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SUMMARY
Immune checkpoint blockade (ICB) has had remarkable success for treatment of solid tumors. However, as
only a subset of patients exhibit responses, there is a continued need for biomarker development. Numerous
reports have shown a link between tumormutational burden (TMB) and ICB response, while others have iden-
tified a link between ICB response and mutation in DNA damage repair (DDR) genes. However, it remains un-
clear to what extent mutations in DDR genes hold predictive value above and beyond their association with
TMB. Herein, we present a networks-based test and bipartite graph-based expected TMB score (BiG-BETS)
with higher specificity for discriminating DDR genes and pathways that are associated with elevated TMB.
Moreover, we find that mutations in certain DDR genes that are not associated with elevated TMB (low
BiG-BETS) are nevertheless predictive of ICB benefit in high TMB patients, demonstrating that their inactiva-
tion contributes to ICB response in a TMB-independent manner.
INTRODUCTION

Immune checkpoint blockade (ICB) has achieved remarkable

success in many solid tumors. Nonetheless, only a minority of

patients respond and ICB is associated with significant financial

toxicity;1 therefore, the ability to better predict ICB response has

the potential to impact both patient survival and quality of life.

Several genomic markers have demonstrated consistent predic-

tive power for ICB response, including tumor intrinsic properties

such as tumor mutational burden (TMB) as well as RNA expres-

sion signatures (i.e., a T cell inflamed gene expression profile).2

While high levels of TMB in particular have been consistently

associated with ICB response,3 even patients with high TMB

levels have response rates below 40%. Therefore, despite these

important observations, there remains significant patient hetero-

geneity in ICB response that is not explained by existing

biomarkers.

TMB represents the balance between a tumor’s exposure to a

mutagenic process (i.e., UV radiation, carcinogen, etc.) and the

integrity of the cellular DNA damage repair (DDR) pathways.

Consistent with this notion, an elevated TMB is frequently seen

in tumors associated with carcinogens (i.e., melanoma and UV
Cell
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radiation and lung cancer and cigarette smoke)3,4 and has also

been associated with mutations in some DDR genes.5–9 In

contrast, in a comprehensive study, the Cancer Genome Atlas

(TCGA) DDR working group assessed whether mutations in

DDR genes were associated with elevated TMB. They found

only two DDR genes that when mutated were significantly asso-

ciated with a higher TMB than other genes in the cohort.10 We

sought to resolve this discrepancy as well as to assess whether

mutations in DDR genes have predictive power for ICB response

independent of TMB.

In this study, we address the dilemma as to whether DDR gene

mutations are a cause or consequence of elevated TMB. We

show that, using traditional univariate tests, the vast majority of

genes when mutated are associated with elevated TMB, illus-

trating that these approaches are ill suited to define relationships

between gene mutation and TMB. This is explained by the fact

that the readout of interest (TMB) is confounded by the variable

it is being associated to (mutations in a gene). We illustrate how

the ‘‘TMB paradox,’’ refashioned from the well-established

friendship paradox in network science, accounts for why the

vast majority of genes are associated with an elevated TMB

when using univariate testing. Furthermore, we show that
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C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:peter.j.mucha@dartmouth.edu
mailto:wykim@med.unc.edu
https://doi.org/10.1016/j.xcrm.2022.100602
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2022.100602&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Report
ll

OPEN ACCESS
representing tumors and their mutated genes as a bipartite

network allows for development of a bipartite graph-based ex-

pected TMB score (BiG-BETS) that more accurately defines

DDR genes associated with high or low TMB, termed high and

low BiG-BETS DDR genes, respectively. Finally, while we note

that having a mutation in a high BiG-BETS DDR gene did not

add predictive power to ICB benefit for patients with TMB high

tumors, low BiG-BETS DDR gene mutation in TMB high tumors

enriched for patients with elevated stimulator of interferon genes

(STING) pathway activity significantly increased ICB response

and overall survival benefit to ICB.

RESULTS

The majority of genes, when mutated, are associated
with elevated TMB by univariate test
While it is logical that ineffective DNA damage or repair mecha-

nisms would result in increased mutational load, all human

genomic studies to date describing an association between

the presence of DDR mutations and elevated TMB have been

correlative. Indeed, an equally plausible explanation is that mu-

tation in a DDR gene (or any gene) is simply more likely in TMB

high tumors because more genes are mutated. We therefore

sought to understand whether tumors with DDR gene inactiva-

tion associate with elevated TMB as a cause or consequence

of DDR gene mutation.

We noted that the majority of studies linking DDR gene inacti-

vation to elevated TMB assessed statistical significance using a

univariate test (t test or Mann-Whitney U) comparing mutant tu-

mors with non-mutant tumors.7–9,11,12 This approach is intrinsi-

cally biased because the readout of interest (TMB) is confounded

with the variable it is being associated to (mutations in a gene).

By using a univariate test, tumors with a higher TMB will have

a higher likelihood of having mutations in the genes being tested

(i.e., DDR pathways). Moreover, aggregating mutations across

genes into a pathway further increases the effect of this bias.

To demonstrate this bias, we applied the classic univariate

approach (Mann-Whitney U [MWU] test) to the pan-cancer

TCGA dataset, assessing whether mutation of a gene correlates

with elevated TMB. Strikingly, we found that 98% (17,860/

18,151) of genes when mutated were associated with elevated

TMB relative to their respective non-mutated out-groups, even

when corrected for multiple comparisons (Figure 1A), and that

DDR genes as a group did not have a significantly higher propor-

tion of genes that when mutated were associated with elevated

TMB (Figure 1B). Moreover, when we applied the classic univar-

iate approach (MWU test) to query whether inactivation of any of

the DDR pathways (nucleotide excision repair [NER], base exci-

sion repair [BER], non-homologous DNA end joining [NHEJ],

mismatch repair [MMR], Fanconi anemia [FA], homologous

recombination [HR], and damage sensor [DS]) as defined by

the TCGA DDR group10 were associated with increased TMB,

we found that inactivation of each DDR pathway was highly

significantly associated with elevated TMB (Figure S1A), in keep-

ing with previously published work.7–9,12,13 Furthermore, exami-

nation of the distribution of the mean TMB values of tumors with

amutation in each gene found that the averagemean TMB linked

to DDR mutations was only slightly higher (24.1 versus 23.26)
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than the average mean TMB for non-DDR genes (Figure 1C).

The fact that this univariate approach rejects the null hypothesis

for the vast majority of genes and that the mean TMB for DDR

gene mutations is not different than that of mutations in non-

DDR genes suggests that the application of univariate statistical

testing is invalid.

The friendship paradox accounts for why the majority of
genes associatewith elevated TMBby univariate testing
It is counterintuitive that the majority of genes (when mutated)

have a highermean TMB (�24) than themean TMBof all samples

(�5; Figure 1D, vertical dotted line). We have labeled this phe-

nomenon the ‘‘TMBparadox,’’ because it reflects thewell-estab-

lished ‘‘friendship paradox’’ found in network analysis. The

friendship paradox holds that, in a social network, most people

have fewer friends than their friends do.14 In other words, for

most nodes in a network, their neighbors or ‘‘friends’’ will on

average have a higher degree (number of connections) than

the node itself. This arises because higher degree nodes count

toward the degree in multiple neighboring nodes and thus are

oversampled (see STAR Methods: Proof of friendship paradox).

Analogously, highly mutated samples contribute toward the

average TMB for many of the genes in the dataset, resulting in

an outsized effect (Figure S1B). Since the univariate t test and

Mann-Whitney U tests are testing for differences in central ten-

dencies (i.e., the mean or the median, respectively), the TMB

paradox explains why the majority of genes have a highly signif-

icant association with elevated TMBs. The TMB paradox is

therefore a manifestation of the oversampling bias introduced

by highly connected nodes (i.e., high TMB tumors), and this over-

sampling bias is what makes univariate tests (t test and MWU)

inappropriate to identify which genes are associated with higher

levels of TMB. Therefore, the majority of the 98% of genes asso-

ciated with elevated TMB by the univariate approach (Figure 1A)

are likely an artifactual result of the TMB paradox rather than the

underlying biology.

Representing tumors and their mutated genes as a
bipartite network facilitates development of a BiG-BETS
to define DDR genes associated with high TMB
We hypothesized that a networks-based approach and a more

appropriate, joint statistical test for whether mutation in a given

gene is specifically associated with higher levels of TMB would

better discriminate which DDR genes are truly associated with

an elevated TMB. To this end, we accounted for the TMB

paradox by converting the pan-cancer TCGA tumors and their

respective mutated genes (moderate + high consequence; see

STAR Methods) into a bipartite network, where genes and tu-

mors represent the two classes of nodes and the edges (con-

necting two nodes) indicate the mutated genes within a tumor

(Figure 1E). By re-casting our data into a bipartite network, we

see in Figure 1E that the TMB for a sample is roughly equivalent

to the number of edges it has (i.e., its degree) and that the

average TMB associated with mutation in a given gene is the

average degree of its neighbors (Figures 1E and S1B).

We then leveraged this bipartite network representation to

derive a null model of TMB distribution for each DDR gene or

pathway. Specifically, random sampling (permutations) of the
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Figure 1. Univariate testing inappropriately associates most genes with elevated TMB, and re-casting samples and mutations as a bipartite

network overcomes this limitation

(A) Distribution ofMann-Whitney U test p values (withmultiple test correction) on reversed log scale across all genes in pan-TCGAdataset (red) versus DDR genes

only (blue). For each gene, the MWU test compares distribution of TMB values for samples with a mutation in the gene versus all samples in the cohort. Right of

dashed black line represents p < 0.05. FDR, false discovery rate.

(B) Percentage of genes in which mutations are significantly associated with elevated TMB by the MWU test (with FDR correction) broken down by DDR genes

(blue) and non-DDR genes (red). n.s., not significant.

(C and D) Distribution of mean TMB values for mutated sample set for all genes (red) versus DDR genes (blue) in TCGA (compared using MWU test in [C]). Vertical

dotted black line in (D) denotes the overall mean TMB for the cohort of samples. Diamonds in (C) represent outliers ( data >1.5 * IQR).

(E) Schematic representation of converting the mutational data in a matrix to a bipartite network.

(F) Schematic representation of BiG-BETS network rewiring process to sample from the bipartite configuration model. Random pairs of edges are selected to be

exchanged to generate new samples.
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bipartite network was performed by stochastically rewiring the

network while maintaining the degree distribution (number of

edges of each node) of the original dataset (this null model is

known as the configuration model; see STAR Methods).15,16
Generation of a null model through permutation allowed us to

compare the actual mean TMB for tumors with mutation in a

given gene or pathway against the expected distribution under

random sampling (Figure 1F).
Cell Reports Medicine 3, 100602, May 17, 2022 3
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Application of this BiG-BETS to the TCGA pan-cancer dataset

found that BiG-BETS returned a more uniform distribution of p

values (Figure S2A), and only a subset of DDR genes when

mutated have a significant association with elevated TMB (Fig-

ure 2A), hereafter referred to as ‘‘high BiG-BETSDDRgene’’ (Fig-

ure 2B). It was reassuring to see that MMR genes, such as

MSH3, MLH1, and MSH2, had some of the highest BiG-BETSs

(Figure 2B). We noted that several DDR genes, such as ATR or

CHEK1, which had previously been associated with elevated

TMB by others,9 were no longer found to have significant asso-

ciations with elevated TMB by BiG-BETS (Z scores of�1.90 and

�0. 058, respectively; Figure S2B). A comparison of the number

of genes significantly associated with elevated TMB by univari-

ate (MWU) and our BiG-BETS permutation test demonstrates

that BiG-BETS has drastically fewer genes that are significantly

associated with elevated TMB (Figure 2A).

We next used BiG-BETS to compute DDR pathway level Z

scores (Figure 2C). Unlike the univariate MWU approach, which

found that all DDR pathways were significantly associated with

elevated TMB (Figure S1A), BiG-BETS found that only mutations

in the MMR and NER pathways were significantly associated

with higher levels of TMB (Z score = 2.23 and Z score = 3.04,

respectively; Figure 2C).

Interestingly, we found that, across all genes, the genes with

the lowest BiG-BET Z scores were highly enriched for a number

of biological processes (Figure 2D), including the negative regu-

lation of cell proliferation and chromatin remodeling. This finding

is congruent with the fact that cancer typeswith low overall levels

of mutational burden are often driven by epigenetic changes and

disruption in chromatin architecture.17 Reassuringly, we see

independent validation using a real-world clinically sequenced

dataset (Samstein et al.18; see STAR Methods). The BiG-BET

permutation-test-derived Z scores obtained using our approach

correlated well between the pan-TCGA and Samstein datasets

(using the 468 genes in common between the two datasets; Fig-

ure S2C). Finally, while the above analysis was performed using

non-synonymous mutations defined to be of ‘‘moderate + high

consequence’’ (see STAR Methods and Figure S3A), we found

a high level of correlation between these BiG-BETSs and those

derived from amore restrictive ‘‘high consequence’’ set of muta-

tions (Figures S3A and S3B). There was also excellent agree-

ment across the DDR genes and pathways (Figure S3B). Inter-

estingly, a set of genes had BiG-BETSs that were noticeably

lower when using the moderate + high consequence categoriza-

tion (Figure S3B). We observed that the vast majority of them

were genes with hotspot mutations (defined using a curated

list from Miao et al.19). These hotspot mutations (i.e., BRAF
V600E, IDH1 R132H, etc.) are included in the moderate + high

consequence set but excluded from the high consequence set.

Further validating our method, past work has shown that some

of these hotspot mutations, such as EGFR, BRAF V600E, and

IDH1 R132H, are associated with a lower TMB.20–22

Mutations in low BiG-BETS DDR genes add predictive
power for ICB response in TMB high tumors
Given TMB’s correlation with ICB response, it is not surprising

that inactivation of some DDR genes or pathways has been

associated with clinical benefit from ICB. For example, cancers
4 Cell Reports Medicine 3, 100602, May 17, 2022
with loss of the MMR machinery have increased response to

pembrolizumab,23–25 and mutations in specific genes, such as

POLE26 or BRCA2,27 have also been shown to correlate with

ICB response. However, whether DDR gene inactivation in-

creases predictive power to ICB response over TMB alone is

unclear, with one retrospective study suggesting increased pre-

dictive power of DDR mutation on top of TMB,6 while another

larger study from a large prospective phase II trial (IMvigor210)

found that DDR mutations did not have predictive power for

ICB response beyond its relationship to TMB.7

To assess whether inactivation of a specific DDR gene adds

predictive power to ICB response over TMB alone, we first

analyzed two large, annotated genomic datasets of ICB-treated

patients, IMvigor210 (phase II trial of atezolizumab in urothelial

cancer) and Samstein (real-world, pan-tumor, Memorial Sloan

Kettering Cancer Center [MSKCC]).7,18 There was reasonable

overlap in DDR genes between the IMvigor210 and Samstein da-

tasets. IMvigor210 and Samstein contained 19 and 31 DDR

genes, respectively, with 17 DDR genes contained in both data-

sets (Figure S3C). We first validated that TMB correlated with

overall survival (OS) (IMvigor210 and Samstein datasets;

Figures S4A and S4B) and response (IMvigor210; Figure S4B).

Given the current dogma that DDR mutations enhance ICB

response through their potential to increase TMB,3,5 we tested

the hypothesis that mutations in high BiG-BETS DDR genes

(i.e., those associated with high TMB) would correlate with

increased ICB benefit merely because of their association with

high TMB. In keeping with this notion, mutation in a high BiG-

BETS DDR gene did not add any predictive power for response

or OS in TMB high tumors (Figures S4C and S4D; IMvigor210

Cox proportional hazard [CPH] p = 0.34 and Samstein CPH p =

0.11).

In contrast, there was a strong interaction betweenmutation in

a low BiG-BETS DDR gene and both response and OSwith TMB

as a covariate. Specifically, we found that, in patients with TMB

high tumors, a mutation in a low BIG-BETS DDR gene was asso-

ciated with the longer OS (Figures 3A and 3B) and increased

response rate to ICB (Figure 3C). This effect on OS is seen within

both the IMvigor210 and Samstein datasets (median survival

20.0 versus 10.7 months in IMvigor210 [Figure 3A] and 14.5

versus 10.0 months in Samstein [Figure 3B] for TMB high tumors

with a low BiG-BETS DDRmutation versus wild type [WT]) and is

reinforced in the clinical response data for IMvigor210, as 67%of

TMB high tumors with a low BiG-BETS DDR mutation had ICB

response versus a 37% response rate for TMB high tumors

that were low BiG-BETS DDR WT (Figure 3C; p = 0.035). Similar

results were seen when the analysis was done with only the sub-

set of DDRgenes that overlapped between the Samstein and IM-

vigor210 datasets (n = 17; Figures S3C and S5A).

Given the importance of this finding, we sought to further vali-

date our BiG-BETS method. We therefore generated a metada-

taset (hereafter called ‘‘Weir_metadataset’’) of 424 patients from

available cohorts on cBioportal, including melanoma,27–29 non-

small-cell lung cancer (NSCLC),30,31 and a recently published

real-world cohort of bladder cancer patients from our own

institution.32 Using the Weir_metadataset, we observed similar

findings as we saw in the Samstein and IMvigor210 datasets.

Specifically, patients with TMB high tumors and mutation in a
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Figure 2. A networks-based model and permutation test (BiG-BETS) are superior to univariate model

(A) Percentage of genes that are significant (with multiple test correction) using MWU test (left two bars) and significant by the networks-based test (right two

bars). Differences between DDR and non-DDR genes computed were assessed with chi-squared test with p value shown above the corresponding bars; n.s., not

significant.

(B) Distribution of BiG-BETS Z scores for the DDR genes. Low versus high Z score DDR genes are defined using Z score < 0 and Z score > 0 (dashed vertical line),

respectively, with individual genes in each bin listed about the plot.

(legend continued on next page)
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low BiG-BETS DDR gene had prolonged OS (median OS 19.3

versus 14.5 months; Figure 3D) and increased response

(response rate [RR] 48% versus 29%; Figure 3E) relative to those

with TMB high tumors WT for low BiG-BETS DDR genes. There-

fore, mutation in a low BiG-BETS DDR gene has additional pre-

dictive power for ICB benefit over TMB alone. This observation

seems to be specific to DDR genes, as when we performed a

parallel analysis using chromatin remodeling genes from the

Gene Ontology Resource (GO term, chromatin remodeling;

GO: 0006338) we found no association between having a muta-

tion in a low BiG-BETS, chromatin remodeling gene and

improved clinical outcome from ICB in high TMB tumors

(Figure S5B).

Mutation in low BiG-BETS DDR genes in TMB high
tumors is not merely prognostic and is predictive across
individual tumor types
To ensure that mutation in a low BiG-BETS DDR gene in a TMB

high tumor is not merely prognostic, we analyzed the subset of

TCGA tumors that overlap with the ICB-treated tumor types

from the Samstein dataset (see STAR Methods). Since the vast

majority of the TCGA tumorswere collected and sequenced prior

to the widespread use of ICB, they should serve as an ICB naive

cohort. To this end, we looked at OSby TMBandBiG-BETSDDR

mutation status in the TCGASamstein overlap cohort (Figure 3F).

In this non-ICB-treated cohort, there were no differences in

survival in TMB high tumors based on low BiG-BETS DDR

gene mutation status (hazard ratio = 0.73 [0.46–1.15]; CPH p =

0.177). Therefore, the BiG-BETS score is not merely prognostic.

Wewanted to understandwhether the clinical benefit from ICB

seen in TMB high, low BiG-BETS DDR mutant tumors is present

within individual tumor types. Of the individual tumor types within

the Samstein dataset, most tumor types did not have enough

TMB high, low BiG-BETS DDR mutant samples to see the

conditional effect. Only NSCLC and bladder cancer had more

than n = 5 samples with high TMB, low BiG-BETS DDR muta-

tions. We therefore combined patients from the Weir_meta-

dataset with the Samstein and the IMvigor210 cohorts (hereafter

called Weir_combined). Analysis of the Weir_combined data-

set showed that NSCLC patients with TMB high, low BiG-

BETS DDR mutations had a significantly prolonged OS (CPH

p = 0.001), while melanoma and bladder cancer, while not signif-

icant, showed a similar trend (Figures 3G and 3I). We also as-

sessed our method on a kidney cancer dataset33 as well given

the frequent treatment of renal cell carcinoma (RCC) patients

with ICB. Interestingly, RCC patients did not appear to show

any difference in OS or response on the basis of either TMB or

low BiG-BETS DDR mutation status (Figure S5C). We hypothe-

size that this might reflect that ICB response in RCC is because

neoantigens are driven by frameshift mutations rather than sin-
(C) Application of bipartite configuration test to the DDR pathways in the TCGA

samples with a mutation in the genes of the specified pathway by the red solid lin

networks, with the light blue band showing the 99% confidence interval (CI). Horiz

show a histogram of the means of the sampled distributions of TMB for samples w

within the inset depicts the observed mean TMB in the actual dataset. Z scores

means.

(D) Significant gene ontology (GO) terms identified in the 50 lowest BiG-BET gene

6 Cell Reports Medicine 3, 100602, May 17, 2022
gle-nucleotide variants (SNVs)34 or that other tumor-associated

antigens (like cancer testis antigens or endogenous retroviruses)

mediate the responses seen in this unique tumor type. Therefore,

we believe that mutations in low BiG-BETS DDR genes in TMB

high tumors correlate with enhanced clinical benefit to ICB

across individual tumor types.

Tumors with mutation in low BiG-BETS DDR genes have
enhanced STING activity
We hypothesized that alterations in these low BiG-BETS DDR

genes may mediate an anti-tumor immune response through

enhanced innate immunity or antigen presentation or possibly

through production of neo-antigens in a way that is not captured

by TMB alone.3,5 Indeed, we saw that, in TMB high patients from

the IMvigor210 dataset, low BiG-BETS DDR mutant tumors had

elevated gene signatures scores of both STING as well as its key

downstream transcriptional mediator, interferon regulatory fac-

tor 3 (IRF3) (Figure 4A), but interestingly did not show significant

changes in other gene signatures associated with ICB response

(i.e., CD8 T cell, EMT-Stroma, transforming growth factor b

[TGF-b], or interferon gamma [IFNG] signatures; Figures 4B–

4D).We noted that TMB high, lowBiG-BETSDDRmutant tumors

also had significantly elevated STING gene signature in the

TCGA (with cancer types matched to Samstein; Figures S6A–

S6D), though EMT_stroma and fibroblast TGF-beta response

signatures (FTBRS) were also significantly different in this

case. In aggregate, these data demonstrate that TMB high pa-

tients with a mutation in a low BiG-BETS DDR gene have

increased response (67%) and prolonged OS when treated

with ICB, potentially due to enhanced baseline STING activity.

DISCUSSION

In summary, we identified a sampling bias in currently used

methods to test for an association betweenmutation in a specific

gene or pathway and elevated TMB. Application of our method,

BiG-BETS, accurately defines DDR genes associated with high

and low TMB (high BiG-BETS DDR and low BiG-BETS DDR

genes, respectively) and identifies that only inactivation of the

MMR and NER DDR pathways are truly associated with elevated

TMB. Moreover, we demonstrate that mutation in high BiG-

BETS DDR genes do not hold predictive value for ICB response

in TMB high tumors, because their predictive value is driven by

their association with elevated TMB. In contrast, and of clinical

importance, is that in TMB high tumors, mutation in a low BiG-

BETS DDR gene is significantly associated with elevated

STING pathway activity, increased ICB response (up to 67%),

and prolonged OS benefit from ICB treatment.

Recent work by Hsiehchen and colleagues also examined cor-

relation between DDR pathways and ICB benefit across a large
data. Each subplot shows the observed cumulative distribution of TMB for

e. The blue line shows the average cumulative distribution across 400 sampled

ontal line at y = 0.5 denotes the median TMB for the distributions. Inset figures

ith a mutation in the corresponding DDR pathway. The vertical red dashed line

were constructed by comparing the observed mean TMB with the sampled

s from the pan-TCGA dataset. p values corrected using Benjamini-Hochberg.
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Figure 3. TMB high tumors with mutation in a low BiG-BETS DDR gene have improved survival and response

(A) Kaplan-Meier curves depicting overall survival (OS) in the IMvigor210 cohort broken down by TMB high (red lines) versus TMB low (blue lines) and into samples

with a mutation in low BiG-BETS DDR genes (bold lines) and low BiG-BETS DDR WT tumors (dotted lines). Significance for survival curves determined by log

likelihood ratio test of Cox-proportional harzards model. Table underneath shows forest plot of coefficients for CPH model jointly testing TMB (as continuous

variable), mutation in low BiG-BETS DDR genes, and an interaction term between the two variables (denoted by low BiG-BETS; TMB-H). Patient counts for each

category in TMB-H_MUT, TMB-H_WT, TMB-L_MUT, and TMB-L_WT were 19, 84, 12, and 159, respectively.

(legend continued on next page)
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dataset of tumors with genomic annotation and found that pa-

tients whose tumors harbored mutations in the NER and HR

pathways were associated with higher RR and OS.35 Our work

is distinct, as our primary objective was to faithfully define DDR

genes that associate with low and high TMB status. We have

found that patients with TMB high tumors and mutation in low

BiG-BETSDDRgene have the best OS andRR. There are a num-

ber of important differences between our study and Hsiehchen

and colleagues, including the number of DDR genes used

(Hsiehchen n = 40; our study n = 72) as well as the classification

of DDR genes into specific DDR pathways. Finally, while the

authors suggest that the NER andHRmutations predict OS inde-

pendent of TMB, we note that all of the NER genes from their pa-

per have high BiG-BETS scores in our analysis. Therefore, by our

analysis, mutations of genes in the NER pathway are associated

with elevation in TMB.

Our BiG-BETS method and clinical observations have poten-

tially important implications for patient care. First, as mentioned

above, patients with TMB high, low BiG-BETS DDR mutant tu-

mors have significantly increased ICB response (67%) and

prolonged OS and should therefore be assessed in future clinical

trials. Moreover, this tandem predictive biomarker can likely be

improved upon with integration of other immunogenomic fea-

tures, such as the integration of a T cell inflamed gene expression

profile, which has shown predictive value for ICB response in pan

tumor analysis2 and is not correlatedwith TMB.36 Second, a num-

berof the lowBiG-BETSDDRgenesarekinases,multipleofwhich

have small-molecule inhibitors in late-stage clinical trials (i.e.,

ATM, CHEK1, and WEE1). One would predict that treatment of

a TMBhigh tumor that is lowBiG-BETSDDRWTwith oneof these

kinase inhibitors (in an attempt to replicate a low BiG-BETS DDR

mutation) and ICB might mimic our genetic findings. In contrast,

our method predicts that inhibition of high BiG-BETS DDR genes

that are kinases (i.e., ATR) in combination with ICB would not

necessarily benefit patients with TMB high tumors.

There is much clinical interest in examining the efficacy of ICB

in patients with DDR mutations. Moreover, there are numerous

clinical trials underway combining DDR inhibitors with ICB.

These trials often use broad panels of DDR genes as inclusion

criteria or focus on a specific DDR pathway (i.e., HR). Our data

suggest that restricting biomarker selection to a specific DDR

pathway is not wise, as our low BiG-BETS DDR genes are rela-

tively evenly spread across all of the DDR pathways (Figure S6E).

While a unifying explanation for how our low BiG-BETS DDR
(B) Kaplan-Meier (KM) curves depicting OS in the Samstein et al. cohort broken d

below. Patient counts for each category in TMB-H_MUT, TMB-H_WT, TMB-L_M

(C) Percentage of patients with response (complete or partial response) to ICB in

low) and into samples with a low BiG-BETS DDR gene mutation or not (WT). The

response [PR]) in each category from left to right is 12, 1, 28, and 10, respective

(D) KM curves depicting OS in the Weir metadataset (see STARMethods for full d

coefficients in CPH model below. Patient counts for each category in TMB-H_M

respectively.

(E) Response rates by low BiG-BETS DDR mutations in the Weir metadataset.

(F) Kaplan-Meier (KM) curves depicting OS in the TCGA samples (using tumor type

(A) with corresponding coefficients in CPH model below.

(G–I) KM curves depicting OS in a combined dataset that includes IMVigor210, Sam

cancer, (H) non-small cell lung cancer, and (I) melanoma. Each plot is broken do

model below.
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genes, which are spread across all DDR pathways, are associ-

ated with enhanced STING activity is challenging to envision,

we see and validate this finding in both the IMvigor210 and

TCGA datasets. Finally, our work is cautionary, as it suggests

that, without selection of both (1) the subset of DDR genes

with predictive power for ICB response (low BiG-BETS DDR

genes) as well as (2) patients with TMB high tumors, trials inte-

grating DDR mutations and inhibitors with ICB may show a

lack of clinical benefit.

Limitations of the study
Limitations of the study include that it is based upon retrospec-

tive cohorts of patients, which can introduce a number of biases.

It is therefore important that prospective validation of mutant low

BiG-BETS DDR genes in TMB high tumors be carried out.

SYNOPSIS

Herein we develop a test, the bipartite graph-based expected

TMB score (BiG-BETS), that resolves the TMB paradox, accu-

rately defines genes associated with elevated TMB, and remark-

ably delineates a cohort of patients (TMB high, low BiG-BETS

DDR mutant) with high predictive power for ICB response and

prolonged overall survival.
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Figure 4. Mutation of low BiG-BETS DDR genes in TMB high tumors is associated with elevated STING and IRF3 gene signatures

A–D) Boxplots of indicated gene signatures in IMVigor210 patients stratified by TMB (TMB high versus TMB low) and low BIG-BETS DDR gene mutation or not

(WT). For each signature, each sample is assigned a Z score based on the average expression level of all genes in the signature comparedwith the average across

all samples (see STAR Methods). Significance was calculated using the Mann-Whitney U test with diamonds representing outliers (data>1.5*IQR).
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA MC3 Mutations Calls TCGA https://gdc.cancer.gov/about-data/

publications/pancanatlas

TCGA Expression Data TCGA https://gdc.cancer.gov/about-data/

publications/pancanatlas

TCGA TMB Annotation TCGA https://gdc.cancer.gov/about-data/

publications/PanCan-CellOfOrigin

IMVigor210 Mariathansan et al. http://research-pub.gene.com/

IMvigor210CoreBiologies/

Samstein et al. Samstein et al. https://www.cbioportal.org/study/

summary?id=tmb_mskcc_2018

Weir Metadataset This paper Table S3

DDR Classification Knijnenburg et al. https://www.cell.com/cms/10.1016/

j.celrep.2018.03.076/attachment/

9ca123d4-fe1c-4849-b461-

c1e549c6b57d/mmc2.xlsx

Software and algorithms

BiG-BETS source code this paper https://dataverse.unc.edu/dataset.xhtml?

persistentId=doi:10.15139/S3/GBFHPB
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. William Y. Kim

(wykim@med.unc.edu).

Materials
This study did not generate new unique reagents.

Data and code availability
d Standardized Datasets: This work did not generate any novel standardized datasets.

d Custom Computer Code: All original code has been released at both https://dataverse.unc.edu/dataset.xhtml?

persistentId=doi:10.15139/S3/GBFHPB as well on GitHub (https://github.com/wweir827/BIGBETS) and is publicly available

as of the date of publication.

d Any additional information required to reanalyze the data reported in this work paper is available from the Lead Contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

No experimental models were used in this work.

METHOD DETAILS

Description of the datasets
The cancer genome atlas (TCGA) pan-cancer MC3 dataset

The primary dataset we used for developing our method was the TCGA-pancan unified ensemble MC3 variant call set (download-

able at https://gdc.cancer.gov/about-data/publications/pancanatlas). See https://www.synapse.org/#!Synapse:syn7214402/wiki/

405297 for further description.). This dataset usedWhole Exome Sequence (WES) tumor samples from all TCGA centers and variants
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were re-called in a uniform pipeline. This dataset includes 3.6 million, small variants from 10,295 tumor samples. This dataset is

described further in Ellrott et al.37 Filtering this list of variants on Moderate + High consequence (defined above) resulted in

1,000,011 variants in 19,255 genes in 10,164 different samples, while keeping High consequence variants resulted in 208,682 remain-

ing variants in 18,284 different genes from 9,530 different samples. Figure S3B demonstrates excellent correlation in the BiG-BET

score between the high impact and the high + moderate impact datasets, especially with regards to the DDR genes and pathways.

TMB values for TCGAwere obtained from (https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin) combining both

Silent and Non-Silent scores for each sample.

Clinical data used for survival analysis of the TCGA were obtained from the TCGA clinical data resource as detailed in Liu et al.

2018. We looked at the effect of low and high BiG-BET DDR mutations on overall 5-year survival as detailed above. We filtered

the cohort to the cancer types that best reflected the composition of Samstein et al., keeping the following TCGA types: LUAD,

LUSC, BRCA, SKCM, COAD, ESCA, KIRC, BLCA, and HNSC. This resulted in 4,287 samples. To calculate gene signatures profiles,

the TCGA-PanCan expression data was obtained from https://gdc.cancer.gov/about-data/publications/pancanatlas and processed

as described above in Gene expression signatures analysis.

IMvigor210

The IMvigor210 trial is a Phase II single arm study examining the response of patients with locally advanced or metastatic urothelial

bladder cancer to atezoliziumab (anti PD-L1). A full description of the characteristics of the patient cohort can be found in.7 We have

used the publicly available dataset released by Mariathansan et al. which can be accessed at http://research-pub.gene.com/

IMvigor210CoreBiologies/. The cohort consists of 260 patients with 1249 short variants across 160 different genes. Because less

detailed annotations were available, we did not filter any of the mutations from this cohort.

Samstein et al. Cohort

To validate our clinical findings, we used a large, multi-trial cohort consisting of 1661 patients treated with different Immune Check-

point Blockade (ICB) therapies and with targeted clinical sequencing, first compiled and analyzed in.18 Sequencing was performed

using the Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) panel. We down-

loaded the data from cbioportal using the following link: https://www.cbioportal.org/study/summary?id=tmb_mskcc_2018. We

filtered down to the 1307 patients that received anti PD-1/PD-L1 therapies and kept the variants with one of the following high impact

consequences: missense mutation, nonsense mutation, frameshift deletion, frameshift insertion, translation start site, or nonstop

mutation. This resulted in a total of 19,057 variants in 468 different genes.

Weir meta-dataset

As an additional validation set, we also compiled a meta-dataset from several different studies available on cBioportal as well as a

recently published study from our group. This meta-dataset included melanoma,27–29 non-small cell lung cancer30,31 and clear cell

renal carcinoma.38 The datasets from cbioportal can be accessed using the following link: https://www.cbioportal.org/study/

summary?id=ccrcc_dfci_2019,skcm_mskcc_2014,skcm_dfci_2015,mel_ucla_2016,nsclc_mskcc_2018,nsclc_mskcc_2015. Addi-

tionally, we included a real-world metastatic urothelial carcinoma cohort from UNC.32 TheWeir metadataset included 407 total sam-

ples with 16,250 variants in 599 genes. Asmost of the datasets on cBioportal did not include TMB values, we used the total number of

mutations for each sample as a surrogate. For our analyses, we considered a tumor to be TMB-H if it was in the top 50% of tumors by

total mutation count. The compiled dataset is included in Table S3.

DNA damage repair pathways
Wehave relied on the core DNADamage Repair pathways defined by Knijnenburg et al.10 to conduct all of our pathway level analysis.

The pathways are defined as follows:
BER NER MMR FA HR NHEJ DS

PARP1 CUL5 EXO1 FANCA MRE11 EME1 LIG4 ATM

POLB ERCC1 MLH1 FANCB NBN GEN1 NHEJ1 ATR

APEX1 ERCC2 MLH3 FANCC RAD50 MUS81 POLL ATRIP

APEX2 ERCC4 MSH2 FANCD2 TP53BP1 PALB2 POLM CHEK1

FEN1 ERCC5 MSH3 FANCI XRCC2 RAD51 PRKDC CHEK2

TDG ERCC6 MSH6 FANCL XRCC3 RAD52 XRCC4 MDC1

TDP1 POLE PMS1 FANCM BARD1 RBBP8 XRCC5 RNMT

UNG POLE3 PMS2 UBE2T BLM SHFM1 XRCC6 TOPBP1

XPA BRCA1 SLX1A TREX1

XPC BRCA2 TOP3A

BRIP1
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Chromatin remodeling pathway
We also looked at genes associated with chromatin remodeling as annotated by the Gene Ontology (GO) project (http://

geneontology.org/). We selected all genes associated with the GO:0006338 – ‘chromatin_remodeling’ or any of its associated

sub-term, resulting in a set of 267 genes given in Table S4.

Definition of high and moderate + high consequence mutations
We started with the MC3 mutational dataset provided by the TCGA (https://gdc.cancer.gov/about-data/publications/pancanatlas).

The TCGA MC3 dataset was then filtered to include only ‘‘High Consequence’’ non-synonymous mutations, which were defined as

being categorized as a high consequence mutation by the Sequence Ontology and summarized by Ensembl here (https://m.

ensembl.org/info/genome/variation/prediction/predicted_data.html) [‘stop lost’, ‘stop gained’, ‘transcript ablation’, ‘start lost’,

‘frameshift variant’, ‘splice_site’, ‘translation_start_site’] and were also categorized as having a PolyPhen score of ‘probably

damaging’, ‘possibly damaging’, or ‘unknown’.

We defined non-synonymous mutations of ‘‘Moderate + High Consequence’’ as moderate [‘inframe insertion’, inframe deletion’,

missense variant’, and ‘protein altering variant’] or high [‘stop lost’, ‘stop gained’, ‘transcript ablation’, ‘start lost’, ‘frameshift variant’,

’splice_site, ’translation_start_site’] consequence mutations by the Sequence Ontology and were also categorized as having a

PolyPhen score of ‘probably damaging’, ‘possibly damaging’, or ‘unknown’ (Figure S3A).

Bipartite-graph based-expected TMB score (BiG-BETS)
We converted the Pan-Cancer TCGA tumors and their respective mutated genes into a bipartite network, where genes and tumors

represent the two classes of nodes and the edges (connecting two nodes) indicate the mutated genes within a given tumor (Fig-

ure 1E). By re-casting our data into a bipartite network, we see in Figure 1E that the TMB for a sample is proportional to the number

of edges it has (i.e. its degree) and that the average TMB associated with mutation in a given gene is essentially average degree of its

neighbors (Figure S1B).

The bipartite network representation was used to derive a null model of TMB distribution for each gene. Specifically, random sam-

pling (permutations) of the bipartite network was performed by stochastically rewiring the network while maintaining the degree

distribution (number of edges of each node) of the original dataset (this null model is known as the configuration model, which for

a bipartite network is further constrained to maintain the bipartite nature of the network).15,16 Generation of a null model through per-

mutation allowed us to compare the actual mean TMB for tumors with mutation in a given gene or pathway against the expected

distribution under random sampling (Figure 1F).

The BiG-BET score consists of comparing the observed mean TMB for each gene or pathway’s mutated sample set against the

expected distribution under random sampling of bipartite networks that match the degree distribution of the original dataset. The null

model for networks in which all networks with a given degree sequence are uniformly likely is known as the configuration model,24

which has also been extended to bipartite graphs.15 The bipartite configuration model can be envisioned by cutting across the edges

in the original network and reconnecting the ‘‘stubs’’ at randomwith each possible set of pairings respecting the bipartite structure of

the original network and being equally likely under the model (visualized in Figure 1F). We note that we have applied a rewiring pro-

cedure as described in15 to sample this bipartite configurationmodel rather than themore direct ‘‘stubmatching’’ approach to ensure

that we sample the appropriate, more restricted model without self-loops and multi-edges.3–5 We iterate the following steps:

1. Select two edges at random in the network: (gi,sx) eε and (gj,sy) eε

2. Confirm that each edge is connected to a distinct pair of nodes: gi s gj and sx s sy. If the two edges involve either the same

sample node, or the same gene node, repeat 1.

3. Swap which gene is connected to which sample from these two edges. Add (gj,sy) and (gi,sx) to the set of edges while removing

original edges.

4. Repeat 1-3.

Steps 1-3 constitute a single rewire of the network. To obtain a BiG-BET score for each individual gene, we rewire the network

many times in sequence, keeping track of the edge changes so that the network becomes unrecognizable from the original network

and the previous sample. This process is a Markov chain, generating a random network at each step conditioned only on its imme-

diate predecessor that is independent of earlier networks. If run long enough, the process will generate all possible networks from the

model with uniform probability. Prior to drawing samples from the Markov chain, we conduct 2m‘‘burn-in’’ rewires, where m is

the number of edges in the network, to give the process freedom to sample high likelihood regions under the model independent

of the initialization at our observed data. We perform at least m rewires between samples to ensure that most edges in the network

will have the opportunity to rewire.

We define the BiG-BET score as follows; Let the gene gi have degree ki. Let vgi
obs =

�
s
��ðs;giÞ ˛ ε

obs
�
denote the set of samples

connected to in the bipartite representation of the original data, Gobs (that is the neighbors of gi). Let be the Tobs = Es˛vgobs
i
ðTMBsÞ;

average TMB for all samples connected to gi in the observed dataset. We derive a Z score for a significant association between

TMB and gi as follows:
e3 Cell Reports Medicine 3, 100602, May 17, 2022
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1. We sample R independent realizations of the bipartite network with fixed degrees sequences, according to the process

described above.

2. For each sampled network, Grwe compute Tr = Es˛vgr
i
ðTMBsÞ; the average TMB for all neighbors of gi in each sampled bipartite

network Gr.

3. We compute the Z score for the observed graph using:
zi =
Tobs � ErTrbsrðTrÞ

where bsrðTrÞ is the empirical standard deviation for the distribution of sampled {Tr}. All results in the paper have been derived using

R = 400 samples from the bipartite configuration model. All BiG-BET scores for genes in the TCGA cohort are listed in Table S1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Survival and response analyses
All survival analyses were conducted using theCox-proportional hazardmodel with a log likelihood ratio test (LLR) to test for the over-

all significance of the model and a t-test to assess the significance of individual variables in the model. For the depiction of Kaplan-

Meier curves, TMB is treated as a binary variable with a threshold of TMB>10 defining the high TMB group. However, in the joint

models depicted by the forest plots, TMB is treated as a continuous variable. Comparison of response across groups is conducted

using a Chi-squared test. Samples were divided into groups based on the presence of a mutation within a High DDR Z score gene or

Low Z score DDR gene, shown in Figure 2B.

The Low BIG-BET Z score DDR genes included:

APEX1, APEX2, ATM, ATR, ATRIP, BLM, BRCA1, BRCA2, BRIP1, CHEK2, ERCC1, ERCC2, EXO1, FANCB, FANCD2, FANCL,

FANCM, MUS81, NHEJ1, POLB, PRKDC, RAD51, RAD52, RBBP8, TDP1, TP53BP1, TREX1, UBE2T, XPA, XRCC3, XRCC5.

The High BIG-BET Z score DDR genes were:

BARD1, CHEK1, CUL5, EME1, ERCC4, ERCC5, ERCC6, FANCA, FANCC, FANCI, FEN1, GEN1, LIG4, MDC1, MLH1, MLH3,

MRE11, MSH2, MSH3, MSH6, NBN, PALB2, PARP1, PMS1, PMS2, POLE, POLE3, POLL, POLM, RAD50, RNMT, SEM1, SLX1A,

TDG, TOP3A, TOPBP1, UNG, XPC, XRCC2, XRCC4, XRCC6.

Tumors with mutations in both a High and a Low DDR gene were considered in the High Z score category and excluded from the

Low Z score category.

Gene expression signatures analysis
To calculate gene signatures profiles for each dataset, RNAseq expression data was obtained and filtered to the corresponding sam-

pleswithmutational data.We log (1 + x) transformed the data and used a robust scaling (median centered and scaled by inter-quartile

range) to normalize across samples. For each signature, we calculate the average expression of all genes within the signature and

then assign each sample a Z score of the basis of its expression relative to the entire cohort. Signatures used in analysis are given in

Table S2.

Proof of the friendship paradox for bipartite network
We can represent a network ofN nodes andm edges with anN3N adjacency matrix,A, where the entries of A are defined as follows�

1 if ði; jÞ ˛ ε

0 otherwise
;

where we use ε to denote the set of edges present in the graph, indexed by the pair of nodes connected by each edge. For bipartite

networks, we denote N1 to be the number of nodes of class 1 and likewise N2 the number in class 2, with N1 + N2 = N. In a bipartite

network, each edge (i,j) connects a node from class 1 with one from class 2. The degree ki of node i is given by the number of edges

connected to that node: ki =
P

jAij: We let the degree distribution pk give the fraction of nodes with degree k, representing the prob-

ability that a randomly chosen node will have that degree. We denote the class specific degree distributions as p1
k and p2

k to represent

the fraction of nodes within each class with a given degree. The overall degree distribution,pk, and the class specific degree distri-

butions are related by

pk =
p1
kN1 +p2

kN2

N

In our gene-sample network, we are interested in the average degree across all samples with a mutation in a given gene. We show

that this value, the average neighbor-of-a-gene degree, is typically greater than or equal to the average degree of the sample nodes in

the network, following a proof similar to that for unipartite networks in.35

We begin by computing the probability that, after following a randomly chosen edge in our bipartite network, we arrive at a node of

a given class with degree k. Without loss of generality we assume class 1 is our class of interest (the sample nodes). There are m
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edges connected to nodes of class 1, so the probability of ending at a particular nodewith degree k is k/m. Since there are such nodes

with degree k, the probability of following an edge to a class 1 node of degree k is

k

m
N1p

1
k =

k

CkD1
p1
k ;

where m=N1 = CkD1 gives the average degree for nodes of class 1. That is, the average neighbor degree distribution is weighted by a

factor of. We are more likely to choose a higher degree vertex by virtue of the simple fact that it has more edges connected to it. We

can then compute the average neighbor degree by

X
k

k
k

CkD1
p1
k =

X
k

k2

CkD1
p1
k =

Ck2D1
CkD1

:

We can compute the difference between the average neighbor degree and the average degree, restricted to nodes in class 1:

Ck2D1
CkD1

� CkD1 =
1

CkD1

�
Ck2D1 � CkD

2

1

�
=

1

CkD1
Var1ðkÞ;

where V ar1(k) is the variance of the degree distribution restricted to nodes of class 1. This is strictly non-negative and is zero only in

the case where all nodes of class 1 have the same degree. That is, except for the case where all nodes in the class have the same

degree, the average neighbor degree is greater than the average degree. Furthermore, we see that this difference is proportional to

the variance of the degree distribution of class 1, meaning that heavier-tailed class-restricted degree distributions give even bigger

differences, and thus might be even more likely to be misanalysed by a univariate statistic that inadvertently mixes the roles of these

two averages.
e5 Cell Reports Medicine 3, 100602, May 17, 2022


	A bipartite graph-based expected networks approach identifies DDR genes not associated with TMB yet predictive of immune ch ...
	Introduction
	Results
	The majority of genes, when mutated, are associated with elevated TMB by univariate test
	The friendship paradox accounts for why the majority of genes associate with elevated TMB by univariate testing
	Representing tumors and their mutated genes as a bipartite network facilitates development of a BiG-BETS to define DDR gene ...
	Mutations in low BiG-BETS DDR genes add predictive power for ICB response in TMB high tumors
	Mutation in low BiG-BETS DDR genes in TMB high tumors is not merely prognostic and is predictive across individual tumor types
	Tumors with mutation in low BiG-BETS DDR genes have enhanced STING activity

	Discussion
	Limitations of the study

	Synopsis
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials
	Data and code availability

	Experimental model and subject details
	Method details
	Description of the datasets
	The cancer genome atlas (TCGA) pan-cancer MC3 dataset
	IMvigor210
	Samstein et al. Cohort
	Weir meta-dataset

	DNA damage repair pathways
	Chromatin remodeling pathway
	Definition of high and moderate + high consequence mutations
	Bipartite-graph based-expected TMB score (BiG-BETS)

	Quantification and statistical analysis
	Survival and response analyses
	Gene expression signatures analysis
	Proof of the friendship paradox for bipartite network




