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SUMMARY

The diversity and heterogeneity within high-grade serous ovarian cancer (HGSC), which is the 

most lethal gynecologic malignancy, is not well understood. Here, we perform comprehensive 

multi-platform omics analyses, including integrated analysis, and immune monitoring on primary 

and metastatic sites from highly clinically annotated HGSC samples based on a laparoscopic triage 

algorithm from patients who underwent complete gross resection (R0) or received neoadjuvant 

chemotherapy (NACT) with excellent or poor response. We identify significant distinct molecular 

abnormalities and cellular changes and immune cell repertoire alterations between the groups, 

including a higher rate of NF1 copy number loss, and reduced chromothripsis-like patterns, higher 

levels of strong-binding neoantigens, and a higher number of infiltrated T cells in the R0 versus 

the NACT groups.

Graphical Abstract
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In Brief

High-grade serous ovarian cancer (HGSC) patients with no gross residual disease (R0) after 

primary surgery have the greatest improvement in clinical outcomes. A deep understanding of 

molecular and cellular heterogeneity of HGSC is lacking. Findings by Lee et al. highlight major 

molecular and cellular differences between clinically defined subgroups of HGSC.

INTRODUCTION

Ovarian cancer is a highly diverse disease with a high rate of overall mortality (Siegel et al., 

2015). High-grade serous ovarian cancer (HGSC) is the most common and aggressive type 

of epithelial ovarian cancer, exhibiting high levels of tumor heterogeneity and variable 

clinical outcomes (Jayson et al., 2014). Molecular abnormalities in HGSC include TP53 
mutations in virtually all tumors, somatic or germline BRCA mutations in ~25% (Burgess 

and Puhalla, 2014; Cancer Genome Atlas Research Network, 2011; Hennessy et al., 2010; 

Schrader et al., 2012), and extensive copy number changes and CCNE1 amplification 

(Cancer Genome Atlas Research Network, 2011; Patch et al., 2015; Walsh et al., 2011). The 

heterogeneity and apparent adaptability of the HGSC genome under selective pressure by 

chemotherapy likely explains the high rates of drug resistance (Bowtell et al., 2015; Koti et 

al., 2015; Vaughan et al., 2011). Despite prior efforts such as The Cancer Genome Atlas 

(TCGA) (Cancer Genome Atlas Research Network, 2011; Weinstein et al., 2013; Labidi-

Galy et al., 2017; Patch et al., 2015) and other analyses that were predominantly focused on 
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samples from patients with HGSC who had upfront debulking surgery, an understanding of 

the molecular and cellular heterogeneity of HGSC based on highly clinically annotated 

samples is lacking.

The extent of residual disease following upfront cytoreductive surgery for HGSCisone ofthe 

strongest prognosticfactors for progression-free and overall survival (du Bois et al., 2009; 

Winter et al., 2008). Neoadjuvant chemotherapy (NACT) followed by interval cytoreductive 

surgery has been offered as an alternative approach, especially where full cytoreductive 

surgery is not feasible (Ansquer et al., 2001). While primary complete gross resection (R0) 

is related to better clinical outcomes, it is unknown whether that benefit is the result of 

aggressive surgical efforts or biological differences inherent in disease that is amendable to 

complete resection. To address this question, a consistent approach to upfront management 

is needed. We implemented a quality improvement program using a validated laparoscopic 

scoring algorithm; this approach enables the collection of well-annotated samples prior to 

definitive surgery or chemotherapy (Nick et al., 2015; Fleming et al., 2018). In the current 

study, to assess molecular and cellular differences between clinically defined groups, we 

carried out a highly detailed analysis of primary tumors and multiple metastatic sites from 

patients with HGSC who had R0 resection versus those who were triaged to NACT, 

consisting of intravenous paclitaxel and carboplatin, and had either excellent or poor 

response. HGSC tissue samples were subjected to high-pass whole-genome sequencing 

(WGS), targeted deep sequencing (Chen et al., 2015), RNA sequencing (RNA-seq), reverse-

phase protein array (RPPA), mass spectrometry (MS)-based proteomics and 

phosphoproteomics, immune profiling, and integrated data analysis.

RESULTS

Patient Population

The study design and the demographic and clinical characteristics for the 30 patients with 

HGSC are described in Figure 1 and Table S1. The patient groups evaluated were as follows: 

R0, no visible residual disease after primary surgery (n = 10); NACT-PR, poor response to 

NACT (n = 10); and NACT-ER, excellent response to NACT (n = 10).

Somatic Mutation Analysis by WGS

We performed WGS analyses with average somatic coverage of 118X (from one primary 

and two metastatic tissue samples per patient) and germline coverage of 38X (from patient-

matched blood samples). For 75 samples with high-purity tumors (≥75% proportion of 

cancer cells), an average of 13,653 somatic variants from each sample were identified for the 

entire cohort. Within the coding regions, on average, 66 missense mutations, 4 nonsense 

mutations, 31 silent mutations, and 15 small InDels were found per sample. The mutation 

load was not statistically significantly different among the three groups or between the R0 

and the combined NACT-ER/PR groups (Figure S1A). Based on a known list of driver genes 

(Bamford et al., 2004; Cancer Genome Atlas Research Network, 2011), a driver mutation 

landscape was plotted (Figures 2A and S1B). Overall, 14 ovarian-cancer-associated genes 

were found mutated in our patient cohort. As expected, the most frequently mutated gene 

was TP53 in both primary and metastatic sites in all three groups. However, nonsense 
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mutations in TP53 were exclusively identified in the NACT groups, while in R0, most TP53 
mutations were missense mutations. Specifically, among all NACT-ER and NACT-PR cases 

including primary and metastatic sites, 36% and 15.4% carried nonsense mutations in TP53, 

respectively. Among all R0 cases, 62.5% carried TP53 missense mutations. Also, nonsense 

mutations in CSMD3 and PIK3CA were exclusively identified in both primary and 

metastatic sites in the NACT-PR group. When comparing primary and metastatic sites, the 

majority of the mutations (82%) in the driver genes were consistent. Next, utilizing all 

somatic mutations in our cohort, we identified two distinct mutation signatures that are 

highly correlated with Signature 3 and Signature 5 reported by the Catalogue of Somatic 

Mutations in Cancer (COSMIC) database (Figure S1C). Interestingly, both signatures were 

enriched in all three patient groups (Figure S1D). Signature 3 has been found in breast, 

ovarian, and pancreatic cancers and is strongly associated with germline and somatic 

BRCA1 and 2 mutations in ovarian cancers (Polak et al., 2017).

To address intra-patient tumor heterogeneity, we first compared the repertoire of somatic 

mutations identified in primary and metastatic sites from each patient (Figures S2A–S2C). 

Substantial heterogeneity was observed, with median percentages of trunk mutations of 23% 

in the R0 group, 31% in the NACT-ER group, and 29% in the NACT-PR group. We next 

performed clonal analysis for all the somatic mutations identified in WGS to determine the 

extent to which genotypically distinct clonal cell populations (referred to herein as “clones”) 

exist in the HGSC subsets (Figure S2D). The number of mutation clusters and the cellular 

prevalence of clones were estimated for each patient (both primary and metastatic sites). The 

number of clones, the size of major clones, and the cellular prevalence of major clones were 

compared among the groups. We observed large variations within each patient group, and no 

statistically significant differences were found between any of the groups. Next, we 

constructed phylogenetic trees of tumors for each group (Figures S2E–S2G). We observed 

three possible scenarios. One implies that a dominant clone seeds all metastases, where the 

primary tumor and all metastases share the same founding driver mutations. Another 

scenario implies that a subclone evolves and gives rise to all metastases. The third scenario 

implies that a new subclone with additional driver mutations evolves and seeds some 

metastases.

Copy Number and Structure Variations

Next, we examined copy number variations (CNVs) and structure variations (SVs) across 

the entire genome, and no significant differences in the number of CNV breakpoints were 

found among the three groups (Figures S3A and S3B). We also examined the frequency of 

CNVs in primary and metastatic sites in ovarian cancer genes for the three groups (Figure 

2B) and compared the enriched mutations of all genes and ovarian-cancer-related genes in 

the R0 compared to the NACT-ER/PR group (Figure 2C) and the NACT-ER compared to the 

NACT-PR group (Figure S3C). The most frequent CNVs in the R0 group were copy number 

gain/loss of CSMD3 (67%) and copy number loss of NF1 (54%), CDK12 (50%), and 

CCND2 (46%) in both primary and metastatic sites. In comparison, the most frequent CNVs 

in the NACT-ER group were copy number gains/losses of NOTCH3 (48%) and CCND2 
(44%) in both primary and metastatic sites, while the most frequent in the NACT-PR group 

were copy gains of CCNE1 (46%) and PIK3CA (42%) in both primary and metastatic sites. 
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Interestingly, copy number losses of NF1 were significantly lower in the NACT-ER/PR 

group (18%, p = 0.002), especially in the NACT-PR group (8%, p = 0.0004), than in the R0 

group (54%). In contrast, CNVs of AKT2 were more frequently observed in the NACT 

(NACT-ER, 48%; NACT-PR, 35%) than in the R0 (8%, p = 0.004) groups. We further 

performed copy number signature analysis and compared the similarity between reported 

copy number signatures in HGSC (Macintyre et al., 2018) and the seven signatures 

identified in our cohort (Figures S3D–S3H). Based on the signature exposure in each 

sample, no significant differences were observed among the R0, NACT-ER, and NACT-PR 

groups. Next, we examined differences in SVs and SV signatures reported in ovarian 

cancers. Based on the scores of five SV signatures in each patient, no significant patterns of 

clusters were observed among the three groups. We identified lists of SVs in ovarian-cancer-

associated genes for the three groups, and no recurrent SVs across patients within each 

group were observed.

Confirmation of WGS Findings by Deep Targeted Sequencing

While high-pass WGS is known to be quite reliable for identifying mutations, we also 

utilized high-depth targeted sequencing using the T200.2 panel to test for the consistency of 

sequencing results. The average sequencing coverage was 350X, which provided sufficient 

power to detect somatic mutations with low variant allele frequency (VAF). Very high 

correlation was obtained for VAF between WGS and T200.2 sequencing (Pearson 

correlation = 0.963, Spearman correlation = 0.964). The somatic mutations in cancer-related 

genes identified by WGS were confirmed by T200.2 sequencing (Figure S3I). The copy 

number profiles in ovarian cancer genes identified in the T200.2 panel were also consistent 

with the WGS results. Specifically, NF1 losses were identified in 58.3% of the R0, 20% of 

the NACT-ER, and 11.5% of the NACT-PR groups with the T200.2 panel, consistent with 

our WGS findings. We did not observe significant differences between CNVs in primary and 

metastatic sites, except those in the NACT-PR group; CNVs in CDK12 were enriched in 

primary compared to metastatic sites (primary, 56%; metastases, 12%; p = 0.03).

Spectrums of Genomic Structural Rearrangement

Given the role of chromothripsis in cancer development (Forment et al., 2012; Korbel and 

Campbell, 2013; Stephens et al., 2011), we next examined for chromothripsis-like patterns 

(CTLPs) and the status of telomere length (TL) across the groups. CTLPs were predicted 

and identified through copy number profiles for all samples. Examples of non-CTLPs and 

identified CTLPs are shown in Figure S4A. The number of copy number switches and log10 

likelihood ratios (log10LRs) were calculated, and we identified CTLPs from 20 out of 75 

samples. CTLPs in the R0 group showed fewer copy number switches and lower log10LRs, 

compared with the NACT-ER and NACT-PR groups (Figures 3A and 3B). In the R0 group, 

most CTLPs were detected on chromosomes 6 and 19, where CCNE1, NOTCH3, and AKT2 
are located. In the NACT groups, CTLPs were enriched on chromosomes 8 and 17, where 

TP53 and NF1 are located. In a parallel analysis, we also estimated the TLs for tumor and 

germline samples for each patient. To exclude the factors potentially affecting TLs other 

than cancer, the TL ratios of tumor versus germline were further calculated. Overall, the TL 

ratios were higher in the NACT-PR than in the NACT-ER and R0 groups, especially in 

primary tumors; these differences did not reach statistical significance (Figure S4B).
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Prediction of Neoantigens Using WGS Data

Given the importance of neoantigens derived from tumor-specific mutations in cancer 

immunity (Gubin et al., 2015; Schumacher and Schreiber, 2015), we next identified and 

compared the numbers of neoantigens in each tumor sample by predicting the major 

histocompatibility complex (MHC) class I peptide binding affinity with somatic mutations 

from WGS analysis. According to predicted binding affinity, strong- and weak-binding 

neoantigens were identified. The median numbers of all neoantigens per sample identified 

were 99, 81, and 66 in the R0, NACT-ER, and NACT-PR groups, respectively (Table S2). 

The neoantigen levels were significantly higher in both the R0 (p = 0.023) and NACT-ER (p 

= 0.033) groups than in the NACT-PR group (Figure S4C). Furthermore, when excluding 

predicted weak-binding neoantigens, the median numbers of neoantigens identified were 16, 

12, and 9 in the R0, NACT-ER, and NACT-PR groups, respectively. The R0 group showed a 

significantly higher level of strong-binding neoantigens than the NACT groups (p = 0.02; 

Figure 3C). The difference was even more significant when considering only primary tumors 

(p = 0.01). Additionally, we analyzed the correlations between the neoantigen level and 

other features including mutation loads, CNV loads, CTLPs, and mismatch repair (MMR) 

CNVs (Figure S4D). A strong positive correlation was observed between the level of strong-

binding neoantigens and mutation load (R = 0.68, p < 0.0001), which is consistent within all 

three groups. We also observed some minor positive correlations between the neoantigen 

level with CNV load (R = 0.29, p = 0.013) and MMR CNVs (R = 0.3, p = 0.001). However, 

these minor positive correlations varied across patient groups.

Identification of Differentially Expressed Genes (DEGs) by RNA-Seq

Next, we investigated gene expression differences among the R0, NACT-ER, NACT-PR, and 

NACT-ER/PR groups. Unsupervised hierarchical clustering was performed based on the 

3000 most variable genes, and three main clusters were found across the groups (Figure 

S5A). We identified 206 DEGs from the comparison between the R0 and NACT-ER/PR 

groups (Figure S5B; Table S3). Of the 206 DEGs in the R0 versus the NACT-ER/PR groups, 

67 were curated protein-coding transcripts (33 NM_ or 1 XM_) from NCBI RefSeq (Pruitt 

et al., 2005) (Figure 4A); these included POU3F3, NKX6–1, and PROK1, which were 

upregulated in the R0 compared to the NACT-ER/PR group. Interestingly, differential 

expression of noncoding RNAs (ncRNAs) miR-7–2 (significantly upregulated) and 

miR-3142 (significantly downregulated) was seen in the R0 group compared to the NACT-

ER/PR group (Figure S5C).

In the NACT-ER compared to the NACT-PR group, we observed 693 DEGs, including 263 

curated protein-coding transcripts, with FDR <0.1 and absolute L2FC >2 (Figure S5D; Table 

S3). Consistent with our CNV data, we found that NF1 mRNA was indeed significantly 

downregulated in the R0 (p = 0.03) compared to the NACT-ER/PR group (Figure 4F), 

corroborating our findings of NF1 CNV differences between the groups. Next, we identified 

54 differentially expressed ncRNAs in the NACT-ER compared to the NACT-PR group and 

14 DEGs between primary and metastatic tumors (FDR < 0.1 and absolute L2FC > 2) in all 

three groups (Table S3). Most DEGs were ncRNAs; only one predicted protein-coding 

transcript, TBC1D27, was significantly upregulated (p = 0.00002, q = 0.062) in the primary 

compared to metastatic sites for all three groups.
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To understand the differences in potential biological functions and pathways among the R0, 

NACT-ER/PR, NACT-ER, and NACT-PR groups, we performed WebGestalt enrichment 

analysis of Gene Ontology (GO) using 206 DEGs among groups. GO terms for biological 

process (BP), cellular components (CC), and molecular function (MF) were significantly 

enriched in the NACT-ER/PR group versus the R0 group and in the NACT-ER group versus 

the NACT-PR group (Figures S5E and S5F); the top 10 enriched GO terms are listed in 

Table S3. Notably, in comparison of GO terms between the NACT-ER/PR and R0 groups, 

the number of DEGs was significantly enriched in BP, including the regulation of epithelial 

cell differentiation and activation of immune response. However, we did not observe 

significant cancer-specific-related GO terms in the comparison of the NACT-ER and NACT-

PR groups. We also employed several web-based databases (KEGG, Kyoto Encyclopedia of 

Genes and Genomes; Reactome; and PANTHER, Protein ANalysis THrough Evolutionary 

Relationships) to identify enriched functional and signaling pathways using DEGs among 

the R0, NACT-ER, and NACT-PR groups (Table S3). Based on all DEGs between the R0 

and NACT groups, we identified an enrichment of gene sets including cadherin signaling 

pathway; we also observed an enrichment of cell adhesion molecules, transcription 

misregulation in cancer, and the Notch signaling pathway, but these lacked statistical 

significance. Interestingly, we observed significant enrichment in GPCR (G protein-coupled 

receptor) downstream signaling, olfactory signaling, and signaling by GPCR in the DEGs 

between the NACT-ER and NACT-PR groups by Reactome pathway analysis.

Differential Analysis of Global Proteomic and Phosphoproteomic Data

Using a microscaled tandem mass tag (TMT)-MS-based proteomic/phosphoproteomic 

workflow, we quantified 7290 total proteins in 87 ovarian cancer specimens and 12,914 total 

phosphosites in 66 specimens from the 30 patients, among which 101 proteins were found to 

be significantly altered (adjusted p < 0.05) in the NACT-ER/PR compared to the R0 groups 

(Figure 4B; Table S4), which, based on principle component analysis (PCA), served to 

explain 29.9% and 5.7% of the variance between these groups (Figure 4D). Signaling 

pathways supporting endocytosis, engulfment and cell spreading, and inhibition of cell death 

and RNA processing signaling were significantly altered in the NACT-ER/PR compared to 

the R0 group (Figure S6A). Among the significantly altered (p < 0.01) putative drug and 

drug-associated signaling targets, we identified calcium-transporting ATP2C1 and STAT3 to 

be elevated and HDAC6, MGMT, and FDPS to be decreased in the NACT-ER/PR versus the 

R0 groups. Differential analysis identified 71 significantly altered (adjusted p < 0.05) 

phosphosites in the NACT-ER/PR versus the R0 groups (Figure 4C; Table S4) that, based on 

PCA, served to explain 29.3% and 9% of the variance between these groups (Figure 4E). 

Pathway analyses of these altered phosphosites (p < 0.01) revealed cell death of connective 

tissue cell signaling to be activated and the formation of the cytoskeleton to be inhibited in 

the NACT-ER/PR versus R0 groups (Figure S6B). Among the significantly altered 

phosphosites (p < 0.05) in putative drug and drug-associated signaling targets, we identified 

S129 in SF3B1, S594 in FGA, and S706 in CD44 to be significantly elevated (p < 0.05) in 

the NACT-ER/PR versus R0 groups. Notably, we validated transcript-level evidence at the 

protein level that NF1 is significantly lower in abundance in the R0 versus NACT groups by 

both MS proteomics (p < 0.0005) (Figure 4G) and immunohistochemistry (IHC) assay (p < 

0.01) (Figure 4H). In addition, significantly downregulated proteins that were idenified by 
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TMT-MS analyses (i.e., MERLIN, moesin-ezrin-radixin-like protein; and ANNEXIN-1) 

were observed to have similar patterns of expression with the RPPA assay in the R0 

compared to the NACT groups (Figure S5G; Table S4).

We identified 37 proteins as significantly altered (adjusted p < 0.05) between the NACT-ER 

and NACT-PR groups (Figure S6C; Table S4) that, based on PCA, serve to explain 37.9% 

and 9.5% of the variance between these groups (Figure S6D). Pathway analyses of 

significantly altered proteins (p < 0.01) revealed the activation of DNA metabolism and 

cytokinesis signaling and the inhibition of apoptosis and cellular senescence in the NACT-

ER compared to the NACT-PR group (Figure S6E; Table S4). These data also revealed 

CDK4 to be significantly elevated (adjusted p < 0.05) in the NACT-ER compared to the 

NACT-PR group. Fifty-nine phosphosites were significantly altered (adjusted p < 0.05) 

between NACT-ER and NACT-PR tumor specimens (Figure S6F; Table S4) that, based on 

PCA, served to explain 42.1% and 7.2% of the variance between these groups (Figure S6G). 

Pathway analyses of these significantly altered phosphoproteomics data (p < 0.05) showed 

that the frequency of tumor and genitourinary tumor signaling was activated while cell 

migration signaling was inhibited in NACT-ER compared to NACT-PR patient tumors 

(Figure S6H; Table S4). Significant decreases in phosphorylation of multiple tyrosine 

kinases—namely, Y426 and T427 on YES1, Y394 and T395 on LCK, Y420 and T421 on 

FYN, Y419 and T420 on SRC, and S4520 and S4523 on LRP1—were quantified in the 

NACT-ER compared to the NACT-PR group.

Immune Analysis

We investigated whether different immune populations were associated with clinical 

characteristics of the tumors by immune profiling (Figure S7A) and observed significant 

differences among the groups in tumor area and all areas (tumor/non-tumor) (Figures 5A, 

5B, S7B, and S7C), as summarized in Table S5. We next focused on the percentage of T cell 

infiltration and found a significant increase in the number of infiltrated T cells in the R0 

(2.91%) compared to the NACT-ER/PR group (1.35%, p = 0.0442) in tumor area (Figure 

5C). We further divided T cell populations into helper T cells (CD4+), cytotoxic T cells 

(CTLs; CD8+), and regulatory T cells (Tregs; FoxP3+ or CD8+FoxP3+) in tumor and all 

areas of each group. We did not find differences in helper T cells in any area among the 

groups. However, there was a significant increase in the percentage of CTLs in all areas in 

the R0 (2.51%) compared to the NACT-ER/PR group (1.04%, p = 0.0438) (Figure S7D). No 

statistical differences were observed in Tregs (CD8+FoxP3+) among the groups. However, 

the R0 group (0.25%) had a significantly lower classic Treg (FoxP3+) count than the NACT-

ER group (0.89%, p = 0.0178) in the tumor area at the primary site only (Figures 5D and 

S7E). Additionally, we observed significantly decreased macrophage counts (CD68+/163+ 

cells) in the tumor area in the R0 (4.33%) compared to the NACT-ER/PR (7.56%, p = 

0.0063) and NACT-PR groups (9.07%, p = 0.0014) (Figure 5C); the same pattern was also 

noted for all areas (tumor/non-tumor) (Figure S7D). Interestingly, macrophage counts were 

significantly lower in the tumor area of the primary site of the R0 (4.26%) compared to the 

NACT-ER/PR (9.21%, p = 0.024) and NACT-PR groups (11.09%, p = 0.0191) (Figure 5D); 

the same pattern was seen for all areas as well (Figure S7E). Finally, we compared B cell 

populations among groups and found a trend toward significantly higher B cell infiltration in 
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the tumor area of the NACT-PR (0.31%) compared to the NACT-ER group (0.04%, p = 

0.0058) (Figures 5C and 5D). Collectively, these results demonstrate significantly increased 

infiltrated T cells in the R0 compared to the NACT-ER/PR group and increased 

macrophages and B cells in the NACT-ER/PR and NACT-PR groups compared to the other 

groups.

Integrated Analysis of Multi-omics Data

As a cross-validation, we inferred the composition of 22 immune cell types from the 

immune gene signature and the relative percentages of each type using RNA data (Figure 

6A). Using scores generated by CIBERSORT, we identified significantly different 

abundances of M2 macrophages (p < 0.01) and monocytes (p < 0.05) between the R0 and 

NACT-ER/PR groups (Figure 6B). We also identified a significant difference in abundance 

of resting CD4 memory T cells (p < 0.05) between primary and metastatic site tumors 

(Figure 6C). An integrated analysis identified MARCO, SLC2A5 and HMGA2 as co-

significantly altered (p < 0.01) at the protein and transcript levels in the NACT-ER/PR 

compared to the R0 group (Figure 6D). An integrated analysis identified KRT9 as 

significantly elevated (p < 0.01) in the NACT-ER compared to the NACT-PR group at both 

the protein and transcript levels (Figure 6E).

DISCUSSION

This is a report of high-depth multi-omics analysis of differences in molecular and cellular 

features of highly clinically annotated HGSC samples from primary and multiple metastatic 

sites. Our findings provide an understanding of the heterogeneity within HGSCs. 

Specifically, we found a significantly higher loss of the NF1 gene, RNA and protein product 

copies, lower numbers of CTLPs, and a significantly higher level of strong-binding 

neoantigens in the R0 than in the NACT groups. We found significantly increased T cell 

infiltration and decreased numbers of macrophages in the R0 group and identified significant 

differences in transcriptomes and proteomes in this group.

While molecular analyses of HGSC have been performed previously (Bowtell et al., 2015; 

Cancer Genome Atlas Research Network, 2011; Patch et al., 2015; Vaughan et al., 2011), all 

such studies included samples only from those who underwent upfront debulking surgery. 

Moreover, the initial clinical management of those patients was highly variable. Here, we 

focused on testing primary and metastatic tumor samples from patients managed under a 

systematic surgical algorithm (Fleming et al., 2018; Nick et al., 2015). With respect to the 

question of whether surgical effort resulting in R0 resection or underlying differences in 

tumor biology drive different clinical outcomes, our findings demonstrate that there are 

indeed substantial molecular and cellular differences in patients who underwent R0 tumor 

debulking compared to those triaged to receive NACT.

The biological mechanisms that might underlie NF1’s role as a biological marker for 

predicting R0 and NACT response are unknown. Although there is no prior report on the 

NF1 CNV in prediction of R0 versus NACT groups in cancers, evidence suggests that NF1 

plays an important role in the RAS/MAPK signaling pathway, tumorigenesis, and 

chemotherapy resistance in HGSC (Lau et al., 2000; Norris et al., 2018; Patch et al., 2015). 
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Consistent with a significant loss of NF1 CN and reduced CTLPs on chromosome 17, where 

NF1 is located, in the R0 group, we confirmed that the NF1 mRNA and protein levels were 

also significantly decreased in the R0 compared to the NACT-ER/PR group.

Another potentially important finding was the significantly higher level of a strong-binding 

neoantigen signature in the R0 compared to the NACT group. The increase in neoantigens is 

associated with infiltration of tumor immune cells such as T cells (McGrail et al., 2018; 

Schumacher and Schreiber, 2015). Importantly, we observed significantly more infiltrated T 

cells and fewer macrophages in the R0 compared with the NACT-ER/PR group and 

increased B cells in the NACT-PR compared to the NACT-ER group by immune 

assessments. Consistently, the deconvolution analysis using bulk RNA-seq data supported 

that there is a reduced macrophage cell population in the R0 compared to NACT-ER/PR 

group. Tumor-associated antigens have been considered for immunotherapeutic strategies, 

and a high correlation has been reported between tumor mutations and clinical benefits of 

immunotherapy targeting neoantigens in various solid tumors (Snyder et al., 2014) and in 

preclinical studies (Gubin et al., 2014; Kreiter et al., 2015). Importantly, we also identified 

significant differences in cancer-associated transcripts including ncRNAs (Dalton et al., 

2017; Li et al., 2016; Webster et al., 2009; Zhao et al., 2017) and significant proteome and 

phosphosite changes (Chihara et al., 2017; Li et al., 2018; Liu et al., 2015; Xue et al., 2014) 

in cancer-related and putative drug and drug-associated signaling targets among the groups 

in this study. Interestingly, significantly downregulated phosphosites of Src-family kinases, 

LCK, and YES1 were observed in the NACT-ER compared to the NACT-PR group; these 

have been implicated in supporting the maturation of developing T cell and migration 

signaling (Kim et al., 2009; Palacios and Weiss, 2004; Salmond et al., 2009). Although 

further understanding of the clinical significance and validation of these transcript and 

protein alterations in ovarian cancer progression is required, such changes could serve as 

markers for the prediction of chemotherapy response in patients with HGSC.

Most patients with HGSC present with widely disseminated disease. Our findings from the 

clonal phylogenetic analyses support an ability to unravel complex events of metastatic 

dissemination and the early genetic divergence of metastatic lineages from the primary site 

in HGSC (Reiter et al., 2018). Given the heterogeneity in response patterns to various 

therapies, it was unknown to what extent this could be explained by molecular differences 

between primary and metastatic sites. A case report previously reported intra-patient tumor 

heterogeneity in immune microenvironments in patients with HGSC (Jimenez-Sanchez et 

al., 2017). Interestingly, we found no significant genomic variations between primary and 

metastatic sites, implying that the biological processes underlying complex genomic 

instability, including CNV and SV, likely occur at an early point in the disease progression. 

Interestingly, nonsense mutations of CSMD3 and PIK3CA, frequently detected in HGSC 

(Cancer Genome Atlas Research Network, 2011) and in other types of ovarian cancers (Kuo 

et al., 2009), were detected exclusively in the NACT-PR and not the NACT-ER or R0 

groups. However, neither of these gene mutations has been investigated in HGSC in the 

context of chemotherapy response and clinical outcome.

Overall, more accurate predictors could lead to precise surgical therapy strategies; if 

verified, our discoveries in this study—molecular, protein, and immune signatures between 

Lee et al. Page 11

Cell Rep. Author manuscript; available in PMC 2020 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



various HGSC subgroups—may enhance the prediction of R0 resection and have prognostic 

and therapeutic implications for patients with HGSC.

STAR★METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

addressed by the Lead Contact, Anil K. Sood (asood@mdanderson.org). No reagents were 

generated in this study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients—This study was approved by the Institutional Review Board of The University of 

Texas MD Anderson Cancer Center, and all samples were collected after obtaining written 

informed consent from patients. Patients with suspected advanced primary ovarian cancer 

underwent a laparoscopic assessment to determine a metastatic disease burden score 

(modified Fagotti score) (Fagotti et al., 2008; Fleming et al., 2018) and acquire tissues 

(Figure 1A). We obtained fresh frozen tumor specimens from the MD Anderson 

Gynecologic Tumor Bank for 30 patients diagnosed with HGSC who had available a 

primary site specimen, two metastatic site specimens and matched blood samples obtained 

upon laparoscopic assessment. Following laparoscopic assessment, patients with predictive 

index value < 8 underwent primary tumor reduction surgery, and patients with predictive 

index value ≥ 8 underwent NACT followed by interval cytoreduction surgery. We selected 

10 patients with no visible residual disease after primary surgery (R0), 10 with poor 

response to NACT with carboplatin and paclitaxel (NACT-PR) and 10 with excellent 

response to NACT (NACT-ER) (Figure 1B). Patients’ demographic and clinical 

characteristics are described in Table S1. Response to NACT was considered poor if patients 

had stable or progressive disease after 3–4 cycles upon radiology evaluation and/or 

suboptimal interval cytoreduction after NACT according to the Response Evaluation Criteria 

in Solid Tumors (RECIST 1.1). Response to NACT was considered excellent if there was a 

complete response or only microscopic disease left at the time of interval surgery and/or 

pathology from interval surgery. Tumor biopsies and matched blood samples from the 30 

patients were subjected to analyses (Figure 1C).

METHOD DETAILS

Whole-genome sequencing—Genomic DNA from 90 frozen tumor tissues from 30 

patients (one primary site and two metastatic sites per patient) and matched blood samples 

as germline controls were prepared by the Biospecimen Extraction Resource of MD 

Anderson Cancer Center. In brief, genomic DNA was extracted from frozen tissues and 

blood using the QIAamp DNA Mini Kit and QIAamp DNA Blood Mini Kit (-QIAGEN), 

respectively, following the manufacturer’s instructions. Extracted genomic DNA was 

accurately quantified using Quant-iT PicoGreen dsDNA reagent and kit with a Qubit 3.0 

Fluorometer (Invitrogen). DNA libraries were prepared using a TruSeq DNA PCR-Free 

Library Prep Kit (Illumina) following the manufacturer’s instructions. Briefly, genomic 

DNA was diluted to 20 ng/mL using Resuspension Buffer (RSB, Illumina), and 55 mL was 

transferred to microTUBES (Covaris). The normalized genomic DNA was then sheared on 
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an LE220 focused-ultrasonication system (Covaris) to achieve a target peak of 450 bp with 

average power of 81.0 W (So-noLab settings: duty factor, 18.0%; peak incident power, 45.0 

W; 200 cycles per burst; treatment duration, 60 s; water bath temperature, 5°C – 8.5°C). The 

quality of the final DNA libraries was assessed with a High Sensitivity dsDNA Kit 

(Advanced Analytical Technologies, Inc.). Per the manufacturer’s protocol, the library peak 

size was in the range of 550 to 620 bp. The DNA libraries were quantified by real-time 

quantitative PCR, using the KAPA SYBR FAST Library Quantification Kit (KAPA 

Biosystems) optimized for the LightCycler 480 instrument (Roche). DNA libraries were 

then normalized to 2 nM and clustered on the Illumina cBot 2 at 200 pM using a HiSeq X v2 

flow cell and the HiSeq X HD Paired-End Cluster Generation Kit v2. Paired-end sequencing 

was performed with the HiSeq X HD SBS Kit (300 cycles) on the Illumina HiSeq X.

Tumor purity and WGS data analysis—Samples with low tumor purity (< 75% 

proportion of cancer cells) were excluded from the estimation of tumor sample purity by 

WGS results after purity filtering. Therefore, 75 tumor samples with a high level of purity 

from 28 patients (9 R0 group patients, 9 NACT-ER and all 10 NACT-PR) were incorporated 

into the downstream analysis of WGS data. Pair-end sequencing reads in “fastq” format 

were generated from BCL raw data using Illumina CASAVA (Consensus Assessment of 

Sequence and Variation) software. The reads were aligned to the hg19 human reference 

genome using the BWA software package (Li and Durbin, 2009) followed by removal of the 

duplicate reads using Picard tools (http://broadinstitute.github.io/picard/), and local 

realignments were performed using the GATK toolkit (McKenna et al., 2010). The BAM 

files were then used for downstream analysis.

Somatic mutation detection—The MuTect method (Cibulskis et al., 2013) was used to 

identify somatic point mutations, and the Pindel tool (Ye et al., 2009) was used to identify 

somatic insertions and deletions. A series of post-calling filtering algorithms were applied 

for somatic mutations: (a) total read count in tumor sample ≥ 20, (b) total read count in 

germline sample ≥ 10, (c) VAF (variant allele frequency) ≥ 0.05 in tumor sample and ≤ 0.02 

in matched normal sample and (d) population frequency threshold of 1% for filtering out 

common variants in the databases dbSNP129 (Sachidanandam et al., 2001), 1000 Genomes 

Project (Abecasis et al., 2012), Exome Aggregation Consortium (Lek et al., 2016) and 

ESP6500 (Fu et al., 2013).

Clonal population estimation in tumors—The Sequenza package (Favero et al., 2015) 

was used to estimate tumor cellularity and ploidy and to calculate an allele-specific copy 

number profile for each sample. The PyClone model (Roth et al., 2014) was used to identify 

and quantify clonal populations in tumors. Mutant-allele tumor heterogeneity (MATH) 

scores were calculated as a measurement of intratumor genetic heterogeneity (Mayakonda et 

al., 2018; Mroz et al., 2015). To construct phylogenetic trees, functional mutations were 

converted into binary format, with 1 being mutated and 0 otherwise. Ancestors were 

germline DNA, assuming no somatic mutations, while germline mutations in BRCA1/2 
were included. Phylogenetic trees were constructed using the multistate discrete-characters 

Wagner parsimony method using the PHYLIP program (Retief, 2000). The trees were 
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redrawn with relative trunk and branch lengths proportional to the number of mutations for 

visualization purposes.

Copy number variation and structure variation detection—CNVs were identified 

using HMMcopy (Ha et al., 2012). The copy number log2 ratios of tumor versus matched 

normal samples were calculated and then subjected to segmentation using circular binary 

segmentation (Olshen et al., 2004). A cutoff of log2 ratio < −0.4 was applied to identify 

copy losses, and log2 ratio ≥ 0.4 was applied for copy gains. Copy number signatures were 

identified based on the components described in the CNsignatures algorithm (Macintyre et 

al., 2018). SVs were called by three methods: LUMPY (Layer et al., 2014), BRASS (https://

github.com/cancerit/BRASS) and BreakDancer (Fan et al., 2014). The SVs that appeared in 

normal samples were filtered out. To reduce false-positive rates, only SVs identified by at 

least two methods were kept. SV signatures for ovarian cancers were calculated, as 

described previously (Hillman et al., 2018). Chromothripsis-like patterns were identified by 

the CTLPScanner server (Yang et al., 2016) with the filtering of: (a) number of copy number 

switches ≥ 20 and (b) log10 likelihood ratio ≤ 8.

High-depth targeted sequencing analysis—We performed high-depth targeted 

sequencing (T200.2 panel) as previously described (Chen et al., 2015), and genomic DNA 

from each sample was prepared as described above for WGS. Briefly, the aliquots of 

genomic DNA were re-quantified by PicoGreen (Invitrogen) and quality was assessed using 

a 2200 TapeStation system (Agilent). Then genomic DNA was sheared by sonication using a 

Covaris E220 instrument with the following conditions: pPeak incident power, 175 W; duty 

cycle, 20%; intensity, 5; cycles per burst, 200; and 120 s. To ensure the proper fragment size, 

samples were checked on TapeStation using the High Sensitivity DNA Kit (Agilent). The 

sheared DNA proceeded to library prep using a KAPA Hyper Prep Kit following the “with 

beads” manufacturer protocol. PCR primers were removed by using 1.8x volume of 

Agencourt AMPure PCR purification kit (Agencourt Bioscience Corporation). At the end of 

the library prep, samples were analyzed on TapeStation to verify correct fragment size and 

to ensure the absence of extra bands. Samples were quantified using a KAPA qPCR 

Quantification Kit (KAPA Biosystems). Equimolar amounts of DNA were pooled for 

capture (2–6 samples per pool). Equimolar amounts of DNA were pooled for capture (8–16 

samples per pool). Global copy number selected areas were also captured. We selected for 

capture 323 genes that are clinically relevant in cancer on the basis of mutational data and 

the COSMIC database (Bamford et al., 2004) and TCGA. Global copy number selected 

areas were also captured. We designed biotin-labeled probes with Roche NimbleGen for 

capturing target regions (all exons in those 323 genes plus copy number regions) and 

followed the manufacturer’s protocol for the capture step. The captured libraries were 

sequenced in 100-bp paired-end mode using a HiSeq 2000 system (Illumina) on a TruSeq v3 

paired-end flow cell, according to the manufacturer’s instructions, at a cluster density of 

700–1000K clusters/mm2. Sequencing was performed on a HiSeq 2000 for 2 × 100 paired 

end reads with a 7 nt read for indexes using Cycle Sequencing v3 reagents (Illumina). The 

resulting BCL files containing the sequence data were converted into “.fastq.gz” files and 

individual libraries within the samples were de-multiplexed using CASAVA 1.8.2 with no 

mismatches. All regions were covered by > 20 reads.
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Telomere length estimation and comparison among groups—TL was estimated 

with TelSeq software (Ding et al., 2014) for both tumor and normal samples for each patient. 

To exclude the factors that affect telomere length other than cancer, the TL ratio was further 

calculated as log2 (TL_tumor/TL_normal). TL ratios were compared among the R0, NACT-

ER and NACT-PR groups using the Wilcoxon signed-rank test.

Neoantigen prediction in tumors—Neoantigens were predicted based on somatic 

mutations, including both SNVs and InDels. The binding affinity was predicted by the 

NetMHCcons server (Karosiene et al., 2012). For any neoantigens, the binding affinities 

were predicted for all MHC types. For each MHC type, binding affinities were predicted on 

both wild-type and mutant sequences. The peptide was identified as a strong binder if the 

%Rank (rank of the predicted affinity compared to a set of 400.000 random natural peptides) 

was below 0.5% or the binding affinity (IC50) was below 50. The peptide was identified as a 

weak binder if the %Rank was between 0.5% and 2% or the binding affinity (IC50) was 

between 50 and 500. Here, we only included the neoantigens that showed weak and strong 

binding in the mutant but not the original wild-type sequence. The numbers of weak- and 

strong-binding neoantigens were compared between patient groups. The Wilcoxon rank sum 

test was used to determine whether there were statistically significant differences between 

groups.

RNA sequencing analysis—RNA sequencing (RNA-seq) was performed in the MD 

Anderson Cancer Genomics Core Laboratory as previously described (Liu et al., 2009). 

Total RNA from 89 frozen tissues from 30 patients was prepared, and the capture step was 

performed using whole-exome biotin-labeled probes from Roche NimbleGen (Exome V3) 

and following the manufacturer’s protocol; the remaining sample did not have an adequate 

amount of tissue. Total RNA was quantified by PicoGreen (Invitrogen), and quality was 

assessed using a 2200 TapeStation system (Agilent). RNA from each sample (10–100 ng) 

was converted to double-stranded cDNA using an Ovation RNA-Seq System V2 kit 

(NuGEN). The cDNA library was prepared as described above for high depth sequencing, 

and we used whole-exome biotin-labeled probes from Roche NimblegGn (Exome v3.0) and 

followed the manufacturer’s protocol for the capture step. Sequencing proceeded as 

described above for the high depth sequencing analysis.

Sequencing proceeded as described above for the high-depth sequencing analysis. Raw 

RNA-sequencing data of 89 samples were converted to fastq files and aligned to the 

reference genome (hg19) using the Spliced Transcripts Alignment to a Reference (STAR) 

algorithm (Dobin et al., 2013), and the reads quality was evaluated with FastQC and 

Qualimap tool (Okonechnikov et al., 2016). RNA-seq data were excluded for the 15 out of 

89 samples with low tumor purity as estimated by WGS; the remaining 74 samples were 

subjected to downstream analysis. The R package DESeq2 was used for data processing, 

normalization and differential expression analysis following standard procedures (Love et 

al., 2014). Each gene-level htseq-count table contained the read counts of 57,798 genes with 

gene_ids. The gene counts were normalized using the scaling factor method in DESeq2. If 

the number of over-lapping reads of any given gene was less than 1 per million total mapped 

reads for all samples, this gene was excluded from further analysis. In this way, 25,841 
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(44.7%) genes were removed. An unsupervised hierarchical clustering analysis was 

performed using the Pearson correlation coefficient as the distance metrics and the Ward’s 

linkage rule using the 3000 genes with the largest standard deviations (SD). DESeq2 was 

used to identify the differentially expressed genes (DEGs) and calculate the FDR, and a 

cutoff of absolute log2-fold change (L2FC) > 2 and FDR < 0.1 were used to define the 

DEGs. Functional analyses and pathway analyses were further performed using a Web-based 

gene set analysis toolkit (WebGestalt) (Wang et al., 2013; Zhang et al., 2005) with the DEGs 

lists obtained from DESeq2 for gene ontology (GO) analysis. Pseudogenes and noncoding 

RNAs were excluded from the anlyses. Functional annotations were based on the GO 

database, including the biological process, cellular component and molecular function. 

Pathway analyses were based on multiple databases: KEGG (https://www.kegg.jp/), 

Reactome (https://reactome.org/) and PANTHER (http://www.pantherdb.org/). The 

overrepresentation enrichment analysis was used to evaluate the enrichment of functional 

groups and pathways.

Reverse phase protein array (RPPA) analysis—To collect protein expression data, a 

Reverse Phase Protein Array (RPPA) assay was performed at the MD Anderson Functional 

Proteomics Reverse Phase Protein Array (RPPA Core, as described previously (Cheung et 

al., 2011; Li et al., 2017; Liang et al., 2012; Wang et al., 2017) using 81 frozen tumor tissues 

from patients; the remaining 9 samples did not have an adequate amount of tissue. We also 

examined the phosphorylation status of proteins using antibodies specific to particular 

proteins or phosphorylated forms of proteins because the majority of antibodies used in 

RPPA analyses are preselected for signaling pathways that are well known to be involved in 

tumor development. The samples were probed with 297 antibodies in total. The signal 

intensities on the RPPA arrays were quantitated using MicroVigene software (VigeneTech) 

and processed using the R package Super-Curve (version 1.01; https://

bioinformatics.mdanderson.org/public-software/archive/oompa/), which generated the 

relative log2 expression value for each protein.

Protein levels for each sample were determined by interpolating each dilution curve 

produced from the densities of the 5-dilution sample spots using SuperCurve software. All 

relative protein levels were normalized for protein loading, transformed to linear values and 

log2-transformed. The 14 samples with low tumor purity were excluded from further 

downstream analyses. A mixed-effect model was fit to each normalized protein level with 

response group and tissue type as main-effect covariates and patients as the random effect 

covariate. We used t tests to test against the null hypothesis of no difference in protein 

expression between any two groups. The Benjamini-Hochberg method was used to control 

the FDR. Next, protein network analysis was performed on 16 differentially expressed 

proteins using the GeneMANIA server (Warde-Farley et al., 2010). The nodes in the 

resulting network represent the proteins, and the edges represent the protein-protein 

interactions. Four types of direct interactions were selected to build the network: physical 

interactions, co-localization, pathway and genetic interactions. The network edges were 

weighted by the corresponding data source with the adaptive network weighting method by 

GeneMANIA.
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Specimen preparation for proteomics—Laser microdissection was used to harvest 

whole tissue representations (cancer and stroma combined) of each specimen, which were 

digested with trypsin using pressure cycling technology (PCT, Pressure Biosciences, Inc.) 

from 87 frozen tissues from 30 patients. Briefly, tissue specimens were sectioned (8 μm) by 

microtome onto polyethylene naphthalate membrane slides and hematoxylin-eosin stained. 

Laser microdissection was utilized to harvest whole tissue representations of each specimen 

(cancer and stroma combined) prior to proteomic sample preparation, with a minimum 

selected total area goal of 65,000,000 μm2 from 8 μm thick sections, avoiding areas of 

necrosis and blood. The laser-microdissected harvests were collected directly into 

microcentrifuge tubes containing 50 μL liquid chromatography (LC)/mass spectrometry 

(MS)-grade water for proteomic analysis. Tissue specimens were stored in a −80° C freezer 

until sample preparation. Tissue harvests were transferred to a Pressure Cycling Technology 

(PCT, Pressure BioSciences, Inc) microtube containing 20 μL of 100 mM triethylammonium 

bicarbonate (TEAB), 10% acetonitrile. The samples were incubated at 99° C for 30 min 

followed by 50° C for 10 min. Tissues were digested by adding SMART trypsin (Ther-

moFisher Scientific Inc) at a ratio of 1 μg per 30,000,000 μm2 tissue by employing PCT, 

where each sample was cycled 60 times between 45,000 psi for 50 s and atmospheric 

pressure for 10 s at a constant temperature of 50° C. Each protein digest was transferred to a 

clean 0.5 mL microcentrifuge tube, vacuum dried, and re-suspended in 50 μL 100 mM 

TEAB. Final digest recoveries were determined by colorimetric assay (Pierce BCA Protein 

Assay Kit). Peptide (50 mg) from each sample was labeled with a unique isobaric tandem 

mass tag (TMT) label according to the manufacturer’s instructions (TMT-11-plex Isobaric 

Label Reagent Set, ThermoFisher Scientific). A reference sample, generated by pooling 

equivalent amounts of peptide digests from each of the patient samples in the cohort, was 

labeled with TMT “Channel” 126 and included in each TMT-11-multiplex (e.g., reference 

standard Channel 126 + 10 unique samples occupying Channels 127N-131). Each TMT-11 

multiplex set of clinical samples was constructed in a randomized fashion. After quenching, 

each TMT-11 multiplex set of samples was combined and vacuum dried to approximately 80 

mL.

Basic reversed-phase liquid chromatographic (bRPLC) fractionation—Each 

TMT-11 multiplex set of samples was loaded onto a C-18 trap column in 10 mM NH4HCO3 

(pH 8.0) and fractionated by bRPLC into 96 fractions through development of a linear 

gradient of acetonitrile (0.69% acetonitrile/min). Thirty-six concentrated fractions were 

generated by pooling the samples in a serpentine manner. Ten percent (volume) of each 

fraction was removed for liquid chromatography-tandem mass spectrometry (LC-MS/MS). 

The remaining 90% (volume) of the 36 fractions was pooled into 12 fractions for serial 

phosphopeptide TiO2 enrichment followed by iron immobilized metal ion affinity 

chromatography (Fe-IMAC). Briefly, peptide fractions were vacuum dried, re-suspended in 

TiO2 binding/equilibration buffer and bound to TiO2 affinity spin tips (High-Select TiO2 

Phosphopeptide Enrichment Kit, Thermo Fisher Scientific), and sample flow-through and 

washes were reserved for subsequent enrichment by Fe-NTA (nitrilotriacetic acid) affinity 

chromatography (High-Select Fe-NTA Phosphopeptide Enrichment Kit). As a quality 

control analyses, we investigated the enrichment of phosphotyrosine-containing peptides 

resulting from this dual enrichment strategy and found that we recover these at a very similar 
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relative level (1.3%) as to similar dual enrichment strategies employed previously, such as 

from the Mann lab where they observed 1.8% phosphotyrosyl-containing peptides (Olsen et 

al., 2006). Notably, tissue samples organized in TMT sample plexes 11 through 14 exhibited 

low overall peptide yields and were thus analyzed using fewer concatenated peptide digest 

fractions, i.e., 12 fractions for plexes 11 through 13 and 24 fractions for plex 14 relative to 

the 36 total fractions analyzed for global proteomics across sample plexes 1 through 10. As 

sample yields were below SOP expectations for sample plex 11 through 14, phosphopeptide 

analyses for the samples were omitted from data analyses downstream.

LC-MS/MS proteomics—The TMT-11 sample multiplex bRPLC fractions (36 total 

fractions for global proteomics and 12 fractions for phosphopeptides serially enriched by 

TiO2 and Fe-IMAC) were analyzed by LC-MS/MS employing a nanoflow LC system 

(EASY-nLC 1200, Thermo Fisher Scientific) coupled online with an Orbitrap Fusion Lumos 

Tribrid mass spectrometer (Thermo Fisher Scientific). In brief, each sample (5 mL) was 

loaded on a nanoflow high-performance LC system outfitted with a reversed-phase trap 

column (Acclaim™ PepMap™ 100 C18, 2 cm length, nanoViper Trap column, Thermo 

Fisher Scientific) and a heated (50°C) reversed-phase analytical column (Acclaim™ 

PepMap™ RSLC C18, 2 μm, 100Å, 75 μm × 500 mm, nanoViper, Thermo Fisher Scientific) 

connected online with an Orbitrap mass spectrometer. Peptides were eluted by developing a 

linear gradient of 2% mobile phase B (95% acetonitrile with 0.1% formic acid) to 32% 

mobile phase B within 120 min at a constant flow rate of 250 nL/min. High-resolution (R = 

60,000 at m/z 200) broadband (m/z 400–1600) mass spectra (MS) were acquired, from 

which the top 12 most intense molecular ions in each MS scan were selected for high-energy 

collisional dissociation (HCD, normalized collision energy of 38%) acquisition in the 

Orbitrap at high resolution (R = 50,000 at m/z 200). Monoisotopic precursor selection mode 

was set to “Peptide,” and MS1 peptide molecular ions selected for HCD were restricted to z 

= +2, +3 and +4. The radio frequency (RF) lens was set to 30%, and both MS1 and MS2 

spectra were collected in profile mode. Dynamic exclusion (t = 20 s at a mass tolerance = 10 

ppm) was enabled to minimize redundant selection of peptide molecular ions for HCD.

Quantitative Proteomic Data Processing Pipeline for Global and 
phosphoproteome analyses—Peptide identifications were generated by searching 

the .raw data files with a publicly available, non-redundant human proteome database 

(Swiss-Prot, Homo sapiens [https://www.uniprot.org/, downloaded 12/01/2017]) appended 

with porcine trypsin (Uniprot: P00761) and iRT peptide (Escher et al., 2012) sequences 

using Mascot (Matrix Science) and Proteome Discoverer (Thermo Fisher Scientific) 

software. The .raw data files corresponding to each LC-MS/MS injection per TMT-11 

multiplex were searched using the following parameters: precursor mass tolerance of 10 

ppm, fragment ion tolerance of 0.05 Da, a maximum of two tryptic miscleavages, static 

modification for TMT reporter ion tags (229.1629 Da) on N-termini and lysyl residues, and 

dynamic modifications for oxidation (15.9949 Da) on methionine residues, as well as 

phosphorylation (79.9663 Da) on seryl, threonyl or tyrosyl residues for phosphoproteome 

analyses. The resulting peptide spectral matches (PSMs) were filtered using an FDR < 1.0% 

(q-value < 0.01), as determined by the Percolator (Käll et al., 2007) module of Proteome 

Discoverer. Phosphoproteome search results were further analyzed by the ptmRS node (Taus 
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et al., 2011) within Proteome Discoverer as a confidence measure for the post-translational 

modifications identified. TMT reporter ion intensities were extracted using Proteome 

Discoverer at a mass tolerance of 20 ppm, and PSMs lacking a TMT reporter ion signal in 

TMT channel m/z 126 (TMT-126, the pooled study reference combined from all patient 

sample digests), PSMs lacking TMT reporter ion intensity in all TMT channels, or PSMs 

exhibiting an isolation interference of ≥ 50% were excluded from downstream analyses. 

Log2-transformed TMT reporter ion ratios corresponding to individual patient tissue 

samples were calculated for each PSM against the pooled reference standard (TMT-126 

channel). Log2-transformed PSM abundance distributions were normalized by calculating 

the mode-centered z-score transformation adapted from previous study (Mertins et al., 

2016), for each channel in the TMT-11 multiplex as follows: normalized PSM (Log2Ratio) = 

[PSM (Log2Ratio) – ModeCenter PSM (Log2Ratio) / s PSM (Log2Ratio). Briefly, this 

method normalizes log-transformed PSM abundances for each patient sample channel by 

calculating the mode log ratio as well as the standard deviation for the entire distribution of 

PSMs quantified in a patient sample channel. The log ratio intensity of each PSM quantified 

for a given patient channel is then normalized by subtracting the mode log ratio and then 

dividing by the standard deviation of all PSMs quantified for a given PSM per patient 

channel. For global protein-level abundance, the abundances of proteins identified by a 

unique PSM (i.e., in which a PSM maps uniquely to a single protein accession) were 

determined by calculating the median log2-transformed abundance ratios of all such PSMs. 

The abundances of PSMs mapping to multiple proteins (i.e., “multi-mapper” PSMs) were 

compared to mapped unique protein abundances using a mean-squared-error approach to 

assign them to unique proteins based on comparative abundance analyses. Briefly, mean 

squared log2-transformed abundance ratios (Allison et al., 2019; Tarney et al., 2019) were 

calculated for multi-mapper PSMs with intensity data observed in R 50% of all TMT 

channels for a given TMT sample plex; redundant and multiply charged versions of a given 

PSM were considered unique biochemical events. Multi-mapper PSMs were assigned to the 

corresponding unique protein accessions exhibiting the smallest difference in relative 

abundance levels comparatively. Multi-mapper PSMs mapping to protein accessions not 

identified by any unique PSMs were excluded from downstream analyses. This strategy 

leverages quantitative data collected for unique peptides (in this case 95.2% of total PSMs 

identified against the non-redundant SwissProt human proteome database that we searched 

our data against) to identify parent proteins of co-measured non-unique peptides (in this case 

representing 4.8% of total PSMs identified). Protein-level abundance was calculated from 

normalized, median log2-transformed TMT reporter ion ratio abundances from a minimum 

of two PSMs corresponding to a single protein accession. The performance of a subset of six 

patient samples labeled as independent technical replicate channels was assessed by direct 

comparison of proteins co-quantified between replicate samples; all patient samples 

exhibited Spearman Rho > 0.85 ± 0.03 except replicates for patient sample PR-R0-4-1 (R = 

0.52) which was thus removed from consideration in downstream analyses. Normalized 

log2-transformed protein-level abundances for each TMT-11 multiplex were merged, and 

protein-level abundances for proteins not quantified in all patient samples, but in ≥ 50%, 

were imputed using a k-nearest neighbor (k-NN) strategy adapted from previous publication 

(Mertins et al., 2016) using the pamr (Prediction Analysis for Microarrays) R package 

(Lazar et al., 2016). The abundances of phosphorylated (phospho)-PSMs were assembled at 
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the level of discrete phosphosites that map to a unique protein using a tiered strategy aimed 

at defining high- and low-confidence phospho-PSMs. First, TMT reporter ion intensities 

were processed for phospho-PSMs as described above to calculate normalized, log2-

transformed abundance ratios of phospho-PSMs for a given patient sample. Phospho-PSMs 

that mapped to unique proteins were assigned to those protein identifiers. Multi-mapper 

phospho-PSMs were assigned to all proteins that were co-identified in companion global 

proteome data. Multi-mapper phospho-PSMs that did not map to a unique protein in global 

proteomic data were assigned to the first protein accession that a given phospho-PSM was 

assigned to by database search. The number and amino acid positions of phosphosites that 

were identified in the database search for a given phospho-PSM were compared with 

phosphosite positions predicted by the ptmRS algorithm. A high-confidence phospho-PSM 

was determined when all phosphosites identified by database search also exhibited > 50% 

probability of being the “best” predicted phosphosite for a given phospho-PSM. A low-

confidence phospho-PSM was determined when any phosphosite identified by database 

search was not predicted as a phosphosite or exhibited < 50% probability of being predicted 

as the “best” phosphosite. Low-confidence phospho-PSM candidates were further prioritized 

using a tiered strategy in which unique phosphosite variants identified for the same phospho-

PSM event were selected based on the highest ptmRS probability score that exhibited the 

lowest search engine rank in the TMT-11 patient sample plex with the greatest number of 

total PSMs. Normalized log2-transformed protein-specific phosphosite abundances were 

determined by calculating the median abundance of phospho-PSMs exhibiting the same 

phosphosite as well as methionine oxidation state. Phosphosites quantified redundantly as 

both low- and high-confidence versions were further filtered to prioritize only high-

confidence phosphosites for downstream analyses. For phosphosites co-identified in 

companion global proteomic data, median log2-transformed, protein-specific phosphosite 

abundances were also normalized to the total protein abundance quantified in global 

proteome analyses.

Differential analyses of global and phosphosite data—Differential analyses of 

neurofibromin (NF1) global protein abundance were performed using Mann-Whitney U rank 

sum testing in MedCalc (version 19.0.3). Phosphosite data were filtered prior to differential 

analyses so that phosphosites were measured in ≥ 50% of the comparator cohort, i.e., NACT-

ER versus NACT-PR and NACT-ER/PR versus R0 patients. Differential analyses of global 

and phosphosite TMT-11 data matrixes were performed for patient samples of interest using 

the LIMMA package (version 3.8) (Ritchie et al., 2015) in R (version 3.5.2). Phosphosite 

data were pre-filtered for protein and phosphosite alterations passing LIMMA adjusted p 

value < 0.05; these alterations were prioritized for downstream analyses. Significant protein 

and phosphosite alterations were visualized in heatmaps and by principle component 

analysis (PCA) using default settings in the ClustVis web tool (Metsalu and Vilo, 2015). To 

investigate the impact of imputation on significantly altered protein features used for 

principle component analyses, we reviewed proteins significantly altered between NACT-

ER/PR versus R0 patients (n = 104) and find that 53 of these alterations were imputed in as 

few as two and as many as forty-five cases across our patient cohort (n = 87). We performed 

PCA analyses of the 51 non-imputed protein alterations among this list and compared 

variances for this limited feature set for the first two principle components (PC1 = 33.9% 
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and PC2 = 6.8%) relative to variance observed for the 104 total protein alterations (Figure 

4D, PC1 = 29.6% and PC2 = 5.4%), between NACT-ER/PR versus R0 patients. We find 

these variances to not be significantly different (MWU p = 0.667). Functional inference 

analyses were performed for significantly altered proteins and phosphosites (significance 

defined as LIMMA p value < 0.01 and exhibiting a log2 fold-change cut-off ± 1.5 proteins) 

using Ingenuity Pathway Analysis. Significantly enriched diseases and biofunctions 

predicted to be activated or inhibited were prioritized for further analyses. This strategy was 

intended to expand the feature set to investigate overarching signaling and pathway 

alterations between these patient cohorts.

Data analysis of targeted sequencing—A customized pipeline was applied to analyze 

the high-depth targeted sequencing results, which was adopted from tools that are applied to 

cancer genome sequencing projects such as TCGA but implemented with further 

optimization for deep clinical sequencing, as we previously described (Chen et al., 2015). 

Briefly, we aligned the reads to human reference assembly hg19 using BWA and Picard 

(DePristo et al., 2011). We then used the MuTect and Pindels algorithms against a pooled 

common normal reference to call high-confidence mutations. The same public databases as 

described in WGS analysis were used to further remove the germline polymorphism with a 

population frequency cutoff of 0.5%. Copy number alterations were identified using an in-

house R package as previously described (Takahashi et al., 2018). A cutoff of log2 ratio ≤ 

−0.4was applied to identify copy losses and log2 ratio ≥ 0.4 was applied for copy gains.

Immunohistochemical analysis—50 paraffin sections from the R0 (n = 24) and NACT-

ER/PR (n = 26) groups were used for the validation of NF1 protein expression by 

immunohistochemistry assay (IHC), and IHC was performed in the MD Anderson Research 

Histology Core Laboratory. Briefly, the slides were incubated with a primary antibody 

Neurofibromin 1 (1:150, Abcam) for 8 minutes, and then detected using Leica Bond 

Polymer Refine Detection Kit according to manufacturer’s instuctions (Leica Biosystems). 

The quantification of NF1 protein expression by IHC in the FFPE sections, each slide was 

independently evaluated and scored by three independent investigators including a board-

certified pathologist on blinded samples according to expression level scoring matrix (Figure 

S8), and NF1 expression score (H-score, range 0–300) was determined by multiplying the 

percentage of positive cells.

Immune-profiling analysis—Opal multiplex staining was performed for immune 

infiltrate analysis. In brief, Opal multiplex allowed for the simultaneous evaluation of seven 

markers (CD4, CD8, CD20, FoxP3, cytokeratin, CD68/163 and DAPI) in a single tissue 

section. Multispectral imaging was applied to the seven-marker stained samples. An average 

of five representative images per tissue sample was obtained. After image capture, spectral 

unmixing was performed to separate raw images into individual fluorophores. The spectrally 

unmixed images were then analyzed to identify different cellular phenotypes, which allowed 

for the evaluation of the regulatory T cell population identified by CD8+FoxP3+ positivity 

(Figure S7A). All other cells not defined by our phenotyping categories (blood vessels, 

nerves) were grouped into an “other” category. Finally, tumor epithelial versus non-tumor 

areas of each specimen were distinguished using a tissue segmentation algorithm. After cell 
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phenotyping, comparisons were drawn between abundance and distribution of immune 

infiltrates for the R0 (n = 25, 10 primary and 15 metastatic sites), NACT-ER/PR (n = 28), 

NACT-ER (n = 14, 5 primary and 9 metastatic sites) and NACT-PR (n = 14, 5 primary and 9 

metastatic sites) groups.

Inference of immune cell populations—We estimated the immune contextures of 74 

samples using the CIBERSORT tool (https://cibersort.stanford.edu). We used its original 

algorithm to infer the fractions of 22 immune cells relative to the total immune-cell 

population. In addition, we also applied its absolute mode to calculate a score that 

quantitatively measured the overall abundance of each cell type. A mixed-effect model was 

fit to a score with response group and tissue type as main-effect covariates and patients as 

the random effect covariate.

QUANTIFICATION AND STATISTICAL ANALYSIS

The analysis of tumor samples with matched normal samples allowed for the detection of 

somatic genomic events contributing to the observed differential response to treatment 

between groups, and the analysis of multiple sampling per patient enabled us to assess clonal 

and adaptive evolution in different response groups. To evaluate the statistical significance, 

Student t test is used if the data fits normal distribution. Otherwise, Wilcoxon rank-sum test 

is used to test the differences between groups. BH method is used to control the false 

discovery rate. In transcriptomic analysis, the differential expression was evaluated using a 

negative binomial generalized linear model as described in DESeq2 (Love et al., 2014), and 

logarithmic fold change and adjusted p values were used for differentially expressed gene 

assessment. In the proteomic analysis, the differential expression was evaluated by the linear 

model described in LIMMA (Ritchie et al., 2015). The statistical significance of differences 

(p < 0.05) on infiltrated immune cells between groups was determined using the Student t 

test (GraphPad Prism).

DATA AND CODE AVAILABILITY

Sequence data from the WGS, deep targeted sequencing and RNA sequencing in this study 

have been deposited in the European Genome-phenome Archive (EGA, https://

www.ebi.ac.uk/ega/home) under accession numbers EGAD00001005240, 

EGAD00001005239 and EGAD00001005238, respectively. The LC-MS/MS data have been 

deposited to the PRoteomics IDEntifications (PRIDE, https://www.ebi.ac.uk/pride) database 

under the accession number PRIDE: PXD014980.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• High rate of NF1 loss in the R0 compared to neoadjuvant chemotherapy 

(NACT) group

• Lower chromothripsis-like pattern and higher neoantigens in the R0 versus 

NACT group

• Increased number of infiltrated T cells and decreased macrophages in the R0 

group

• Significant transcriptomic and proteomic variations between HGSC 

subgroups
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Figure 1. Outline of the Study
(A) Flow diagram of the study for tissue procurement in patients with advanced high-grade 

serous ovarian cancer (HGSC). PIV, predictive index value; TRS, tumor reduction surgery; 

NACT, neoadjuvant chemotherapy; R0, no residual disease; NACT-ER, excellent response to 

NACT; NACT-PR, poor response to NACT.

(B) The areas of collection of tumor tissues from primary and multiple metastatic sites in 

patients with HGSC.

(C) Multi-omics and downstream analyses were performed using DNA, RNA, proteins, and 

immune cells from tumor tissues. WGS, whole-genome sequencing; T200, high-depth 

targeted exome sequencing platform; LC-MS/MS, liquid chromatography-tandem mass 

spectrometry; RPPA, reverse phase protein array.
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Figure 2. Somatic Mutations and CNVs Identified in Ovarian Cancer Genes
(A) Oncoplots show the frequency of each type of somatic mutation in ovarian cancer genes 

for primary and metastatic samples. Each column represents one sample.

(B) The frequency of CNVs identified in each ovarian-cancer-related gene. Each column 

represents one sample. Red represents copy gains, and black represents copy losses.

(C) The enriched abnormalities, including somatic mutations and CNVs, in the R0 versus 

NACT-ER/PR groups with a significant p value of < 0.05 in the group-wise comparison. The 

y axis represents the proportion of patient samples carrying the mutation in the 

corresponding genes.
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Figure 3. CTLPs and Strong-Binding Neoantigens by Patient Group
(A) CTLPs identified in nine different chromosomes in different patient groups.

(B) The scatterplot of copy number status changes and the likelihood of CTLP in different 

patient groups.

(C) Left: the number of strong-binding antigens detected in all tumors, including both 

primary and metastasis samples. Significant differences were observed between the R0 and 

NACT-ER/PR groups and between the R0 and NACT-PR groups. Middle: the number of 

strong-binding antigens detected in primary tumors. Significant differences were observed 

between the R0 and NACT-ER/PR groups and between the R0 and NACT-PR groups. Right: 

the number of strong-binding antigens detected in distant metastasis tumors. A peptide was 

identified as a strong binder if the % rank was below 0.5% or binding affinity (IC50) was 

below 50.
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Figure 4. DEGs for the Groups, Identified by RNA-Seq, Proteomics, and Phosphoproteomics
(A) Heatmap of 67 DEGs in the R0 compared to NACT-ER and NACT-PR groups.

(B) Differential analyses of 7387 total proteins quantified and revealed 101 proteins 

significantly altered (adj. p < 0.05) among NACT-ER (n = 30), NACT-PR (n = 29), and R0 

(n = 28) patients. Heatmap reflects clusters assembled by Euclidean distance and average 

linkage of significant protein abundance trends.

(C) Differential analyses of 12,914 total phosphosites quantified and revealed 71 

phosphosites significantly altered (adj. p < 0.05) among NACT-ER (n = 17), NACT-PR (n = 

22), and R0 (n = 27) patients. Heatmap reflects clusters assembled by Pearson correlation 

and average linkage of significant phosphosite abundance trends.

(D) Principle component analyses (PCAs) of 101 proteins significantly altered (adj. p < 

0.05) among NACT-ER (n = 30), NACT-PR (n = 29), and R0 (n = 28) patients.

(E) PCA of 71 phosphosites significantly altered (adj. p < 0.05) among NACT-ER (n = 17), 

NACT-PR (n = 22), and R0 (n = 27) patients.
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(F) NF1 RNA expression pattern was consistent with the WGS findings. The boxplot shows 

the log2 normalized counts of NF1 RNA in the R0, NACT-ER, and NACT-PR groups. The p 

values were calculated by differential analysis using DESeq2.

(G) NF1 protein abundance was significantly elevated in NACT-ER and NACT-PR tumors 

versus R0 tumors. The boxplot reflects log2-fold change (L2FC) abundance of NF1 protein 

for the NACT-ER (n = 30), NACT-PR (n = 29), and R0 (n = 28) groups.

(H) H-scores of NF1 expression by IHC for the NACT-ER (n = 12), NACT-PR (n = 14), and 

R0 (n = 24) groups. Statistical significance was determined by unpaired t test. Data are 

presented as the mean ± SEM.
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Figure 5. HGSC Immune Infiltration Patterns
(A) Relative distribution of analyzed cell phenotypes in the tumor area across the R0, 

NACT-ER, and NACT-PR groups.

(B) Relative distribution of immune cell populations separated into primary and metastatic 

tumor sites in each group.

(C) Immune subpopulation infiltration patterns in the R0, NACT-ER, and NACT-PR groups. 

The percentages of immune cells were compared for all T cells, immune cells, helper T 

cells, cytotoxic T cells, regulatory T cells, macrophages, and B cells. Statistical significance 

was determined by unpaired t test. Data are presented as the mean ± SEM.

(D) Immune subpopulation infiltration patterns in primary and metastatic sites in tumor area 

only. The percentages of T cells, B cells, macrophages, and FoxP3+ cells in the tumor area 

were compared for each group.
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Figure 6. Deconvolution Analysis of Cell Fractions Using RNA-Seq Data and the Concordance of 
Differentially Expressed Transcripts and Proteins among Groups
(A) The composition of 22 immune cell subsets in each patient sample. The profiling of 

immune cells was inferred by deconvolution analysis of RNA-seq with the LM22 immune 

cell gene signature, and the relative percentages of different cell types are shown in the 

stacked bar plot.

(B) Boxplots comparing the cell abundances of M2 macrophages and monocytes in the R0 

and NACT-ER/PR groups based on RNA-seq deconvolution analysis. Consistent with the 

immune infiltrate analysis, the R0 group showed more abundant macrophages than did the 

NACT group.

(C) Boxplot comparing the cell abundances of CD4+ T cells in primary and metastatic sites.

(D) The 206 available transcript alterations were compared to proteins quantified and altered 

between NACT-ER (n = 30)/PR (n = 29) and R0 (n = 28) patients. Bar plot reflects the L2FC 

Lee et al. Page 36

Cell Rep. Author manuscript; available in PMC 2020 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protein and transcript abundance trends for 10 co-measured candidates. *Co-significantly 

altered at the protein and transcript levels in NACT-ER/PR (p < 0.01) versus R0 groups.

(E) The 263 available transcript alterations were compared to proteins quantified and altered 

between NACT-ER (n = 29) and NACT-PR (n = 30) patients. Bar plot reflects the L2FC 

protein and transcript abundance trends for the KRT9 gene. *Co-significantly altered protein 

(p < 0.01) between NACT-ER and NACT-PR patients.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Neurofibromin-1 (NF1) Abcam Cat# 128054, RRID:AB_11141828

Biological Samples

Patients with HGSC (tissues and blood) MDACC N/A

Chemicals, Peptides, and Recombinant Proteins

Leica Bond Polymer Refine Detection kit Leica Biosystems Cat#DS9800

Quant-iT PicoGreen dsDNA reagent Invitrogen Cat# P7581

SMART trypsin Thermo Fisher Scientific Cat# 60109

TMT-11-plex Isobaric Label Reagent Set Thermo Fisher Scientific Cat# A34807

Acclaim™ PepMap™ 100 C18 Thermo Fisher Scientific Cat# 164567

Acclaim™ PepMap™ RSLC C18 Thermo Fisher Scientific Cat# 164540

Critical Commercial Assays

QIAamp DNA Mini Kit QIAGEN Cat# 51304

QIAamp DNA Blood Mini Kit QIAGEN Cat# 51104

TruSeq DNA PCR-Free Library Prep Kit Illumina Cat# 20015963

High Sensitivity dsDNA Kit Advanced Analytical Technologies, 
Inc.

Cat# DNF-468–0500

KAPA SYBR FAST Library Quantification Kit KAPA Biosystems Cat# KK4824

HiSeq X HD Paired-End Cluster Generation Kit 
v2

Illumina Cat# GD-410–1001

HiSeq X HD SBS Kit (300 cycles) Illumina Cat# FC-410–1003

Agencourt AMPure PCR purification kit Agencourt Bioscience Corporation Cat# A63880

KAPA qPCR Quantification Kit KAPA Biosystems Cat# KK4600

whole-exome biotin-labeled probes (v3) Roche NimbleGen Cat# 06465684001

Ovation RNA-Seq System V2 kit NuGEN Cat# 7102

Pierce BCA Protein Assay Kit Thermo Fisher Scientific Cat# 23225

High-Select TiO2 Phosphopeptide Enrichment 
Kit

Thermo Fisher Scientific Cat# A32992

Deposited Data

WGS data This paper EGA: EGAD00001005240

Deep targeted sequencing data This paper EGA: EGAD00001005239

RNA sequencing data This paper EGA: EGAD00001005238

LC-MS/MS data This paper PRIDE: PXD014980

Software and Algorithms

BWA software package Li and Durbin, 2009 N/A

Picard tools Broad Institute http://broadinstitute.github.io/picard/

GATK toolkit McKenna et al., 2010 N/A

MuTect method Cibulskis et al., 2013 N/A

Sequenza package Favero et al., 2015 N/A

PyClone model Roth et al., 2014 N/A

PHYLIP program Retief, 2000 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

HMMcopy Haetal., 2012 N/A

Circular binary segmentation Olshen et al., 2004 N/A

CNsignatures algorithm Macintyre et al., 2018 N/A

LUMPY Layer et al., 2014 N/A

BRASS Cancer IT https://github.com/cancerit/BRASS

BreakDancer Fan et al., 2014 N/A

CTLPScanner server Yang et al., 2016 N/A

COSMIC database Bamford et al., 2004 N/A

TelSeq software Ding et al., 2014 N/A

NetMHCcons server Karosiene et al., 2012 N/A

Spliced Transcripts Alignment to a Reference 
(STAR) algorithm

Dobin et al., 2013 N/A

FastQC and Qualimap tool Okonechnikov et al., 2016 N/A

Web-based gene set analysis toolkit (WebGestalt) Wang et al., 2013; Zhang et al., 2005 N/A

KEGG Kyoto Encyclopedia of Genes and 
Genomes

https://www.kegg.jp/

Reactome Reactome https://reactome.org

PANTHER Panther Geneontology http://www.pantherdb.org/

MicroVigene software VigeneTech N/A

R package Super-Curve (version 1.01) MDACC https://bioinformatics.mdanderson.org/public-
software/archive/oompa/

GeneMANIA server Warde-Farley et al., 2010 N/A

Non-redundant human proteome database Swiss-Prot https://www.uniprot.org/

Proteome Discoverer Thermo Fisher Scientific N/A

Mascot Matrix Science N/A

PAMR (Prediction Analysis for Microarrays) R 
package

Lazar et al., 2016 N/A

Mann-Whitney U rank sum testing MedCalc (version 19.0.3).

LIMMA package (version 3.8) Ritchie et al., 2015 N/A

ClustVis web tool Metsalu and Vilo, 2015 N/A

BWA and Picard DePristo et al., 2011 N/A

In-house R package Takahashi et al., 2018 N/A

CIBERSORTtool Stanford University https://cibersort.stanford.edu

DESeq2 Love et al., 2014 N/A

GraphPad Prism GraphPad Software N/A
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