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Abstract: An information-theoretic approach for detecting causality and information transfer is
used to identify interactions of solar activity and interplanetary medium conditions with the Earth’s
magnetosphere–ionosphere systems. A causal information transfer from the solar wind parameters
to geomagnetic indices is detected. The vertical component of the interplanetary magnetic field (Bz)
influences the auroral electrojet (AE) index with an information transfer delay of 10 min and the geo-
magnetic disturbances at mid-latitudes measured by the symmetric field in the H component (SYM-H)
index with a delay of about 30 min. Using a properly conditioned causality measure, no causal
link between AE and SYM-H, or between magnetospheric substorms and magnetic storms can be
detected. The observed causal relations can be described as linear time-delayed information transfer.

Keywords: time series; causality; information transfer; time reversal; solar wind-magnetosphere–
ionosphere system; space weather

1. Introduction

One of the fundamental problems in space weather studies is the way the Earth’s
magnetosphere–ionosphere system responds to the solar activity and to interplanetary
medium conditions [1]. In fact, due to the continuous transfer of energy from solar wind
as an external driver into the magnetosphere–ionosphere system along with different
internal processes operating in various spatial and temporal scales [2–6], one faces the
emergence of complex dynamics. This asserts that such a system should be considered as
a non-equilibrium [7] complex system consisting of different coupled subsystems. Inves-
tigating and understanding such couplings is of paramount importance for providing a
reliable prediction of the space weather [8], and thus the geomagnetic observables play
an important role, among which magnetic storms and magnetospheric substorms are of
particular interest.

Geomagnetic storms and substorms are two manifestations of the solar wind–
magnetosphere–ionosphere (SMI) interactions, which are related to different sets of phe-
nomena occurring in different regions of the near-Earth plasma environment [9–11]. The
main difference between these two response modes of the SMI dynamics stands in the
different magnetospheric regions and currents involved in them. Indeed, the term geo-
magnetic substorm generally refers to an enhancement of the energy/particle deposition
rate in the high-latitude Earth’s ionosphere, due to the increase of the auroral electrojet
currents and of the field-aligned currents (FACs), which transfer plasma from the mid
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equatorial regions of the Earth’s magnetospheric tail to the polar ionosphere. The geomag-
netic/auroral substorms are mainly impulsive phenomena, which are the consequence
of two different magnetospheric phenomena, the enhancement of the magnetospheric
large scale convection due to the southward turning of the North–South component of the
interplanetary magnetic field (IMF) and the occurrence of loading-unloading process in
the Earth’s magnetospheric tail. These phenomena can be triggered by different IMF and
solar wind changes and are generally characterized by strong activity bursts characterized
by a typical time scale < 100 min. Differently, geomagnetic storms are related to a set of
processes occurring at low latitudes and involving the inner region of the Earth’s magneto-
sphere. Indeed, a geomagnetic storm is related to the increase of a quasi-annular current
system, the Ring Current, flowing on the equatorial region of the Earth’s magnetosphere at
a distance between 2.5–3 RE and 9 RE, where RE is the Earth radius. The enhancement of
ring current occurs on longer times scales in comparison with the current systems involved
in geomagnetic substorms and requires that the global magnetospheric convection persists
for a longer time. Thus, the geomagnetic storms are generally associated with stable south-
ward IMF conditions, which last for several hours. Another feature of geomagnetic storms
is the duration, which can extend to several days.

The monitoring of these two phenomena can be done by measuring the geomagnetic
disturbances generated by the enhancement of the current systems associated to them,
i.e., the auroral electrojet current system and the ring current. The geomagnetic indices AE
and SYM-H are two indices constructed to monitor the auroral electrojet current and the
ring current by measuring the variation of the horizontal component (H) of the Earth’s
magnetic field as observed on ground [12,13]. In other words, these two indices provide
proxies of the enhancement of the current.

Understanding the interactions between magnetic storms and magnetospheric sub-
storms has been one of the most challenging problems in space physics [14]. Indeed,
the presence of any direct relationship between substorms and storms has been a great
debate in recent years. Historically, the accumulation of successive substorms was consid-
ered as the main reason for the occurrence of storms [15]. However, several studies have
shown that this may not be the case [10,11,14]. In this respect, detecting a correct causal
relationship between various quantities is needed.

Among a huge number of formalisms to find and investigate causality relations among
different time series, the information-theoretic approach has proved itself as a powerful
framework to detect causal information flows in complex systems. In this approach, by as-
suming the presence of an information transfer between two coupled subsystems that
can interact with each other, one tries to find an appropriate measure in order to extract
the pure direction of the information flow and causality. In recent years, a number of
information-theoretic measures have been proposed to uncover the underlying dynamics
of interactions between the magnetosphere system and solar wind as well as the purely
internal processes in this system [16–22]. For example, it has been proposed in [17] that
during small geomagnetic disturbances a dominant flow of information exists from the geo-
magnetic activity indices AL as a substorm index into the symmetric horizontal component
disturbances SYM-H as a magnetic storm index, using the bivariate transfer entropy [23].
Runge et al. [21] questioned the presence of any direct or indirect dependency between
substorms and storms and by using a multivariate information-theoretic causality measure
based on graphical models [24,25], they suggested that the statistical association between
storms and substorms can be due to the presence of the common solar drivers. Recently,
Stumpo et al. [22] have investigated the information flow between the solar wind param-
eters as well as geomagnetic indices, using the transfer entropy. They have shown that
there is a strong information transfer from the vertical component of the interplanetary
magnetic field Bz into the geomagnetic indices, with time delays of about 30 to 60 min.
Moreover, they represented that substorms drive the storms due to the observed strong
information flow from the AE into SYM-H index, which is in contrast with the results of
Runge et al. [21].
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In this paper, the information-theoretic approach to causality detection–conditional
mutual information, also known as transfer entropy, which generalizes the Granger causal-
ity concept for nonlinear systems, as well as two independent recently developed ap-
proaches to causality, are used in order to identify interactions of solar activity and inter-
planetary medium conditions with the Earth’s magnetosphere–ionosphere systems. A uni-
directional causality or information flow from the solar wind parameters to geomagnetic
activity indices is detected and information transfer delays are identified. Although uncov-
ered using a nonlinear causality method, the observed causal relations are described as a
linear time-delayed information transfer. This assertion is supported using linear versions
of three independent causality detection methods.

2. Data Description

In this work, we focus on the year 2000 (from 1 January to 31 December), which
corresponds to the maximum phase of solar cycle 23. In fact, this chosen time span consists
of a number of geomagnetic storms and substorms, as observed in Figure 1.
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Figure 1. One year period (2000) of (from top to bottom) the vertical component of the interplanetary
magnetic field Bz and solar wind–magnetosphere coupling parameter ε along with the geomagnetic
activity indices of auroral electrojet (AE) and the symmetric field in the H component (SYM-H),
with clear, strong activities. Time points with missing values are excluded from the analysis.

The original 1-min time resolution data were downsampled to 5-min time resolution
data for solar wind parameters as well as geomagnetic activity indices, similar to the work
of Stumpo et al. [22]. We consider the vertical component of the interplanetary magnetic
field Bz (downloaded from http://cdaweb.gsfc.nasa.gov/ (accessed on 16 April 2020)) and
the energy coupling function ε between the solar wind and the magnetosphere [26], which
are related to the energy–mass–momentum transfers from the interplanetary space to the
near-Earth electromagnetic environment [1,16,27]. We calculate the Perreault–Akasofu
coupling function ε using Equations (1) and (2) given in Stumpo et al. [22]. To investigate
the geomagnetic activity, we use two well-known indices representing the auroral electrojet

http://cdaweb.gsfc.nasa.gov/
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and the magnetospheric ring current, i.e., AE as a substorm index [12], and the SYM-H
as a storm index [28] (both indices are downloaded from http://wdc.kugi.kyoto-u.ac.jp/
(accessed on 16 April 2020)).

3. Overview of Methods
3.1. Measuring Dependence with Mutual Information

As we mentioned above, the information-theoretic framework has proven itself as a
powerful approach for the study of exchanging information among coupled time series.
The information content of a discrete random variable X with a set of values Ξ is obtained
by the Shannon entropy H(X) [29], defined as

H(X) = − ∑
x∈Ξ

p(x) log p(x), (1)

where p(x) = Pr{X = x}, x ∈ Ξ is the probability distribution function (PDF) of X. Note
here that the entropy and information are usually measured in bits if the base of the
logarithms in their definitions is 2, here we use the natural logarithm and therefore the
units are called nats. By taking into account another discrete random variable Y with the
set of values Υ, and PDF of p(y), the joint entropy H(X, Y) is defined in a similar way as

H(X, Y) = − ∑
x∈Ξ

∑
y∈Υ

p(x, y) log p(x, y). (2)

where p(x, y) is the joint PDF of X and Y. The joint entropy can also be expressed in terms
of conditional entropy H(Y|X) of Y given X as H(X, Y) = H(Y|X) + H(X), which is easily
defined as

H(Y|X) = − ∑
x∈Ξ

∑
y∈Υ

p(x, y) log p(y|x). (3)

where p(y|x) denotes the conditional probability of Y given X. The average amount of
common information, contained in two variables X and Y, is obtained by the mutual
information I(X; Y), defined as

I(X; Y) = H(X) + H(Y)− H(X, Y). (4)

Therefore, by substituting Equations (1) and (2) into (4), one can simply find

I(X; Y) = ∑
x∈Ξ

∑
y∈Υ

p(x, y) log
p(x, y)

p(x)p(y)
, (5)

which is the averaged value of log p(x,y)
p(x)p(y) . In fact, if two variables X and Y are independent,

i.e., p(x, y) = p(x)p(y) then the mutual information I(X; Y) vanishes. This means that
I(X; Y) can be considered as a general measure of dependence between two variables X
and Y. The presence of any dependence among X and Y results in I(X; Y) > 0; however,
I(X; Y) is symmetric under the exchange of variables X and Y and thus cannot be used as
a proper causality measure.

Consider now n discrete random variables X1, . . . , Xn with values (x1, . . . , xn) ∈
Ξ1 × · · · × Ξn, with PDF’s p(xi) for individual variables Xi and the joint distribution
p(x1, . . . , xn). The mutual information I(X1; X2; . . . ; Xn), quantifying the common informa-
tion in the n variables X1, . . . , Xn can be defined as

I(X1; X2; . . . ; Xn) = H(X1) + H(X2) + · · ·+ H(Xn)− H(X1, X2, . . . , Xn). (6)

It is possible, however, to define mutual information functionals quantifying common
information of groups of variables and also various multivariate generalizations of the
conditional mutual information, see Reference [30].

http://wdc.kugi.kyoto-u.ac.jp/
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All the information-theoretic functionals can be defined for continuous random vari-
ables. The sums are substituted by integrals and the PDF’s by the probability distribution
densities [31,32]. Among the continuous probability distributions a special role is played
by the Gaussian distribution. Let X1, . . . , Xn be an n-dimensional normally distributed
random variable with a zero mean and an n× n covariance matrix C = {cij}. Then (see
References [30,32] and references therein)

IG(X1; . . . ; Xn) =
1
2

n

∑
i=1

log(cii) −
1
2

n

∑
i=1

log(σi), (7)

where cii are the diagonal elements (variances) and σi are the eigenvalues of the covariance
matrix C.

3.2. Inference of Causality and Time-Delayed Information Transfer

A common information-theoretic functional used for the causality detection is the
conditional mutual information (CMI) I(X; Y|Z) of the variables X and Y given the variable
Z, defined as

I(X; Y|Z) = H(X|Z) + H(Y|Z)− H(X, Y|Z). (8)

Obviously, if Z is independent of X and Y, then I(X; Y|Z) = I(X; Y). The CMI of
Equation (8) can be rewritten in terms of mutual information measures as

I(X; Y|Z) = I(X; Y; Z)− I(X; Z)− I(Y; Z), (9)

where I(X; Y; Z) = H(X) + H(Y) + H(Z) − H(X, Y, Z). This indicates that I(X; Y|Z)
characterizes the “net” dependence between X and Y without a possible influence of
another variable, Z.

All multivariate information-theoretic functionals described above investigate simul-
taneous shared/conditioned information content among variables. However, in many
real-world situations, this could occur with a time delay τ. This means that one may find
I
(
X(t); Y(t)

)
= 0 only due to the presence of a time delay between two processes X and Y.

To be able to discover such a coupling correctly, one can modify the mutual information,
and define a time-delayed mutual information as I

(
X(t); Y(t + τ)

)
, which measures the

average amount of information contained in the process X about the process Y in its future
τ time units ahead. However, this measure could also contain information about the
τ-future of the process Y contained in this process itself, if the processes X and Y are not
independent, i.e., if I(X; Y) > 0. In order to obtain the “net” information about the τ-future
of the process Y contained in the process X we use the conditional mutual information
I
(
X(t); Y(t + τ)|Y(t)

)
, which was used by Paluš et al. [33] to define the coarse-grained

transinformation rate, able to detect direction of coupling of unidirectionally coupled
dynamical systems. In fact, this measure was proposed as a nonlinear generalization of
the Granger causality. Based on the idea of finite-order Markov processes, Schreiber [23]
introduced a “transfer entropy”, which is an equivalent expression for the time-delayed
conditional mutual information [34,35]. Finally, the transfer entropy and CMI in the form,
defined below, are equivalent to the Granger causality for Gaussian processes [36].

In a physical system, one usually deals with time series {x(t)} and {y(t)} as real-
izations of stochastic processes {X(t)} and {Y(t)}, respectively. In other words, if the
processes {X(t)} and {Y(t)} are substituted by dynamical systems evolving in measur-
able spaces of dimensions m and n, respectively, the variables x and y should be consid-
ered as the components of m− and n−dimensional vectors. In empirical experiments,
however, usually only one possible dimension of the phase space is known for each
system. In this situation, a widely useful approach to estimate other unknown vari-
ables is phase space reconstruction, using the time delay embedding vectors according
to Takens [37]. In this respect, an m-dimensional state vector X can be reconstructed as
X(t) = {x(t), x(t− η), . . . , x(t− (m− 1)η)}, where η is the backward time-lag that can be
set according to the embedding construction procedure based on the first minimum of the
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mutual information [38], in order to assure that different coordinates of the reconstructed
state vector X(t) are sufficiently independent of each other.

Accordingly, time-delayed CMI defined above can be represented by

I
(
X(t); Y(t + τ)|Y(t)

)
=

I
((

x(t), x(t− η), . . . , x(t− (m− 1)η)
)
; y(t + τ)|

(
y(t), y(t− ρ), . . . , y(t− (n− 1)ρ)

))
, (10)

where η and ρ are time-lags used for the embedding of the trajectories X(t) and Y(t),
respectively. Formally, also Y(t + τ) should be expanded as y(t + τ), x(t + τ− ρ), . . . , y(t +
τ − (n− 1)ρ; however, only information about one component y(t + τ) in the τ-future of
the system Y is used for simplicity. On the other hand, extensive numerical experience [35]
suggests that the conditional mutual information in the form

I
(
x(t); y(t + τ)|y(t), y(t− ρ), . . . , y(t− (n− 1)ρ)

)
(11)

is sufficient to infer coupling direction between the systems X(t) and Y(t). Here x(t)
represents the present state of the cause variable (system) X in the present time t and
y(t + τ) the future (“predicted”) value of the effect variable (system) Y in the future
time t + τ. In order to remove the information from the history of Y, the dependence
between x(t) and y(t + τ) is conditioned on y(t), y(t− ρ), . . . , y(t− (n− 1)ρ). If Y is an
n-dimensional dynamical system, the dimensionality of the condition must contain full
information about the system state in n components, while single components x(t) and
y(t + τ) are able to provide information about the directional coupling, i.e., the causality
between the systems X(t) and Y(t).

The CMI of Equation (11) is used for testing the existence of a causal link from X
to Y, denoted as X → Y. The causal link Y → X can be obtained by full analogy with
Equation (11), as

I
(
y(t); x(t + τ)|x(t), x(t− η), . . . , x(t− (m− 1)η)

)
. (12)

However, Paluš [39] warned that, in general, the prediction horizon τ in Equation (11) or
(12) cannot well represent a time-delayed coupling. This also was shown by Wibral et al. [40]
and they proposed a solution by a simple reformulation of Equation (11) as

I
(

x(t); y(t + τ)|y(t + τ − 1), y(t + τ − 1− ρ), . . . , y(t + τ − 1− (n− 1)ρ)
)
. (13)

3.3. Linear-Gaussian CMI

Let us return to an n-dimensional normally distributed random variable X1, . . . , Xn. Its
mutual information IG(X1; . . . ; Xn) is given by Equation (7). If the variables are normalized
to zero mean and unit variances, Equation (7) can be simplified as

IG(X1; . . . ; Xn) = −
1
2

n

∑
i=1

log(σi), (14)

where σi are the eigenvalues of the n× n correlation matrix. Now using Equations (14) and
(9) we can express the conditional mutual information (13) using just the eigenvalues of
correlation matrices of the relevant variables and call this form of CMI linear or Gaussian
CMI estimator.

3.4. Liang Information Flow

While the conditional mutual information [33] and the transfer entropy [23] have been
proposed for the detection of causality using heuristic arguments, Liang [41] defined an
information flow as a general physical notion that can be rigorously derived from first prin-
ciples. Liang derived the information flow for both deterministic and stochastic dynamical
systems using the equations describing the evolution of such systems. For experimental
situations when time series are available, however, the underlying equations are not known,
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Liang was able to derive a concise formula for linear systems with a dependence structure
fully described by correlation/covariance matrices.

Let us consider n random variables X1, . . . , Xn represented by time series x1(t), . . . , xn(t),
t = 1, . . . , N and define the sample covariance matrix C

Cij =
1
N

N

∑
t=1

(xi(t)− x̄i)(xj(t)− x̄j),

where

x̄i =
1
N

N

∑
t=1

xi(t).

Using the differenced time series

ẋi(t) =
1
τ
(xi(t + τ)− xi(t))

we define matrix D as

Dij =
1
N

N

∑
t=1

(xi(t)− x̄i)(ẋj(t)− ¯̇xj).

The Liang [41] information flow from X2 to X1 is

T2→1 =
1

det C

n

∑
j=1

∆j2Dj1
C12

C11
, (15)

where ∆ij are the cofactors of C.

3.5. Interventional Causality

All information-theoretic measures for causality detection try to find how much the
knowledge of a given variable (say X) is helpful to predict the future values of another
variable (say Y). In the framework of physics, however, if the causal link X → Y exists,
one usually expects to observe the consequences of external perturbations of variable X on
variable Y [36,42]. Recently, Baldovin et al., have shown that for a multidimensional linear
Markov system one can extract the causal relations among the system components using
time correlations as well as the response theory [43]. For this physics based causality they
coin the term interventional causality and the information based one they call observational
causality. In order to measure the strength of the interventional causality, one should
find the response matrix, as defined in the response theory in statistical physics [44].
Assume that a system with a set of n linearly coupled variables xt = {x(1)t , x(2)t , ..., x(n)t },
obeys the stochastic dynamics of xt+1 = Axt + Bηt, where A and B are constant n × n
matrices and vector ηt has independent and identically distributed random components
with zeros means and unitary variances. One can calculate the response matrix Rτ using
the covariance matrix C as follows [43,44]

Rτ = Aτ = CτC−1
0 (16)

where Cij
τ =

〈
xi

t+τxj
t

〉
. This indicates that if Rij

τ 6= 0, then a causal link exists between the

present of xj and the future of xi. Baldovin et al. also showed that this formalism is able
to discover indirect causation. In fact, they argued that if Rij

τ = 0 for any τ > 0, then no
causal relationship exists. However, if Rij

τ = 0 for τ ≤ m− 1, and Rij
τ 6= 0 for τ ≥ m, then

there exists at least a path of length m connecting xi with xj.
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3.6. Statistical Evaluation with Surrogate Data

Estimation of conditional mutual information (CMI) or mutual information (MI) from
finite time series may result in a spurious conclusion about inferring the direction of
coupling. On the other hand, the CMI (or MI) estimates for uncoupled time series may
yield a nonzero value. Due to such biases, the absolute values of such quantities may not
be informative, and a comparison between the values obtained from observed processes
and that from uncoupled processes, which share important properties of the observed ones,
is useful. This can be done by a surrogate testing approach, in which one manipulates the
original data in a randomization procedure, which preserves some distinct features of the
original process [45].

Among various types of surrogate tests, the circular time-shifted surrogates method
has been shown to be well adapted for causality calculations [46]. In order to compute
the statistical significance of our calculations, we apply this surrogate test. Accordingly,
for each time series X, we generate 100 independent realizations of time-shifted surrogates
as follows: An integer variable k is randomly chosen from the interval [0.01, 0.99]N, where
N is the total number of sample points in the series. Then, by moving the first k values
of X(1), X(2) . . . X(k) to the end of the time series, we generate the circular time-shifted
surrogate series Xsurr as

Xsurr = {X(k + 1), X(k + 2), . . . , X(N), X(1), X(2), . . . , X(k)}. (17)

Note that in generating such surrogate series, we preserve the whole statistical struc-
ture of the original time series. In our analysis, the (conditional) mutual information values
calculated from the original data are compared with the range of values obtained from
a set of 100 different realizations of the surrogate series. This means that by calculating
the mean and the variance of those 100 surrogate series, one can measure how much the
obtained information-theoretic measure obtained from original series differs from that of
uncoupled processes.

4. Results and Discussion
4.1. Causality and Time Delays

As we mentioned above, in order to find the causality directions as well as the presence
of any information transfer delay between the solar wind and the geomagnetic indices,
we calculate conditional mutual information among such time series using CMI defined
in Equation (13), computed using the equiquantal binning estimator [34]. In Figure 2a,b,
we represent the obtained CMI for two time series of Bz and ε with ρ = 5 and n = 3 as
the embedding construction parameters. Note that red lines and error bars, respectively,
show the mean and ±2 standard deviations (SD) of the corresponding CMI obtained
from a set of 100 circular time-shifted surrogates. For the evidence of causality we apply
the one-sided test, i.e., CMI is considered significantly positive if its value, obtained
from the analyzed data, is distinctively greater than the mean + 2SD of the surrogate
values. This criterion ensures that the evidence for causality (a positive CMI value) did
not occur by chance, considering also the multiplicity of the tests for a range of time
lags. On the other hand, the digression of the CMI values under the surrogate mean–
2SD range does not have any evidential meaning and can be understood considering
Equation (9) giving CMI as the difference of mutual information functionals. In the
surrogate data we destroy all dependence structures, while in the tested data there is
no causal information between the two variables, but still there is some nonzero auto-
information I

(
y(t + τ); y(t + τ − 1), y(t + τ − 1− ρ), . . .

)
in the effect variable, which is

subtracted in Equation (9). Thus we find that Bz and ε do not show any causal relationship
in both directions. However, this is due to the fact that Bz and ε are “synchronized”
(mutually dependent), which can be easily inferred [47] from high, significantly positive,
values of the time-lagged mutual information (MI) among these two variables, as indicated
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in Figure 2c,d for I
(

Bz(t), ε(t+ τ)
)

and I
(
ε(t), Bz(t+ τ)

)
, respectively. Thus, in our further

analysis we only consider Bz as the solar wind driver.
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Figure 2. The conditional mutual information (CMI) (Equation (13)) obtained from the time series of Bz and ε, for the information flow
directions of (a) Bz→ ε and (b) ε→ Bz. The corresponding time-lagged mutual information (MI) between these two variables are
represented in (c,d), respectively. The red lines and error bars represent mean and ±2 standard deviations for a set of 100 circular
time-shifted surrogates.

Accordingly, we represent in Figure 3a,b, the CMI obtained from time series of Bz
and AE in order to investigate the impact of the solar wind driver Bz on the geomagnetic
observable of AE. As it can be seen from Figure 3a, a strong causal link exists from Bz to
AE and also the information transfer takes two sample time steps (10 min). Also, Figure 3b
indicates that there is no causal relationship from AE to Bz. Similarly, we plotted CMI for
the time series of Bz and SYM-H in Figure 3c,d. Figure 3c shows that a causal relationship
also exists from Bz to SYM-H; however, this time the information transfer takes six sample
time steps (30 min). Also, no causality is observed for the reverse direction, as indicated in
Figure 3d. Our findings confirm that both geomagnetic storms and substorms are driven
by the interplanetary magnetic field component Bz, just with different information transfer
delays. The response time for the magnetic storms is longer than the time delay between
the solar wind energy input and the release of energy in the magnetotail during a substorm
(see [48] and references therein) since it takes a considerably long time to inject particles
into the ring current region [49].
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Figure 3. The conditional mutual information (CMI) (Equation (13)) obtained from the time series
of Bz, AE and SYM-H, for the information flow directions of (a) Bz → AE, (b) AE→ Bz, (c) Bz →
SYM-H, (d) SYM-H→ Bz, (e) AE→ SYM-H, and (f) SYM-H→ AE. (g,h) are the information flow
directions similar to (e,f), by taking Bz as the third variable into the condition (see Equation (18)).
Analogously, (i,j) are the information flow directions similar to (c,d), by taking AE as the third
variable into the condition. The red lines and error bars present mean and ±2 standard deviations of
CMI for a set of circular time-shifted surrogates.

One of the challenging problems in space weather studies is to find a possible causal
relationship between substorms and storms. To check the presence of any information
flow between the geomagnetic indices, we plotted in Figure 3e,f the CMI for time series
of AE and SYM-H. Figure 3e indicates that a strong causality from AE to SYM-H exists;
in other words, substorms drive the geomagnetic storms. Also, this information transfer
occurs almost immediately without any delay. Figure 3f also indicates that there is no
causality from storms to substorms. Indeed, this finding is in line with some previous



Entropy 2021, 23, 390 11 of 17

studies [15,22,50,51]. However, we show that the observed information transfer in Figure 3e
is not a direct causal link since it emerges due to the presence of the common driver Bz.
To show this, we should take into account the effects of this common driver in calculating
CMI. Accordingly, including Bz as the third variable into the condition, we obtain

I
(
AE(t); SYMH(t + τ)|SYMH(t + τ − 1), Bz(t + τ − 1− ρ), Bz(t + τ − 1− 2ρ)

)
. (18)

In Figure 3g,h we represent the CMI of Equation (18) obtained from the time series of
AE and SYM-H, given Bz. Interestingly, we discover that there is no causality between AE
and SYM-H. In fact, by removing the role of the common driver Bz, no information flow
exists in both directions between storm and substorm indices of AE and SYM-H. In order
to verify this finding, we also search for the possible impact of AE on the observed causal
link between Bz and SYM-H, by interchanging variables of Bz and AE in Equation (18).
As can be seen in Figure 3i,j, we find that the causal link of Bz→ SYM-H is independent of
the AE index. Briefly, our results suggest that the observed causal link from geomagnetic
substorms into storms is induced by the common solar wind driver Bz and in fact, there is
no causal relationship between substorms and storms, which is in agreement with some
previous studies [10,11,14,21].

4.2. Linear Mass-Energy Transfer

Paluš et al. have shown [52] that the time reversal in causality analysis can help to
distinguish between a linear transfer of a time-delayed process and nonlinear interactions
of dynamical systems. Indeed, they showed that in linear autoregressive processes with
unidirectional causality, when the independent variable X(t) is causing the variable Y(t)
by a simple linear, time-delayed term cX(t− τ), the causality direction X → Y is reversed
after the time reversal into Y → X. On the other hand, nonlinear dynamical systems violate
the Granger causality principle that the cause precedes the effect and the direction of
causality is not reversed after the time reversal. In this respect, we investigate the causality
relationships for time reversed series. Figure 4 represents causal directions between Bz and
AE for original time series ((a) and (b)) and the corresponding time-reversed series ((c) and
(d)). Figure 5 is similar to Figure 4, but for SYM-H instead of AE. The plots have the same
scale for better comparison. We find that, particularly in the case of Bz and AE, the causal
direction is reversed after time reversal, which indicates that a simple linear mass-energy
transfer may exist from the solar wind driver Bz into the geomagnetic indices of AE and
SYM-H. The case of Bz–SYM-H is more complicated and will be explained below.

In order to confirm the hypothesis of a linear information transfer we recompute the
CMI functionals in their version derived for Gaussian processes when the (conditional)
mutual information can be expressed using linear cross-correlations of the studied variables
(see Section 3.3). In this respect, we demonstrate in Figure 6a,b that the causal relationships
obtained from the linear-Gaussian CMI between the driver Bz and the geomagnetic indices
of AE and SYM-H, respectively, are equivalent to those obtained by the CMI estimator
based on probability distribution functions (Figure 3), which reflects general (i.e., also
nonlinear) dependence structures. For simplicity we do not present the significance tests in
these cases, since the information flow in the direction from Bz to the geomagnetic indices
AE and SYM-H, respectively, is distinctively positive while the information flow in the
opposite direction is nearly zero. Figure 6c,d represent the causality relations similar to (a)
and (b), but using the Liang information flow according to the Formula (15) derived for
linear processes. This measure admits some information flow in the direction towards Bz—
probably higher dimensional embedding would be necessary to support the hypothesis
of the unidirectional causality. However, the Liang information flow, the concept entirely
independent of CMI (transfer entropy) or the Granger causality concept, confirms the
dominant information flow in the direction from Bz to AE and SYM-H. For the information
transfer from Bz to AE the Liang information flow also confirms the information transfer
delay of 10 min, while the lag-dependence for the information transfer from Bz to SYM-H
has a broader peak giving the information transfer delay in the range 25–35 min. This
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might indicate not only larger time delay, but probably also more complicated structure
(multiple lags) in the causal influence of Bz to SYM-H. The latter can also explain weaker
but bidirectional information transfer after the time reversal (Figure 5). More complicated
AR processes (higher order, multiple time lags, or non-Gaussian innovations) do not simply
reverse the causality, but bidirectional causality is observed after the time reversal. (See
Chvosteková et al. [53].)
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Figure 4. The conditional mutual information (CMI) of Equation (13) for the information flow
directions of (a) Bz → AE, (c) AE → Bz. (b,d) are, respectively, the same as (a,c), but for time-
reversed series.
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Figure 5. The conditional mutual information (CMI) of Equation (13) for the information flow
directions of (a) Bz → SYM-H, (c) SYM-H→ Bz. (b,d) are, respectively, the same as (a,c), but for
time-reversed series.
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Figure 6. The causality relationships between the solar wind driver Bz and the geomagnetic observables of AE and SYM-H, using
linear-Gaussian CMI (a,b) and Liang information flow (c,d).

Finally, by assuming a linear mass-energy transfer from solar wind into a geomagnetic
environment, we investigate the interventional causal links between Bz and the indices
of AE and SYM-H, as indicated in Figure 7a,b, respectively. As we expected, a strong
(weak) causal link exists from Bz into AE (SYM-H). However, the time-delays in causality
relations are not the same as what we previously obtained based on information transfer.
We argue here that the interventional causality, which is based on the response theory
and covariance (correlation) between variables, is not capable of detecting time-delayed
causation. In fact, such different time delays observed in this method are the consequence
of its cross correlation nature (see Equation (16)). To show this, we plotted the time-lagged
mutual information in Figure 7c,d, as well as the normalized cross-correlation in Figure 7e,f,
between these variables. As expected, we observe nearly the same time delays as in (a) and
(b). On the other hand, the negative response of AE to Bz is observed in the correlation
indicated in Figure 7e. Our findings based on interventional causality demonstrate that AE
is strongly driven by Bz via a (negative) linear impact. On the other hand, the solar wind
driver Bz, drives the geomagnetic storms of SYM-H by a weaker (positive) nearly linear
information transfer.
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Figure 7. The response matrix Rτ elements for the solar wind driver Bz and the geomagnetic
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better comparison.

5. Conclusions

An information-theoretic approach to causality detection was used in order to con-
tribute to the understanding of how the magnetosphere–ionosphere system of the Earth
responds to solar activity and to interplanetary medium conditions. Conditional mutual in-
formation, also known as transfer entropy, which generalizes the Granger causality concept
for nonlinear systems, was applied to time series of the vertical component of the inter-
planetary magnetic field Bz and the Perreault–Akasofu coupling function ε characterizing
the solar wind and interplanetary medium conditions and geomagnetic activity indices
AE as a substorm index and SYM-H as a magnetic storm index. A unidirectional causality,
or information flow, from the solar wind to the geomagnetic indices was demonstrated.
In particular, Bz causes AE with the information transfer delay of 10 min, and Bz causes
SYM-H with the information transfer delay of about 30 min. In bivariate CMI analysis also,
AE causes SYM-H; however, after taking CMI conditionally on Bz, no causal relation be-
tween AE and SYM-H can be detected. Thus, the causal influence of substorms on magnetic
storms, in particular the causality AE→SYM-H reported, for example, by Stumpo et al. [22]
is in fact a secondary relation induced by the common cause, Bz.

The problem of three or more variables involved in causality analysis has recently
been intensively discussed not only in the context of causal graphs or directed networks
estimated from multivariate time series (see, e.g., [54] and the already cited application
in space weather [21]) but also in the study of higher-order interactions, which, tackled
using the tools of information theory, requires the decomposition into unique, redundant
and synergistic information (see [55,56] and the related Entropy Special Issue introduced
by [57]).
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Studying causality after time reversal indicates that the detected causal relation,
although observed in nonlinear, out of equilibrium processes, can be explained by a
linear, time-delayed information transfer. In order to support this conjecture we computed
three different causality measures derived for linear systems: CMI derived for Gaussian
processes, Liang information flow [41] in its version for linear systems, and interventional
causality derived for linear Markov systems using time correlations as well as the response
theory [43]. All these methods confirmed the information flow from the solar wind to
the geomagnetic indices and the linear CMI and Liang information flow, as well as the
information transfer delays of 10 min for the relation Bz →AE, and 25–35 min for the
relation Bz→SYM-H. The interventional causality peaks in larger time delays are consistent
with cross-correlations or time-lagged mutual information. It is known, however, that the
latter as well as CMI/transfer entropy in its standard definition are not reliable tools for
determining the information transfer delays [40].

We believe that the presented results contribute to a better understanding of solar
wind-magnetosphere–ionosphere interactions as well as to modeling and predictions of
space weather events. This study adds further compelling evidence to previous studies
(e.g., [21,58–63]), highlighting the great potential of information-theoretic approaches to
contribute in the development of Space Weather diagnostics and tackle contemporary
research problems in Space Physics.
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34. Hlaváčková-Schindler, K.; Paluš, M.; Vejmelka, M.; Bhattacharya, J. Causality detection based on information-theoretic approaches

in time series analysis. Phys. Rep. 2007, 441, 1–46. [CrossRef]
35. Paluš, M.; Vejmelka, M. Directionality of coupling from bivariate time series: How to avoid false causalities and missed

connections. Phys. Rev. E 2007, 75, 056211. [CrossRef] [PubMed]
36. Barnett, L.; Barrett, A.B.; Seth, A.K. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys. Rev. Lett.

2009, 103, 238701. [CrossRef] [PubMed]
37. Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Lecture Notes in

Mathematics; Rand, D.A., Young, L.S., Eds.; Springer: Berlin, Germany, 1981; Volume 898, pp. 366–381.
38. Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134.

[CrossRef] [PubMed]
39. Paluš, M. Multiscale atmospheric dynamics: Cross-frequency phase-amplitude coupling in the air temperature. Phys. Rev. Lett.

2014, 112, 078702. [CrossRef]

http://dx.doi.org/10.1029/93JA02867
http://dx.doi.org/10.1029/98JA01426
http://dx.doi.org/10.1029/JZ071i003p00785
http://dx.doi.org/10.1029/2005JA011034
http://dx.doi.org/10.1029/JZ066i012p04013
http://dx.doi.org/10.1002/2016JA023175
http://dx.doi.org/10.1029/2011JA016535
http://dx.doi.org/10.1016/j.asr.2010.10.026
http://dx.doi.org/10.1002/2014GL060928
http://dx.doi.org/10.1002/2016JA022711
http://dx.doi.org/10.1038/s41598-018-35250-5
http://dx.doi.org/10.3390/e22030276
http://www.ncbi.nlm.nih.gov/pubmed/33286053
http://dx.doi.org/10.1103/PhysRevLett.85.461
http://www.ncbi.nlm.nih.gov/pubmed/10991308
http://dx.doi.org/10.1103/PhysRevLett.108.258701
http://www.ncbi.nlm.nih.gov/pubmed/23004667
http://dx.doi.org/10.1103/PhysRevE.86.061121
http://dx.doi.org/10.1111/j.1365-246X.1978.tb05494.x
http://dx.doi.org/10.1029/96JA00563
http://dx.doi.org/10.5636/jgg.42.1249
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1016/0375-9601(96)00116-8
http://dx.doi.org/10.1016/0375-9601(93)90827-M
http://dx.doi.org/10.1103/PhysRevE.63.046211
http://www.ncbi.nlm.nih.gov/pubmed/11308934
http://dx.doi.org/10.1016/j.physrep.2006.12.004
http://dx.doi.org/10.1103/PhysRevE.75.056211
http://www.ncbi.nlm.nih.gov/pubmed/17677152
http://dx.doi.org/10.1103/PhysRevLett.103.238701
http://www.ncbi.nlm.nih.gov/pubmed/20366183
http://dx.doi.org/10.1103/PhysRevA.33.1134
http://www.ncbi.nlm.nih.gov/pubmed/9896728
http://dx.doi.org/10.1103/PhysRevLett.112.078702


Entropy 2021, 23, 390 17 of 17

40. Wibral, M.; Pampu, N.; Priesemann, V.; Siebenhühner, F.; Seiwert, H.; Lindner, M.; Lizier, J.T.; Vicente, R. Measuring information-
transfer delays. PLoS ONE 2013, 8, e55809. [CrossRef]

41. San Liang, X. Information flow and causality as rigorous notions ab initio. Phys. Rev. E 2016, 94, 052201. [CrossRef]
42. Aurell, E.; Del Ferraro, G. Causal analysis, correlation-response, and dynamic cavity. J. Phys. Conf. Ser. 2016, 699, 012002.

[CrossRef]
43. Baldovin, M.; Cecconi, F.; Vulpiani, A. Understanding causation via correlations and linear response theory. Phys. Rev. Res. 2020,

2, 043436. [CrossRef]
44. Marconi, U.M.B.; Puglisi, A.; Rondoni, L.; Vulpiani, A. Fluctuation–dissipation: Response theory in statistical physics. Phys. Rep.

2008, 461, 111–195. [CrossRef]
45. Theiler, J.; Eubank, S.; Longtin, A.; Galdrikian, B.; Farmer, J.D. Testing for nonlinearity in time series: The method of surrogate

data. Physics D 1992, 58, 77–94. [CrossRef]
46. Quiroga, R.Q.; Kraskov, A.; Kreuz, T.; Grassberger, P. Performance of different synchronization measures in real data: A case

study on electroencephalographic signals. Phys. Rev. E 2002, 65, 041903. [CrossRef]
47. Paluš, M.; Hoyer, D. Detecting nonlinearity and phase synchronization with surrogate data. IEEE Eng. Med. Biol. Mag. 1998,

17, 40–45. [CrossRef]
48. Maggiolo, R.; Hamrin, M.; De Keyser, J.; Pitkänen, T.; Cessateur, G.; Gunell, H.; Maes, L. The delayed time response of

geomagnetic activity to the solar wind. J. Geophys. Res. Space Phys. 2017, 122, 11–109. [CrossRef]
49. Daglis, I.A.; Thorne, R.M.; Baumjohann, W.; Orsini, S. The terrestrial ring current: Origin, formation, and decay. Rev. Geophys.

1999, 37, 407–438. [CrossRef]
50. Fok, M.C.; Moore, T.E.; Delcourt, D.C. Modeling of inner plasma sheet and ring current during substorms. J. Geophys. Res. Space

Phys. 1999, 104, 14557–14569. [CrossRef]
51. Ganushkina, N.Y.; Pulkkinen, T.; Fritz, T. Role of substorm-associated impulsive electric fields in the ring current development

during storms. Ann. Geophys. 2005, 23, 579–591. [CrossRef]
52. Paluš, M.; Krakovská, A.; Jakubík, J.; Chvosteková, M. Causality, dynamical systems and the arrow of time. Chaos 2018, 28, 075307.

[CrossRef]
53. Chvosteková, M.; Jakubík, J.; Krakovská, A. Granger causality on forward and reversed time series. Entropy 2021, in press.
54. Runge, J.; Petoukhov, V.; Donges, J.F.; Hlinka, J.; Jajcay, N.; Vejmelka, M.; Hartman, D.; Marwan, N.; Paluš, M.; Kurths, J.

Identifying causal gateways and mediators in complex spatio-temporal systems. Nat. Commun. 2015, 6, 1–10. [CrossRef]
55. Stramaglia, S.; Cortes, J.M.; Marinazzo, D. Synergy and redundancy in the Granger causal analysis of dynamical networks. New

J. Phys. 2014, 16, 105003. [CrossRef]
56. Barrett, A.B. Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems. Phys. Rev.

E 2015, 91, 052802. [CrossRef] [PubMed]
57. Lizier, J.T.; Bertschinger, N.; Jost, J.; Wibral, M. Information decomposition of target effects from multi-source interactions:

Perspectives on previous, current and future work. Entropy 2018, 20, 307. [CrossRef]
58. Balasis, G.; Daglis, I.A.; Papadimitriou, C.; Kalimeri, M.; Anastasiadis, A.; Eftaxias, K. Dynamical complexity in Dst time series

using non-extensive Tsallis entropy. Geophys. Res. Lett. 2008, 35. [CrossRef]
59. Balasis, G.; Daglis, I.A.; Papadimitriou, C.; Kalimeri, M.; Anastasiadis, A.; Eftaxias, K. Investigating dynamical complexity in the

magnetosphere using various entropy measures. J. Geophys. Res. Space Phys. 2009, 114. [CrossRef]
60. Balasis, G.; Donner, R.V.; Potirakis, S.M.; Runge, J.; Papadimitriou, C.; Daglis, I.A.; Eftaxias, K.; Kurths, J. Statistical mechanics

and information-theoretic perspectives on complexity in the earth system. Entropy 2013, 15, 4844–4888. [CrossRef]
61. Balasis, G.; Papadimitriou, C.; Boutsi, A.Z.; Daglis, I.A.; Giannakis, O.; Anastasiadis, A.; De Michelis, P.; Consolini, G. Dynamical

complexity in Swarm electron density time series using Block entropy. EPL Europhys. Lett. 2020, 131, 69001. [CrossRef]
62. De Michelis, P.; Pignalberi, A.; Consolini, G.; Coco, I.; Tozzi, R.; Pezzopane, M.; Giannattasio, F.; Balasis, G. On the 2015

St. Patrick’s Storm Turbulent State of the Ionosphere: Hints From the Swarm Mission. J. Geophys. Res. Space Phys. 2020,
125, e2020JA027934. [CrossRef]

63. Papadimitriou, C.; Balasis, G.; Boutsi, A.Z.; Daglis, I.A.; Giannakis, O.; Anastasiadis, A.; Michelis, P.; Consolini, G. Dynamical
Complexity of the 2015 St. Patrick’s Day Magnetic Storm at Swarm Altitudes Using Entropy Measures. Entropy 2020, 22, 574.
[CrossRef]

http://dx.doi.org/10.1371/journal.pone.0055809
http://dx.doi.org/10.1103/PhysRevE.94.052201
http://dx.doi.org/10.1088/1742-6596/699/1/012002
http://dx.doi.org/10.1103/PhysRevResearch.2.043436
http://dx.doi.org/10.1016/j.physrep.2008.02.002
http://dx.doi.org/10.1016/0167-2789(92)90102-S
http://dx.doi.org/10.1103/PhysRevE.65.041903
http://dx.doi.org/10.1109/51.731319
http://dx.doi.org/10.1002/2016JA023793
http://dx.doi.org/10.1029/1999RG900009
http://dx.doi.org/10.1029/1999JA900014
http://dx.doi.org/10.5194/angeo-23-579-2005
http://dx.doi.org/10.1063/1.5019944
http://dx.doi.org/10.1038/ncomms9502
http://dx.doi.org/10.1088/1367-2630/16/10/105003
http://dx.doi.org/10.1103/PhysRevE.91.052802
http://www.ncbi.nlm.nih.gov/pubmed/26066207
http://dx.doi.org/10.3390/e20040307
http://dx.doi.org/10.1029/2008GL034743
http://dx.doi.org/10.1029/2008JA014035
http://dx.doi.org/10.3390/e15114844
http://dx.doi.org/10.1209/0295-5075/131/69001
http://dx.doi.org/10.1029/2020JA027934
http://dx.doi.org/10.3390/e22050574

	Introduction
	Data Description
	Overview of Methods
	Measuring Dependence with Mutual Information
	Inference of Causality and Time-Delayed Information Transfer
	Linear-Gaussian CMI
	Liang Information Flow
	Interventional Causality
	Statistical Evaluation with Surrogate Data

	Results and Discussion
	Causality and Time Delays
	Linear Mass-Energy Transfer

	Conclusions
	References

