses in 
advanced-stage patients, including complete cures and long-term survival. A 
deeper understanding of the human immune system allows the establishment of 
combination regimens in which immunotherapy is combined with other 
treatment modalities (as in the case of the nanodrug Ferumoxytol). Furthermore, 
the combination of gene therapy approaches with nanotechnology that aims to 
silence or express cancer-relevant genes via one-time treatment is gradually 
progressing from bench to bedside. The most common example includes lipid-
based nanoparticles that target VEGF-Α and KRAS pathways. This review focuses 
on nanoparticle-based platforms utilized in recent advances aiming to increase the 
efficacy of currently available cancer therapies. The insights provided and the 
evidence obtained in this paper indicate a bright future ahead for immuno-
oncology applications of engineering nanomedicines.

Key Words: Nanomedicine; Cancer; Immunotherapy; Gene; Cell therapy

https://www.f6publishing.com
https://dx.doi.org/10.5306/wjco.v13.i7.553
mailto:mgazouli@med.uoa.gr


Nteli P et al. Nanomedicine in oncology

WJCO https://www.wjgnet.com 554 July 24, 2022 Volume 13 Issue 7

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Despite many years of fundamental and clinical examination and preliminaries of promising new 
treatments, cancer stays a significant reason for dreariness and mortality. Ongoing investigations propose 
that nanomedicine gives benefits over conventional treatments for cancer therapy. Immunotherapeutic 
strategies, such as cancer vaccines, immunomodulatory agents, immune checkpoint inhibitors, natural 
killer cells, peptides, nucleic acids, and chimeric antigen receptor T-cells, have augmented the 
development of this treatment either by stimulating cells or blocking the so-called immune checkpoint 
pathways. The efficacy of nanomedicine treatments and the examination of the advancement in the 
synergistic plan of immune-targeting combination therapies reviewed in this manuscript have been 
validated in clinical trials. The field of nanomedicine, therefore, generates new approaches regarding 
oncologic malignancies.
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INTRODUCTION
Cancer refers to a diverse group of more than 100 different diseases that exhibit a highly complex and 
multifactorial profile and together serve as one of the leading causes of death worldwide, accounting for 
nearly 10 million deaths in 2020 alone[1]. The global prevalence of cancer was estimated to rise from 17 
million cases annually in 2018 to 27.5 million in 2040[2]. Although the etiology of each type is hugely 
varying and the clinical manifestations quite heterogeneous, aberrated cellular and tissue regulation is 
among the trademarks of cancer[3]. Fundamentally, each type results in the accumulation of genetic and 
epigenetic alterations that dysregulate the cell cycle and promote abnormal cell growth[4].

Collectively, these alterations impair cellular control mechanisms and the responsible regulatory 
signaling pathways and drive the transformation of normal cells into malignant cells. The malignant 
cells acquire new biological abilities, referred to as the hallmarks of cancer[5], a set of distinct features 
including sustained proliferation, evasion of growth suppression and cell death, altered response to 
metabolic and stress cues, vascularization, invasion and metastasis, and immune modulation. Various 
genes have been implicated in carcinogenesis, from activated oncogenes and anti-apoptotic genes to 
inactivated tumor suppressor genes[6,7]. Large-scale genomic analysis and functional studies have 
facilitated the identification of distinct mutations in different tumor types, allowing the development of 
valuable diagnostic biomarkers[8] and the stratification of patients towards more personalized 
therapeutic approaches[9].

The field of oncology focuses on the prevention, diagnosis, and treatment of cancer while 
implementing various strategies and tools for clinical application. Conventional cancer therapeutics, 
including chemotherapy, radiation therapy, and surgery, are widely accepted and used; however, they 
suffer from various drawbacks due to the lack of tumor-specific targeting, dosing, pharmacokinetic 
limitations, and severe complications[10]. Concurrently, a tremendous body of research work has been 
generated over the last decades to advance on the one hand, the understanding of the complicated 
events governing tumorigenesis[11] and, on the other hand, to develop early diagnostic and efficient 
therapeutic approaches[12]. Towards that goal, a promising branch of biomedicine, nanomedicine, aims 
to boost these current cancer management strategies. Nanomedicine can be defined as the use of 
nanomaterials (materials with at least one dimension ranging from 1-100 nm) for the prevention, 
diagnosis, and ultimately, treatment of diseases[13].

Nanomedicine, the application of nanotechnology in medical practice, aims to bridge the gap 
between different scientific principles such as physics, chemistry, pharmaceutics, and biology to harness 
nanotechnology's knowledge and tools with the goal of serving medicine. The unique phenomena that 
govern the nanoscale enable novel medical applications and are responsible for the exceptional 
properties that make nanomaterials excellent candidates for therapeutic applications[14]. Despite their 
minuscule size, nanoparticles hold great potential as drug delivery systems for cancer treatment, and 
tremendous research has taken place in the last decades to bring this technology from bench to bedside
[15].

Nanoparticles as drug carriers have proven to be an effective tool in the fight against cancer[16]. The 
improved selectivity afforded by these nanocarriers resulted in a significant increase in the efficacy of 
the carried medicine, while side effects in the host were minimized. It is also feasible to include 
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targeting moieties specific for cell organelles, which boosts the efficacy of the transported medicines 
even more[17]. Nanoscale platforms come in various sizes, geometries, materials, and targeting 
moieties, allowing them to target organs, tissues, and individual cells[18]. Because of their distinct 
benefits, nanomedicines have emerged as a viable alternative to viral vectors, including low toxicity and 
immunogenicity, sustained and controlled release features, scale-up capacity, and low-cost manufac-
turing[17].

This review thus focuses on nanoparticle-based platforms utilized in recent advances aimed to 
increase the efficacy of currently available cancer therapies.

TYPES OF CANCER NANOMEDICINES
Immunomodulatory agents
Recently, some of the alternate approaches to treat cancer are based on immunomodulation which 
employs the host’s own natural defense mechanisms to recognize and selectively eliminate the cancer 
cells by inducing the immune system[19]. Nanomaterial-mediated immunomodulation can be achieved 
either directly or indirectly[20]. To the first group belong nanomaterials that act as vaccine adjuvants, as 
several systems have been reported to improve antigenicity of conjugated weak antigens, while 
engineered nanosystems have also shown inherent antigenic properties[21]. Recent studies have 
highlighted the inherent tendency of liposomes to interact extensively with the immune system leading 
to several immunomodulatory effects, concerning tumor growth[22]. More specifically, circulating 
proteins are rapidly integrated to the surface of liposomes, forming a protein corona which can function 
as the interface for biological interactions and contributes to the formation of immune complexes and 
immunogenic epitope generation from self-antigens, ultimately resulting in the activation or 
suppression of immune responses[22]. Moreover, increasing evidence is emerging that indicates the 
functional ability of nanoparticles to polarize macrophages[23]. On the other hand, the multicomponent 
cargo capacity of delivering immunomodulatory agents in a targeted manner enables their function as 
delivery platforms that bolster the immune response.

Νanomaterials used in the combating of the immune evasion strategies of cancer operate in three 
different approaches that include the immunogenic targeting of cancer cells, the reshaping of the 
tumor’s immune microenvironment, and the stimulation of the peripheral immune network[24].

When targeting cancer cells, nanomedicines typically aim to induce immunogenic cell death (ICD), 
thereby triggering an immunogenic cascade that leads to an antigen-specific immune response against a 
broad spectrum of solid tumors. It is now established that ablative cancer treatments, such as 
radiotherapy, photodynamic therapy, hyperthermia, and photothermal therapy, as well as certain 
chemotherapeutics can cause tumor cell death[11].

In the context of tumor immune microenvironment (TIME), nanomaterials can be used to modulate 
the immunosuppressive tumor microenvironment by targeting tumor-associated macrophages (TAMs), 
regulatory T cells (Treg cells), regulatory B cells, myeloid-derived suppressor cells (MDSCs), as well as 
cancer-associated fibroblasts. Several nanoparticle-based strategies that target TAMs for suppressing 
tumor progression include TAM depletion, inhibiting monocyte recruitment, and TAM reprogramming
[25]. Recent studies showed that the utilization of dendrimer nanoparticles carrying the chemothera-
peutic methotrexate that specifically recognize the folate receptor-2, which is overexpressed in TAMs, 
increases therapeutic efficacy by depleting TAMs[25]. Considering monocyte recruitment, it is reported 
that silver nanoparticles have an adjuvant effect inducing recruitment and activation of local 
macrophages[26]. As for the reprogramming of macrophages, there have been attempts for creating an 
albumin-derived nanoplatform that delivers both the disulfiram/copper complex and macrophage 
modulator regorafenib for reprogramming macrophage[27]. In the context of down-regulating Treg 
cells, a common strategy is the use of checkpoint blockade antibodies (anticytotoxic T lymphocyte-
associated protein 4)[25]. A modulating strategy for abnormal MDSC differentiation has been 
introduced, using lipid-coated biodegradable hollow mesoporous silica nanoparticles[28] in order to 
induce differentiation of MDSCs to mature DCs, macrophages, and granulocytes.

Nanomedicines can furthermore be applied in cancer vaccination to target the peripheral immune 
system[29]. This application’s grounds are based on the notions that intradermally or subcutaneously 
injected nanoparticles drain to LNs and that antigens bound to a nanoparticle are more efficiently 
processed by APCs. Instead of triggering APCs to present antigens to naive T cells, nanomedicines have 
also been designed to replace APCs by directly generating cytotoxic T cells[29].

During the last decade, nanoparticle-based immunotherapy formulations have passed from the pre-
clinical stage in the clinical trials and several new treatments have been approved. Ferumoxytol is a 
nanoparticle formulation that contains iron oxide cores that are coated with carboxymethyl dextran. It 
enhances the production of reactive oxygen species by macrophages via the Fenton reaction, as M1 
macrophages release hydrogen peroxides[30]. As an outcome, cancer cell cytotoxicity is enhanced while 
continued M1 polarization triggered by apoptotic cancer cells creates an autocrine feedback loop that 
maintains the production of tumor necrosis factor. Because ferumoxytol is FDA-approved, the drug is 
accessible for cancer patients through ‘off-label’ use[30]. The only cancer vaccines currently in routine 
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clinical use are the Sipuleucel-T and the Talimogene laherparepvec (T-VEC). The FDA-approved 
nanomedicine for the treatment of prostate cancer is sipuleucel-T which is a personalized vaccine 
encompassing patients’ ex vivo processed dendritic cells that express a key tumor antigen, prostatic acid 
phosphatase (PAP)[31,32]. T-VEC is an engineered oncolytic herpes simplex virus type 1 in which the 
neurovirulence factor ICP34.5 is replaced by the coding sequence for GM-CSF and acts as a single agent 
in patients with skin and soft tissue metastases[32]. GM-CSF functions to recruit antigen presenting cells 
to the tumor microenvironment and promote cytotoxic T-cell responses to tumor associated antigens.

Immune checkpoint inhibitors 
The last decade cancer immunotherapies have changed the perspective of cancer treatment (Table 1). 
The basic immunotherapy options approved are immune checkpoint inhibitors (ICIs).

ICIs have stirred up the field of tumour therapy and are now considered first-line therapies for 
various solid and liquid tumours. The approval of anticytotoxic T lymphocyte-associated protein 4 for 
advanced stage melanoma in 2011, opened up a new field of exploration that led to the 2018 Nobel Prize 
in Medicine to James P. Allison and Tasuku Honjo for inhibiting negative immune regulation in cancer
[33].

Cancer immunotherapies are defined as therapies that directly or indirectly target any component of 
the immune system that is involved in the anti-cancer immune response, including the stimulation, 
enhancement, suppression, or desensitization of the immune system. These therapies are composed of 
monoclonal antibodies targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and PD-1 
receptors and the PD-1 ligand PD-L1, which are involved in the regulation of T cells. As shown in 
Table 1, there is a plethora of ICIs approved for the treatment of various cancer.

As a general concept, T cell activation needs two signals, first theantigen recognition by the T cell 
receptor (TCR), and then the antigen presentation by major histocompatibility complex class II 
molecules on the surface of antigen-presenting cell that leads to signal modulation by CD80 or CD86 
binding to the CD28 receptor[34].

CTLA-4 is found on the T cell surface competing with the CD28 receptor to bind CD80 or CD86, 
thereby blocking T cell activation. Furthermore, CTLA-4 inhibitors block CTLA-4-CD80 or CTLA-4-
CD86 binding to facilitate T cell activation (Figure 1A). In Figure 1B, we see PD-1 as a surface receptor 
that is expressed by T cells and promotes apoptosis of antigen-specific T cells and reduces apoptosis of 
regulatory T cells through its interaction with its ligand, PD-L1, which is expressed by tumour cells and 
myeloid cells[35,36]. This interaction is useful in preventing autoimmunity in physiological conditions, 
but cancer cells exploit this process to escape from immune system activity, upregulating PD-L1 
expression[37,38]. PD-1 and PD-L1 inhibitors disrupt the PD-1-PD-L1 interaction, facilitating T cell 
activation and survival (dashed lines).

The use of ICIs for cancer therapy is increasing; however, only a minority of patients treated with ICIs 
achieve a durable response. A portion of patients that receive ICIs do not respond to treatment, while 
others respond initially but ultimately acquire resistance. Primary and acquired resistance are the effect 
of constantly changing interactions among cancer cells and the immune system. Even in patients with 
melanoma, which has one of the highest rates of response to ICI, 60%-70% of patients do not experience 
an objective response to anti-PD-1 therapy[39,40]. Moreover, 20%-30% of patients demonstrate eventual 
tumour relapse and progression. A key challenge that has emerged with the progressive 
implementation of ICIs in clinical practice is their uncontrolled collateral effects on the immune system 
that can lead to so-called immune-related adverse events (irAEs).

ICIs have a different spectrum of toxicities[41] from standard chemotherapy or other biological 
agents, and most toxicities result from excessive immunity against normal organs. All the primary and 
secondary (acquired) resistance are a result of complex and constantly evolving interactions between 
cancer cells and the immune system. The most frequently noted irAEs involve inflammation of 
gastrointestinal, dermatologic, endocrine, or pulmonary organs. Several clinical trials for ICIs including 
adjuvant and neo-adjuvant therapies are still in progress.

The role of nanomedicine in ICIs is to ensure an increased therapeutic outcome by using specific 
nanocarriers. Several formulations are currently investigated in both pre-clinical and clinical studies
[42]. Starting from the preclinical studies, at least 12 different nanocarriers are being investigated. These 
include gold nanostars that are being tested for the PD-L1 blockage, PLGA combined with anti-CTLA4, 
and incorporation of anti-PD-1 and anti-TIM-3 with liposomes[43-46]. All these preclinical studies are 
held in mouse models for bladder, breast (4T1 cells), and colon cancer.

An important number of clinical trials are also being performed. These mainly include Nanoparticle 
Albumin Bound (Nab) formulations that combine ICIs with standard chemotherapeutics (as in the case 
of paclitaxel and carboplatin in Pembrolizumab, Atezolizumab, and Nivolumab formulations). Non-
Nab strategies in nanoparticle-based immunotherapy include the radiosensitizer molecule NBTXR3[42].

Most of these studies will require a considerable amount of time to be completed and for the efficacy 
of these nanoformulation to be investigated. The poor lymphatic drainage of tumours (part of a 
phenomenon known as the EPR effect) could theoretically offer an advantage of nanoformulations over 
conventional ones although due to its complicated nature of EPR, this needs to be validated in these 
studies[47,48]. At the same time, further considerations are constantly being applied for future applic-
ations as the concept of smart nanoplatforms that will be triggered only upon an external stimulus[49-
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Table 1 Approved immune checkpoint inhibitors according to cancer type

Anti-CTLA-4 antibodies

Ipilimumab; Colorectal cancer; Melanoma; Renal cell carcinoma

Anti-PD-1 antibodies

Nivolumab; Bladder cancer; Colorectal cancer; Head and neck cancer; Hepatocellular carcinoma; Hodgkin lymphoma; Melanoma; Non-small-cell lung 
cancer; Renal cell carcinoma; Cemiplimab; Cutaneous squamous cell carcinoma; Pembrolizumab; Bladder cancer; Cervical cancer; Gastro-oesophageal 
junction cancers; Head and neck cancer; Hepatocellular carcinoma; Hodgkin lymphoma; Merkel cell carcinoma; Metastatic solid tumours classified as 
microsatellite instability high or deficient mismatch repair; Non-small-cell lung cancer; Primary mediastinal large B cell lymphoma; Stomach cancer

Anti-PD-L1 antibodies

Atezolizumab; Bladder cancer; Breast cancer; Non-small-cell lung cancer; Avelumab; Bladder cancer; Merkel cell carcinoma; Durvalumab; Bladder cancer; 
Non-small-cell lung cancer

Anti-CTLA-4: Anticytotoxic T lymphocyte-associated protein 4; PD-1: Programmed cell death protein - 1.

Figure 1 Mechanism of action of immune checkpoints and immune checkpoint inhibitors. A: Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 
inhibitors block CTLA-4-CD80 or CTLA-4-CD86 binding to facilitate T cell activation; B: We see PD-1 as a surface receptor that is expressed by T cells and promotes 
apoptosis of antigen-specific T cells and reduces apoptosis of regulatory T cells through its interaction with its ligand, PD-L1, which is expressed by tumour cells and 
myeloid cells. CTLA-4: Cytotoxic T-lymphocyte-associated protein 4; MHC: Major histocompatibility complex; PD1: Programmed cell death protein 1.

51].

Triggers of natural killer cells
Cancer immunotherapy is considered to eliminate primary as well as metastatic tumors and it is shown 
to develop immunological memory. It is important to say that nanomedicine can deliver a vast number 
of immunological agents to the targeted site (i.e., tumor)[52]. Nanomedicines have been explored 
thoroughly for tumor-targeted drug delivery and reducing the side effects of chemotherapeutic drugs. 
Tumor targeting is mainly mediated by passive targeting and/or active targeting and has been 
evaluated based on the average targeting efficiency and clinical impact (Table 2). There are three 
targeting strategies to boost cancer immunotherapy, including targeting and killing cancer cells to 
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Table 2 Clinical trials on natural killer cells in hematological and solid tumors

Condition Interventions Phase Ref. Status

Solid tumor ROBO1 CAR-NK cells I/II NCT03940820 Recruiting

Ewing sarcoma; Neuroblastoma; Rhabdomyosarcoma; Osteosarcoma; CNS tumors Allogeneic HCT; Donor NK 
cell infusion

II NCT02100891 Active, not 
recruiting

Brain and CNS tumors; leukemia; lymphoma; chronic myeloproliferative disorders; 
lymphoproliferative disorder multiple myeloma and plasma cell neoplasm; 
myelodysplastic syndrome; myelodysplastic/ myeloproliferative neoplasm; 
unspecified adult solid tumor, protocol specific

Donor NK cell infusion I/II NCT00823524 Completed

Malignant solid tumors NK Immunotherapy II NCT02853903 Completed

Malignant solid tumors NK Immunotherapy I/II NCT02857920 Completed

Multiple myeloma CIML NK cells plus KP1237 
and low dose IL-2

I/II NCT04634435 Recruiting

Hematological malignancy; NK cell infusion I NCT01853358 Completed

leukemia; lymphoma; myeloma; Hodgkin's disease NK-92 cells I NCT00990717 Completed

Acute lymphoblastic leukemia; chronic lymphoblastic leukemia; B-cell lymphoma Fludarabine + Cyclophos-
phamide + CAR-NK-CD19 
Cells

I NCT04796688 Recruiting

Leukemia; lymphoma NK cell infusion I NCT01287104 Completed

NK: Natural killer.

induce specific forms of ICD, TIME, and targeting the peripheral immune system[53].
Natural killer (NK) cells, part of the innate immune system, have been identified as the next-

generation therapy for cancer. These cells are lymphocytes with antitumor and antiviral abilities that 
have several applications. NK cells have memory-like and memory responses after cytokine preact-
ivation, viral infections, and hapten exposure, in addition to being classified as innate lymphoid cells
[54]. They have various mechanisms for directly killing cancer cells and enhancing the immune system's 
ability to fight cancer. Over the last 40 years, NK cell immunotherapy has demonstrated encouraging 
effects in both preclinical and clinical studies. These cells have been used for years and have been 
approved by the FDA. The NK-92 cell line (CD56+/CD3-), isolated from a patient with lymphoma, has 
expected high cytotoxic movement and can be extended under acceptable assembling practice 
conditions in recombinant interleukin-2[55].

Many nanoparticles have been discovered to be immunotherapy carriers, delivering antitumor 
immunotherapeutics specifically to tumor cells. These nanoparticles could provide stability, increase 
solubility, and cause less toxicity to healthy cells. Nanoparticles have the potential to deliver immuno-
therapeutics directly to cancer sites, which can be explained by their increased duration in the 
bloodstream without altering the body's physiochemical properties. The lymphoid node secures the 
nanoparticles prior to their drug conveyance priority and the elimination of toxic waste products. When 
nanoparticle immunotherapy is used passively to target cancer, there is a significant reduction in 
cellular cytotoxicity and a favorable outcome. Thus, to achieve an effective outcome, the delivery system 
must be modified so that the immunotherapeutic carrier enters the intracellular space before 
accomplishing the immunotherapy. There are several types of nanoparticles, which are classified based 
on their size, morphology, and physical and chemical properties[56]. Nanotechnology, specifically 
nanoparticles as drug delivery systems (DDSs), eases targeted medicines and theragnostics. Most 
nanomedicines include a targeting element, but some do not, yet[57].

Magnetic nanoparticles, Fe3O4, were modified with meso-2,3-dimercaptosuccinic acid, as the affinity 
of the electron-rich carboxyl group was higher and the orbital in the Fe atom was empty. After obtaining 
CD56 antibody-modified Fe3O4 nanoparticles aided by a shorter co-culture period, NK-92 cell 
recruitment and infiltration into solid tumors were improved in the presence of a magnetic field. 
Biohybrid treatment with NK-CD56 nanoparticles effectively suppressed tumor growth and 
significantly prolonged the survival of cancer-bearing mice. Finally, by synergizing immune cells with a 
directional magnetic field that promotes infiltration into solid tumor tissue under magnetic resonance 
imaging control, antitumor efficiency is significantly improved. Magnetic nanoparticles and NK cells 
can be utilized for various biomedical applications, as they have proved to possess flexible character-
istics to operate in biomedicine[58].

Gold nanoparticles (AuNPs) were coated with PEG and D-(β)-glucosamine, as glucose coating 
increases the cellular uptake of the nanoparticles. The K562 human erythroleukemia cell line (positive 
target) and the 888 human melanoma cell line (negative control) were co-cultured with AuNP-labeled 
NK-92 cells. The results indicate that AuNP-labeled NK-92 cells can specifically identify target cells and 
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keep their cytokine secretion and antitumor function. In addition, gold nanoparticles do not undermine 
the therapeutic effect of NK-92 cells in vivo. AuNPs could assist NK cells to achieve their aim, the 
regression of the tumor; therefore, this combinatorial therapy for cancer will reduce or even end the 
dosage of radiation[59].

CHIMERIC ANTIGEN RECEPTOR T-CELL BASED TREATMENTS
Worldwide, approximately 97% of active clinical trials are chimeric antigen receptor (CAR) T-cell-based 
therapies. Nanoparticles can engineer NK cells to produce CAR-NK therapy by targeting several 
ligands, such as antibodies to nanoparticles, and accomplish successful targeted delivery[60]. Axicab-
tagene ciloleucel (refractory diffuse large B-cell lymphoma) and tisagenlecleucel (B-cell precursor acute 
lymphoblastic leukemia) were two CAR T-cell therapies that cure blood cancer approved by the FDA
[61]. Functional antitumor immune response has been shown by adoptive cell transfer studies, such as 
CAR T-cell therapy [62].

PEPTIDES
Peptides are a powerful tool in cancer diagnosis and treatment with many advantages and numerous 
ways to alter their function and use them in oncology. They present with excellent biocompatibility 
(degradation products are amino acids, which are a natural source of cells). They can be formulated and 
introduced with all kinds of modifications. By using the process of self-assembly, we can improve the 
stability of a peptide sequence and create the conditions for better targeting of the diseased organ. Their 
big advantage depends on their small size and better tissue/cell penetration[63,64]. To minimize the 
nonselective side effects of chemotherapy, a specific peptide sequence or motif can be used. 
Nanoparticles based on peptides, can be used to target cancer cells, to minimize systemic drug exposure 
and increase efficiency of the drug that is to be delivered[63].

Some examples of therapeutic peptides in clinical use nowadays are GnRH agonists for the treatment 
of prostate and breast cancer (e.g., Buserelin and Nafarelin), GnRH antagonists for the treatment of 
prostate and breast cancer (e.g., Cetrorelix and Abarelix), and somatostatin agonists for the treatment 
and diagnosis of GH-producing tumors (e.g., Ocreotide and Lanreotide). In the future, many more 
peptides will take part in the treatment process against oncology, such as Chlorotoxin and its analogue 
TM601 (phases I, II, and III clinical trials for diagnosis of glioma), BT1718 (phases I and II for treatment 
of solid tumors), and P28 (phase I for treatment of various solid tumors)[64].

Drug conjugates is a modern method of using peptides as a tool for drug delivery. They are 
chemotherapeutic or cytotoxic agents linked to an antibody or a peptide via a linker. They provide 
enhanced function, higher circulation time, and lower off-target toxicity (to healthy tissues)[65]. An 
example is the conjugation of paclitaxel to a peptide (Angiopep-2) via an ester/amide bond. Angiopep-2 
goes into the cell via transcytosis and crosses the blood-brain barrier, thus facilitating the uptake of the 
conjugate into the brain for the treatment of patients with solid tumors and brain metastases. The 
esterase enzyme, which is present in lysosomes, breaks down the ester bond, thus releasing paclitaxel in 
the brain. In this way, ANG 1005 overcomes the main disadvantage of paclitaxel and gains access into 
the blood-brain barrier. ANG1005 has been studied in several clinical trials (phase I and phase II) in 
patients with metastatic brain cancers and the results have shown that it works well against CNS 
tumors, improves symptoms, and increases survival[66].

Peptide self-assembly is a process in which peptides spontaneously or by a trigger form aggregates. 
In that form, the transport mechanism provides a higher efficiency of drug loading with better molecule 
stability and a simultaneous lower ratio of drug loss[67]. The method uses monomers of short amino 
acid sequences or repeated amino acid sequences that assemble together to form nanostructures. The 
nanostructure can be made by various building blocks such as dipeptides (the simplest form), 
surfactant-like peptides, and cyclic peptides[68]. The resultant nanostructure can take the form of 
nanofibers, nanotubes, micelles, and hydrogels[69-71].

Self-assembly of peptides is divided into spontaneous and trigger types. If the assembly happens in 
an aqueous solution, it is spontaneous. The peptide molecules that are dissolved in the aqueous solution 
form non-covalent interactions, such as hydrogen bonding bonds, van der Waals forces, electrostatic, 
and π-π stacking interactions[69]. If the process of assembly is driven by external factors and does not 
happen spontaneously, such as temperature, ion concentration, and pH changes, it is called trigger 
aggregation. The above-mentioned nanostructure can be used for drug delivery, drug stabilization, 
crossing the blood-brain barrier, neuronal or liver cell regeneration, fibroblast migration, etc[69].
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NUCLEIC ACIDS
Albeit their central role in governing cell physiology, nucleic acids had not been considered as possible 
drug candidates until relatively recently when successful protein production was demonstrated upon in 
vivo administration[70]. Since then, a novel class of drugs, referred to as nucleic acid therapeutics, have 
emerged[71]. Conventional therapeutics generally exhibit a transient effect and exert their action via 
protein targeting. This action mode poses significant disadvantages as only a fraction of human proteins 
can be targeted by pharmaceutical compounds[72]. Combined with the limitations of conventional 
therapeutics in oncology discussed above, gene therapy offers a promising approach as a one-time 
treatment targeting the route of the disease - genetics - while contributing to long-standing therapeutic 
outcomes with high specificity[73]. Developments in nucleic acid design and chemical modifications 
have assisted in overcoming stability, toxicity, and immunogenicity issues[74-76], and by further 
harnessing the power of nanomaterials, nucleic acid therapeutics can be loaded into nanocarriers to 
formulate DDSs with enhanced pharmacokinetic properties[77].

Due to the arduous nature of the causation and phenotype of cancer, it is evident that nucleic acid-
based therapeutics must implement a plethora of strategies via different modes of action to target 
relevant genes and their products in cancer cells or stimulate an immune response against them[78]. 
Table 3 summarizes the current status of nucleic acid nanomedicines available for cancer treatment. The 
first strategy implemented in oncology utilizes antisense oligonucleotides (ASOs) and small interfering 
RNAs (siRNAs) to target disease-relevant mRNAs and inhibit their translation. ASOs are synthetic 
oligonucleotides complementary to a gene of interest that bind on the pre-mRNA or mRNA of the target 
gene, hindering cellular post-transcriptional and translational machinery and eventually leading to 
altered splicing patterns or gene silencing, respectively[79,80]. Lipid nanoparticle (LNP)-based ASOs are 
under clinical evaluation to treat leukemia[78,81] and solid tumors[81] via targeting Grb2. Furthermore, 
targeting the anti-apoptotic gene Bcl-2 is also being examined as a possible target in patients with 
advanced lymphoid malignancies[82].

siRNAs are a class of double-stranded RNA molecules involved in the biological process of RNA 
interference that regulates gene expression[83]. By administering a siRNA complementary to its target 
mRNA, this natural process is harnessed to selectively silence genes via multiprotein complexes[84]. 
Activation of the oncogene KRAS is a hallmark of pancreatic ductal adenocarcinoma, the most common 
type of pancreatic cancer[85]. siG12D-LODER is a biodegradable polymer-based system loaded with 
siRNA against KRAS, which has completed phase I and is currently being tested in phase II in 
combination with chemotherapy to determine treatment efficacy[86-88]. Other delivery systems based 
on LNPs have also completed or are currently being tested in phase I trials against advanced solid 
cancers in various modalities targeting tumor proliferation or microenvironment[89-92].

Additional strategies based on small activating RNA molecules aim to upregulate the expression of 
physiologic master gene regulators[93] and are undergoing pre-clinical development for the treatment 
of hepatocellular carcinoma[94] and advanced solid tumors[95]. Moreover, since misregulated miRNA 
expression is another feature of cancer, miRNA mimics are also being developed to mimic endogenous 
miRNAs and restore physiological expression levels[96,97].

The rise of mRNA vaccines has led to a new era of cancer immunotherapy offering considerable 
benefits, including increased safety and efficacy with expeditious cost-effective manufacturing 
pipelines, aiming to elicit an immune response upon exposure to a tumor antigen[98,99]. Several LNP-
based mRNA vaccines encoding known tumor-specific antigens are being investigated in early phase 
clinical trials in patients with HPV-driven squamous cell carcinoma, melanoma, ovarian, pancreatic, 
lung, and colorectal cancer[100-103]. Technological progress in next-generation sequencing has 
enormously facilitated the discovery of patient-specific neoantigens, novel epitopes arising from tumor-
specific mutations that can be used as a template to generate personalized neoantigen vaccines[104]. 
Such vaccines are being assessed clinically for the treatment of melanoma and breast cancer[105,106].

CONCLUSION
The field of cancer nanomedicines is rapidly expanding and is expected to revolutionize available 
treatment options. Nanomaterial-mediated immunomodulation offers a dual aspect of immunomodu-
lation therapies, as they can themselves act as immunomodulatory agents, or they can function as 
delivery platforms for targeted delivery of other immunomodulating agents[20]. Their unique and 
tunable properties can be utilized to target the cancer-immunity flow in multiple steps, offering 
advanced systems that pave a way to reshaping the landscape of clinical cancer treatment. ICIs have 
launched a new field far beyond CTLA-4 and PD-1. First of all, co-inhibitory signaling pathways, such 
as HVEM-BTLA and Galectin-9-TIM3, are being studied in cancer and other diseases[107]. Once we 
learn more about them, we may design rational combinational strategies to concurrently target two or 
more inhibitory pathways to gain better therapeutic efficacy. Moreover, good results are shown with the 
combination of immune checkpoint blockade with other immunotherapy regimens to eliminate primary 
cancer and metastases more effectively. One such strategy has been to combine anti-PD-1/PD-L1 or 
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Table 3 Summary of nanomedicines based on nucleic acids

Name Category Structure Mode of action Status

ASO Inhibition of 
translation of cancer 
or angiogenesis 
associated proteins

Synthetic ssDNA or 
ssRNA oligos comple-
mentary to mRNA of 
interest

Rnase H mediated 
mRNA degradation

In clinical trials; LNP-based anti-Grb2 ASOs for leukemia[70] and 
solid tumors[71]; LNP-based anti-Bcl-2 ASOs for advanced 
lymphoid malignancies[72]

siRNA Inhibition of 
translation of cancer 
or angiogenesis 
associated proteins

Synthetic dsRNA oligos 
complementary to 
mRNA of interest

Dicer induces cleavage 
of dsRNA and RNA-
induced silencing 
complex mRNA 
degradation

In clinical trials; Polymeric anti-KRAS siRNAs for pancreatic 
ductal adenocarcinoma[78]; LNP based anti-PKN3 siRNAs in 
patients with advanced solid tumors[79]; LNP based anti-KSP and 
anti-VEGF-A siRNAs in patients with solid tumors[80,81]; LNP 
based anti-PLK1 siRNAs in patients with solid tumors[82]

saRNA Forced exogenous 
gene expression

Synthetic dsRNA oligos 
complementary to 
mRNA of interest

Target gene promoters 
to induce transcrip-
tional gene activation

In clinical trials; LNP based formulations for treatment of hepato-
cellular carcinoma[84] and advanced solid tumors[85]

miRNA 
mimics

Regulation of post- 
transcriptional 
mRNA expression

Chemically modified 
dsRNA molecules 
designed to mimic 
endogenous 
microRNAs

Translational repression 
and gene silencing

Currently only in basic research[87]

mRNA 
vaccines

Forced exogenous 
antigen expression

Synthetic mRNA Induction of immune 
response against cancer 
cells

In clinical trials; LNP-based mRNA vaccines encoding known 
tumor-specific antigens are being investigated in early phase 
clinical trials in patients with HPV-driven squamous cell 
carcinoma[90], melanoma[90], ovarian[92], pancreatic, lung, and 
colorectal cancer[93]; Personalized vaccines based on patient 
specific neo-antigens are being assessed clinically for the treatment 
of melanoma[95] and breast cancer[96]

ASO: Antisense oligonucleotides; saRNA: Small activating RNA; siRNA: Small interfering RNAs; LNP: Lipid nanoparticle.

anti-CTL4 with oncolytic viruses[108,109]. Meanwhile, other types of cancer immunotherapies, 
including adoptive transfer of CAR T cells, TCR-modified T cells, and cancer vaccines using neo-
antigens, have made significant progress in recent years and have shown promise in clinics[110-112]. 
Future NK cell products will be able to suppress inhibitory signals and tumor proliferation but enhance 
the activation of the immune system. Evidence of increased NK cell-mediated tumor cell killing has 
emerged in targeted therapies. To enhance that, nanomedicine approaches immunity with T-cell 
activation, specific antigen delivery, and the appropriate nanoparticle for the targeting[113]. 
Nanoparticles will tackle all the obstacles to delivery and engage multiple aspects of the immune system 
by producing therapeutics to target current and forthcoming diseases[114]. These are only a small 
portion of the application of nanoparticles with NK cells and their clinical activity because of the hetero-
geneity of human diseases[115]. These findings, combined with the ability of NK cells to detect immune 
responses, suggest that NK cells are the keys to the next-generation onco-immunotherapy. In the future 
days, peptides will play a significant role in the continuous research of cancer therapy and human well-
being. Cell-penetrating peptides have the ability to deliver molecules such as drugs, oligonucleotides, 
and nanoparticles inside cells, without any size restriction[116].

Future research will set the basis for the ideal drug-delivery system, where peptides would reach 
their target site efficiently without any degradation before and the cargo would be rapidly released and 
act on the site. Also, the problem of non-selective cellular uptake will be eliminated and thus modern 
therapy tools for anti-cancer treatment will be created[117,118]. The nanoparticle-mediated delivery of 
guide RNAs and programmable nucleases such as Cas9 and Cas13 has expanded the portfolio of in vivo 
tissue-specific genome editing tools available for cancer research in pre-clinical models[119-122]. 
Alongside advancements in nucleic acid drugs, innovative nanoparticle delivery systems will vastly 
benefit the field by implementing novel delivery systems, such as nanoclews and surface modifications, 
allowing the manufacturing of sophisticated nanoparticles[123-127]. Despite the numerous nanothera-
peutics being clinically scrutinized, cancer nanomedicines often fail to reach their primary endpoint, 
and the correlation of the drug behavior between animal models and patient cohorts is often 
inconsistent[128,129]. Therefore, in silico models should also be implemented to aid in understanding 
and predicting biological interactions[130]. Finally, multi-omics data, including but not limited to 
genomics, epigenomics, transcriptomics, and radiomics, can comprehensively be evaluated and reform 
the field of personalized nanomedicine by allowing the design of customizable medicines based on the 
patients' profile[131].
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