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A B S T R A C T

Background: Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is often late- or misdiag-
nosed leading to irreversible disabilities. Blood transcriptomic biomarkers that prospectively predict those
who progress to leprosy (progressors) would allow early diagnosis, better treatment outcomes and facilitate
interventions aimed at stopping bacterial transmission. To identify potential risk signatures of leprosy, we
collected whole blood of household contacts (HC, n=5,352) of leprosy patients, including individuals who
were diagnosed with leprosy 4-61 months after sample collection.
Methods: We investigated differential gene expression (DGE) by RNA-Seq between progressors before pres-
ence of symptoms (n=40) and HC (n=40), as well as longitudinal DGE within each progressor. A prospective
leprosy signature was identified using a machine learning approach (Random Forest) and validated using
reverse transcription quantitative PCR (RT-qPCR).
Findings: Although no significant intra-individual longitudinal variation within leprosy progressors was iden-
tified, 1,613 genes were differentially expressed in progressors before diagnosis compared to HC. We identi-
fied a 13-gene prospective risk signature with an Area Under the Curve (AUC) of 95.2%. Validation of this
RNA-Seq signature in an additional set of progressors (n=43) and HC (n=43) by RT-qPCR, resulted in a final 4-
gene signature, designated RISK4LEP (MT-ND2, REX1BD, TPGS1, UBC) (AUC=86.4%).
Interpretation: This study identifies for the first time a prospective transcriptional risk signature in blood pre-
dicting development of leprosy 4 to 61 months before clinical diagnosis. Assessment of this signature in con-
tacts of leprosy patients can function as an adjunct diagnostic tool to target implementation of interventions
to restrain leprosy development.
Funding: This study was supported by R2STOP Research grant, the Order of Malta-Grants-for-Leprosy-
Research, the Q.M. Gastmann-Wichers Foundation and the Leprosy Research Initiative (LRI) together with
the Turing Foundation (ILEP# 702.02.73 and # 703.15.07).
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Keywords:

Leprosy
Diagnostics
RNA-Seq
Transcriptomics
Biomarker
Prediction
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction

Leprosy, also known as Hansen’s disease, is still a considerable
health threat in pockets of several low- and middle-income countries
worldwide. The annual number of new cases fluctuates around
200,000 people, reflecting a stable trend that has been observed dur-
ing the last decade [1]. Affecting the skin and peripheral nerves, lep-
rosy presents as a spectrum including several clinical forms
paralleling immunity against Mycobacterium leprae, the pathogen
causing leprosy [2]. On one pole of the immunopathological spectrum
tuberculoid leprosy (TT) is situated, mainly characterized by low
amount of bacteria and a cell-mediated immune response, and at the
other pole lepromatous leprosy (LL) presenting high bacterial load,
and a humoral response [3,4]. In between these polar forms patients
present borderline leprosy (borderline tuberculoid [BT], borderline
borderline [BB] and borderline lepromatous (BL]) [5].

Diagnosis still heavily relies on detection of clinical symptoms and
early detection of leprosy represents a substantial hurdle in present-
day leprosy health care. Besides, the reduced number of new cases
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Research in context

Evidence before this study

Leprosy, an infectious disease caused by Mycobacterium leprae
that still poses a considerable health and economic threat in
areas of several low and middle income countries. Unfortu-
nately, leprosy is often late- or misdiagnosed leading to irre-
versible disabilities and deformities. Identifying individuals
who are at risk of developing leprosy disease, before clinical
symptoms arise, is crucial to reduce leprosy-associated disabil-
ities as well as transmission of the bacterium.

Host transcriptomic biomarkers are intensely investigated
as tools for diagnosis of tuberculosis, an infectious disease
caused by the related Mycobacterium tuberculosis. In leprosy
research, only a small amount of transcriptomic biomarker pro-
files have been identified as potential diagnostic tools for lep-
rosy disease. However, the previously published biomarkers
detect leprosy after occurrence of symptoms and involve inva-
sive samples such as skin or nerve biopsies.

Added value of this study

In the present investigation, we collected venous blood of
household contacts of leprosy patients from Bangladesh to
identify a transcriptomic biomarker predicting leprosy devel-
opment. This involved sampling at recruitment into the study
before any clinical signs were present, and at diagnosis of lep-
rosy. Importantly, we describe a 4-gene signature, RISK4LEP
that can identify individuals who will develop leprosy 4�61
months prior to clinical diagnosis. This signature has potential
for application in diagnostic tests for leprosy as it is based on
unstimulated whole blood and only a low number of genes,
thereby harbouring essential characteristics for rapid, user-
friendly point-of-care tests.

Implications of all available evidence

This study demonstrated the potential of host whole blood
transcriptomic biomarkers as tools for early diagnostics of lep-
rosy and identified a prospective 4-gene signature, RISK4LEP,
that can identify individuals who will develop leprosy allowing
for prophylactic or early treatment. Since household contacts of
leprosy patients present a higher risk of developing leprosy,
application of RISK4LEP can guide health care workers to target
implementation of prophylaxis.

Further longitudinal studies in other endemic areas are now
required to validate the RISK4LEP signature.
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has resulted in unfamiliarity of signs and symptoms of leprosy limit-
ing suspicion and detection of leprosy. Only a small percentage (esti-
mated 5%) of people exposed to M. leprae develop the disease [3]. In
addition, leprosy displays a long incubation period (2 to >10 years)
[6,7]. These factors contribute to limited awareness of the disease
among both the public and healthcare providers, hampering the early
detection of new cases, and are reinforced by the strong social stigma
of leprosy. Detection delay not only results in frequent delay of treat-
ment leading to irreversible disabilities, but also contributes to per-
petuating transmission.

Leprosy is a multi-factorial disease influenced by the infectious
agent (dose and frequency of exposure) but also by genetics [8�14],
nutritional factors [15,16], living conditions [17,18] and individual
characteristics (age, sex) [19,20]. Household contacts (HC) of leprosy
patients are at highest risk [21�24], and thus a recommendation for
use of chemoprophylaxis as preventive treatment for contacts of
leprosy patients was included in the WHO 2018 guidelines [25].
Given the low proportions of individuals actually developing leprosy
after M. leprae exposure, biomarkers identifying who will develop
disease would be very useful to target prophylactic measures.

In the past years, several studies have searched for biomarkers to
(early) detect leprosy either based on the host immune response
[26�31], the pathogen [32�37], or a combination of both [38�45].
Molecular detection by identification of the repetitive element RLEP
by (quantitative) PCR [33,46,47] as well as detection of anti-M. leprae
phenolic glycolipid I (PGL-I) IgM in blood [28,29] are methods
employed to assist leprosy diagnosis. Nevertheless, the sensitivity of
these techniques to identify paucibacillary (PB) leprosy is not suffi-
cient due to the low concentrations of bacilli in these patients
[26,44,45]. On the other hand, PCR and anti-PGL-IgM, though useful
to detect infection, are inadequate predictors of disease amongst HC
of leprosy patients, as individuals remaining without disease may
present positive PCR and/or PGL-I IgM [28,32,35,44,45]. In addition,
combinations of other host proteins [24,27] have been shown to be
useful to diagnose leprosy and detect M. leprae infection, but have
not been studied prospectively yet.

Transcriptomic analysis of differential gene expression (DGE) repre-
sents an effective approach to identify new biomarkers for leprosy diag-
nosis [54]. RNA-Seq, a high-throughput and unbiased technique which
includes the whole transcriptome instead of a selection of genes, has
been successfully used to prospectively identify correlates of risk for
leprosy reversal reaction [48], as well as for tuberculosis caused by the
closely related bacteria Mycobacterium tuberculosis [49�52].

The immune response during leprosy and leprosy reactions has also
been investigated through transcriptomics [53�62]. However, very few
studies have employed transcriptomics to identify a biomarker risk sig-
nature for leprosy diagnosis: one study described that gene expression of
LDR and CCL4 in nerve biopsies identified up to 80% of pure neural (PN)
leprosy patients [63]. Likewise, a signature formed by four miRNA was
identified using skin biopsies that could discriminate leprosy patients
with 80% sensitivity and 91% specificity [53]. Although these transcrip-
tomic biomarkers show potential, both are based on samples that require
invasive techniques (nerve and skin biopsies) and were applied when
clinical symptomswere already visible.

In contrast to previous work, this study aimed to identify a pro-
spective biomarker signature that can predict development of lep-
rosy. For this purpose, whole blood samples were collected from HC
who were followed up for several years and re-sampled in case they
developed leprosy. Transcriptomic differences were investigated
between progressors and HC who remained without leprosy. Varia-
tion in gene expression of those individuals who developed leprosy
was assessed between the timepoint before leprosy diagnosis and at
onset of disease. A risk signature for leprosy development can guide
post-exposure prophylactic strategies to avoid disease progression,
reduce disability and contribute to stopM. leprae transmission.

2. Methods

2.1. Sample collection and study design

HC (n=5,352) of newly diagnosed leprosy patients were recruited
and a first blood sample was collected from April 2013 to April 2018
as part of a field trial [28,64�66] in four districts in the northwest of
Bangladesh (Nilphamari, Rangpur, Panchagarh and Thakurgaon).
Patients and HC entered the study through the Rural Health Program
of The Leprosy Mission International, Bangladesh, based at the Danish
Bangladesh Leprosy Mission Hospital in Nilphamari, a referral hospi-
tal specialized in the detection and treatment of leprosy. The popula-
tion of the four districts, which was around 7,000,000 at the start of
intake, is mainly rural, but includes six main towns. The new case
detection rate and the prevalence in the study area were 1.18 and 0.9
per 10,000 correspondingly [67].



Fig. 1. Study design to identify a transcriptomic signature associated with leprosy risk. In blue samples used in the discovery set (RNA-Seq) and in green samples used in the
validation set (reverse transcription quantitative PCR (RT-qPCR)). Progressors are household contacts who developed leprosy within 4-61 months (Fig. S1) after recruitment. t=1 is
the timepoint before disease and t=2 is the timepoint of leprosy diagnosis. Excluded QC (quality check) RNA refers to samples that did not meet RNA quality check for RNA-Seq
(RNA integrity number [RIN] � 6) and were not used for RT-qPCR (validation set). Excluded QC RNA-Seq refers to samples for which RNA-Seq data did not meet the quality require-
ments with respect to number and distribution of reads (Fig. S2). Excluded QC RT-qPCR were samples showing outlier Cycle threshold (Ct) values (>15) for the reference GAPDH
gene (medians of two assays: 9.6 and 7.3). Training and test subsets were used in Random Forest to predict leprosy development. *RT-qPCR data of 8 samples (4 progressors and 4
HC controls) from the discovery set (RNA-Seq) were included in the training subset of the RT-qPCR Random Forest to improve the training of the model.
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HC were defined as those living in the same house, in a house on
the same compound and sharing the same kitchen, or direct neigh-
bours (first neighbours). Exclusion criteria included previous leprosy,
refused informed consent, pregnant women, tuberculosis, children
younger than 5 years, liver disease or jaundice and temporary resi-
dency in the study area [66]. Some HC in the study received BCG vac-
cination (n=657) after providing the first blood sample. Whole blood
from HC was collected in PAXgene tubes at time of diagnosis of the
index case (t=1) (Fig. 1). All contacts were followed up annually and
checked for the absence of clinical signs and symptoms of leprosy. All
individuals were followed up for 36 months or longer. Follow up is
still ongoing. Contacts who were clinically diagnosed with leprosy
within 4�61 months after recruitment were considered progressors
(n=85). A second blood sample was collected from progressors at the
time of leprosy diagnosis, before start with multidrug therapy (t=2)
and bacteriological index (BI) was determined. Leprosy was diag-
nosed by a medical officer following the Rural Health Program guide-
lines in accordance to the National Leprosy Control Program [68].
Progressors who presented five or fewer skin lesions and BI 0 were
classified as PB and those who presented more than five skin lesions
were classified as MB [25].

An initial discovery set was drawn from the cohort including 40
HC and 40 progressors who were diagnosed with leprosy 4�60
months after recruitment. To replicate and validate the results from
the discovery set, a validation set was drawn later from the same
cohort which included 43 HC and 43 progressors who were
diagnosed with leprosy 4�61 months after recruitment. Subjects
who developed leprosy > 61 months after recruitment (available
only during the validation analysis) were excluded (n=5). The control
HC group were optimally matched to the progressors by age, sex,
date of recruitment, follow up time and BCG vaccination within the
study (Table 1).

2.2. Ethics statement

This study was approved by the National Research Ethics Commit-
tee (BMRC/NREC/2016-2019/214) and followed the Helsinki Declara-
tion (version Fortaleza, Brazil, October 2013). Participants were
informed in the local language about the study objectives, the sam-
ples and their right to refuse to take part or withdraw without conse-
quences for their treatment. All subjects gave written informed
consent before enrolment and treatment was provided according to
national guidelines [68].

2.3. RNA isolation, library preparation and sequencing

Blood was collected in PAXgene tubes (BD Biosciences, Franklin
Lakes, NJ) in Bangladesh and sent on dry ice to Leiden University
Medical Centre (The Netherlands) for analysis. RNA isolation from
PAXgene tubes was automated using a QIAcube (Qiagen, Hilden, Ger-
many) and PAXgene Blood RNA kits (Qiagen) according to the manu-
facturers’ protocol.



Table 1
Cohort characterization.

Discovery set, RNA-Seq (n=80)

Group Subjects Sex Age range (n) RJ Classification BI Time to diagnosis (n)

Progressors 40 26 females
14 males

6-15 years (7)
16-30 years (9)
31-60 years (22)
61-70 years (2)

37 BT
1 TT
1 I
1 PN

34 BI-0
6 BI-und

4-12 months (6)
13-24 months (10)
25-36 months (10)
37-48 months (7)
49-61 months (7)

HC 40 27 females
13 males

6-15 years (7)
16-30 years (8)
31-60 years (24)
61-70 years (1)

- -

Validation set, RT-qPCR (n=86)

Group Subjects Sex Age range (n) RJ Classification BI Time to diagnosis (n)

Progressors 43 23 females
20 males

6-15 years (12)
16-30 years (12)
31-60 years (16)
61-70 years (3)

40 BT
2 TT
1 I

35 BI-0
8 BI-und

4-12 months (7)
13-24 months (5)
25-36 months (9)
37-48 months (11)
49-61 months (11)

HC 43 23 females
20 males

6-15 years (12)
16-30 years (12)
31-60 years (16)
61-70 years (3)

- -

Group (leprosy progressors or household contact [HC] controls), number of individuals used for analyses,
number of females and males, number of individuals in certain age range (at t=1), number of leprosy progres-
sors according to Ridley-Jopling (RJ) classification (5), bacteriological index (BI) of progressors and time to
diagnosis for progressors (time between the first sample before clinical diagnosis (t=1) and leprosy diagnosis
(t=2)) are shown for the samples used in the RNA-Seq (discovery set) and the RT-qPCR (validation set) analy-
ses. RT-qPCR: reverse transcription quantitative PCR. HC: Household contacts; BT: borderline tuberculoid lep-
rosy; TT: tuberculoid leprosy; I: indeterminate leprosy; PN: pure neural leprosy; BI-und: bacteriological
index undetermined as patient refused or was too young for skin slit smear and PB leprosy was diagnosed
according to the number of lesions.
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RNA concentrations were measured by Qubit RNA BR (Thermo
Fisher Scientific, Waltham, MA) and integrity was determined by
Fragment Analyzer (Agilent, Santa Clara, CA). Samples that passed
the quality check (RNA integrity number [RIN] � 6) were considered
for RNA-Seq. RNA-Seq was performed by GenomeScan (Leiden, The
Netherlands): libraries were prepared using NEBNext Ultra II Direc-
tional RNA Library Prep Kit for Illumina (New England Biolabs, Ips-
wich, MA) including poly(A) enrichment. Additionally, globin
reduction was performed using GLOBINclear kit (Thermo Fisher Sci-
entific). Briefly, mRNA was isolated from total RNA using the oligo-dT
magnetic beads. After fragmentation of the mRNA cDNA was syn-
thesized. This was used for ligation with the sequencing adapters
and PCR amplification of the resulting product. The quality and
yield after sample preparation was measured by Fragment Ana-
lyzer. The size of the resulting products was consistent with the
expected size distribution.

Clustering and sequencing were performed in a NovaSeq6000
System (Illumina, San Diego, CA) with a 2*150bp paired-end protocol
in one single batch to avoid a batch effect. A concentration of 1.1 nM
of DNA was used.
2.4. Gene expression quantitative PCR

Reverse transcription quantitative PCR (RT-qPCR) was performed
using Biomark HD system (Fluidigm, South San Francisco, CA).
Reverse Transcription Master Mix (Fluidigm) was used to convert
40 ng of RNA into cDNA following manufacturer’s instructions. Prior
to real-time amplification with the 48.48 Dynamic ArrayTM integrated
fluidic circuit (IFC), a preamplification of 14 cycles was performed
using Preamp Master Mix and TaqMan Assays (Table S1) according to
manufacturer’s instructions. Data were analysed using the software
Real-Time PCR Analysis (v 4.5.2, Fluidigm).
2.5. RNA sequencing analysis

RNA-Seq files were processed using the opensource BIOWDL
RNA-Seq pipeline v2.0 (https://github.com/biowdl/RNA-seq/tree/
v2.0.0) developed at Leiden University Medical Centre. This pipeline
performs FASTQ pre-processing (including quality control, quality
trimming, and adapter clipping), RNA-Seq alignment and read quan-
tification. FastQC was used for checking raw read QC. Adapter clip-
ping was performed using Cutadapt (v2.4) with default settings.
RNA-Seq reads’ alignment was performed using HISAT2 (v2.1.0) on
GRCh38 reference genome analysis set. The gene read quantification
was performed using HTSeq-count (v0.9.1) with setting “�stranded
reverse”. The gene annotation used for quantification was Ensembl
version 94. DGE and read normalization is explained in the next sec-
tion, statistical analysis.

Functional analyses were performed using ClueGO plugin [69] to
identify Gene Ontology (GO) terms and Ingenuity Pathway Analysis
(IPA, Qiagen, Hildern, Germany) to establish canonical pathways.

2.6. Statistical analysis

Using RNA-Seq data, we performed DGE analysis to identify genes
significantly differentially expressed between leprosy progressors at
t=1 (n=40) and HC (n=40), and between progressors at t=1 and t=2 (n
=40). We used an established R package, edgeR [70], executed accord-
ing to their guidelines, and using raw counts normalized for library
sizes with the Trimmed Mean of the M-values (TMM) method. The
first comparison (t=1 vs HC) was evaluated in an unpaired design
whereas the second comparison (t=1 vs t=2) was evaluated in a
paired design because the samples were composed of 2 time points
from the same individuals. We also modelled the difference of gene
expression between the time points (t=1 vs t=2) as a linear function
of the number of months which elapsed between the time points.

https://github.com/biowdl/RNA-seq/tree/v2.0.0
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Genes with false discovery rates below 0.05 (adjusted p-values <

0.05) were classified as differentially expressed.
DGE of RT-qPCR data was measured using Mann-Whitney U test

using the package stats (version 3.6.3) in RStudio (version 1.2.5033)
and genes with p-value below 0.05 were considered significantly
expressed.

2.7. Machine learning to predict leprosy progression

Random Forest, a machine learning approach [71], was applied to
select gene features (chi-squared method) and design a model to predict
leprosy progression using gene expression data from RNA-Seq and RT-
qPCR. For this purpose, the package mlr (version 2.17.1) [72] was
employed in RStudio (version 1.2.5033). Accuracy, sensitivity, specificity
and Area Under the Curve (AUC) were also obtained usingmlr.

The sample set for the RNA-Seq model (discovery set) included
leprosy progressors at t=1 (n=40) and HC controls (n=40) (Fig. 1).
After RNA-Seq quality check (read count and MDS plot), two samples
were excluded and the rest were divided into training (80%, n=62)
and test (20%, n=16) subsets. An independent sample set (validation
set) with 43 progressors and 43 controls was used for the RT-qPCR
model. Samples were also placed 80% in the training (n=65) and 20%
in the test (n=19) subsets (two samples excluded due to RT-qPCR
quality check). Eight samples (four progressors and four controls)
from the discovery set were added to the training subset (total train-
ing subset=73) for the RT-qPCR model to improve training input.

Training subsets were employed to train the models using a leave-
one-out cross-validation (LOOCV) approach and subsequently evalu-
ated in the test subsets. Parameters were set to ntree 50-1,000, mtry
1-10, nodsize 10-50, 72 iterations and 5 iterations of cross-validation.
For the RT-qPCR model mtry and iterations were 1-4 and 1,000
respectively.

Using RNA-Seq data, an initial feature selection was performed
limiting the model to 8-20 features. After feature selection lncRNA
and pseudogenes were discarded from the selection set and the
model was retrained and re-evaluated using the final set of features
(n=13). Gene expression in TMM-normalized counts per million
mapped reads (CPM) of differentially expressed genes (n=1,613)
were the input for the RNA-Seq Random Forest model (discovery
set). DCts (Cycle threshold) of differentially expressed genes (Mann-
Whitney U test, n=4) were used for the RT-qPCR model (validation
set). DCts were calculated as the difference of Ct of target gene and Ct
of the reference gene, where GAPDH (assay ID Hs99999905_m1) was
the reference gene. Initially, two assays with different primers and
probes of GAPDH (Hs99999905_m1 and Hs02786624_g1, Table S1)
were included in the RT-qPCR. Mann-Whitney U test of Ct values
showed that GAPDH from assay Hs02786624_g1 presented significant
differences between groups, whilst Ct values obtained from assay ID
Hs99999905_m1 did not differ significantly between groups (Table
S2). Therefore, only Ct values from GAPDH assay ID Hs99999905_m1
were used to calculate the DCt values.

2.8. Role of the funding source

Funding sources had no role in the study design, data collection,
data analyses, data interpretation, writing of the report and the deci-
sion to submit the manuscript for publication.

3. Results

3.1. Cohort characterization

Between 2013 and 2018, HC of leprosy patients (n=5,123) without
any clinical signs and symptoms of leprosy were recruited in Bangla-
desh (Fig. 1) and whole blood was collected for RNA isolation. HC
who were suspected to have leprosy at recruitment (n=229) were
excluded from the study. Leprosy progressors were defined as HC
who were clinically diagnosed with leprosy 4-61 months after
recruitment (n=85, Fig. S1).

RNA quality of samples from progressors with two timepoints
present (before disease [t=1] and at time of diagnosis [t=2]) was
assessed and samples from progressors which passed the RNA-Seq
quality check (RIN � 6) of both timepoints (n=40) were further ana-
lysed by RNA-Seq (Fig. 1). An equal number of HC (n=40) who did not
develop disease (controls) were matched to progressors by age, sex,
time of sample recruitment, follow up time and BCG vaccination
(Table 1, discovery set). A separate sample set from the same area in
Bangladesh, including samples from progressors (n=43) before dis-
ease (t=1) and matched controls (n=43) were used for RT-qPCR
(Table 1, validation set).

In the discovery set, BT leprosy was reported in 37 of the progres-
sors, one presented TT leprosy, one indeterminate (I) and one PN
(Table 1). Similarly, the progressors in the validation set included 40
BT, two TT and one I leprosy patients.

In the discovery set, two individuals in the progressors group and
one in the control group (one paired control) received BCG vaccina-
tion after samples collection at t=1 as part of a field trial [64] in Ban-
gladesh. None of the individuals in the validation set received BCG
vaccination after sample collection.

3.2. Gene expression differences in blood can be observed between
leprosy progressors and contacts up to 5 years before leprosy diagnosis

RNA-Seq gene expression data from blood of leprosy progressors
(n=40) 4-61 months before diagnosis (t=1) was compared to HC who did
not develop disease (n=40) (Fig. 2A). Initial quality analysis of the RNA-
Seq revealed a low number of on-feature unique reads for two samples
(one progressor at t=1 and one control, Fig. S2) which were subsequently
excluded and thus 39 samples per group were considered for further
analyses (Fig. 1). From the total of 17,435 genes, we identified 1,613
which were significantly differentially expressed (adjusted p-value <

0.05, Fig. 2B) between progressors and HC using an unpaired analysis
with edgeR. From these, 836 were upregulated and 777 were downregu-
lated in leprosy progressors compared to HC (Fig. 2C).

Enriched GO terms and pathways were identified in upregulated
and downregulated genes. Upregulated GO terms and canonical
pathways included “cotranslational protein targeting to membrane”,
“protein targeting to endoplasmic reticulum (ER)”, “protein localiza-
tion to endoplasmic reticulum”, “eIF2 signalling”, “mammalian target
of rapamycin (mTOR) signalling”, “regulation of eIF4 and p70S6K sig-
nalling” and “coronavirus pathogenesis pathway” (Table 2). Within
the downregulated genes common GO terms and canonical pathways
were “organelle organization”, “cellular component organization”,
“clathrin-mediated endocytosis signalling”, “integrin signalling”,
“Focal adhesion kinase (FAK) signalling” and “p70S6K signalling”.

3.3. Gene expression in whole blood does not vary during leprosy
development

To identify biomarkers indicative of disease development, we
studied longitudinal variation of gene expression in leprosy progres-
sors between 4-61 months before diagnosis and at time of diagnosis.
Since the quality check for the RNA-Seq data of one sample at t=1
and three samples at t=2 failed due to low amount of aligned on-fea-
ture unique reads or the sample was an outlier (multidimensional
scaling (MDS) plot) (Fig. S2 and S3), these samples were excluded
from the analysis with their paired sample (Fig. 1). Thus, for a total of
36 progressors longitudinal comparison was feasible. Surprisingly, a
paired DGE analysis showed no genes that were significantly differ-
entially expressed (adjusted p-value < 0.05, edgeR) between time-
point of diagnosis compared to the timepoint before diagnosis (Fig.
S4), indicating that gene expression in blood does not vary intra-



Fig. 2. RNA-Seq differential gene expression analysis of leprosy progressors before clinical diagnosis and household contacts. RNA-Seq data of whole blood from leprosy pro-
gressors (n=39) 4-61 months before clinical diagnosis of leprosy (t=1 or First time point) was compared to control household contacts (HC/HHC, n=39), after exclusion of one sample
per group due to low number of on-feature unique reads (Fig. S2). A two-group (unpaired samples) analysis was performed using edgeR (71) in R. a) Boxplot of TrimmedMean of the
M-values (TMM)-normalized counts per million mapped reads (CPM) per group of the most significantly differentially expressed genes. Y-axis shows CPM, expressed in power of 10
(left) or power of 2 (right). Progressors at t=1 are shown in red and HC controls in blue. b) Histogram of p-values. Number of genes (y-axis) with a given p-value (x-axis). c) MA plot
showing log2 of fold change (FC) in gene expression (y-axis) and log2 of average CPM (x-axis) per gene. In red, genes significantly differentially expressed (adjusted p-value < 0.05)
and in black, genes not differentially expressed. C6orf48 is also known as SNHG32 and C19orf60 as REX1BD.
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individually between the pre-clinical (no symptoms) and clinical
(symptoms visible) phases of leprosy. Similarly, in a separate gene
expression analysis we did not find any gene to display significant
changes of expression level proportional to the number of months
which elapsed between the two sample collection moments.

3.4. Machine learning identifies gene expression signature predicting
leprosy

Next, a machine learning model was applied to select a subset of
genes that optimized prediction of risk of leprosy development
Table 2
Functional analysis of differentially expressed genes in blood of leprosy progressors.

Upregulated genes

GO terms adj p-value % associated gen

SRP-dependent cotranslational protein targeting to
membrane

1.50E-33 41.51

cotranslational protein targeting to membrane 1.05E-32 40.00
protein targeting to ER 5.23E-32 37.50
establishment of protein localization to endoplasmic
reticulum

2.87E-31 36.29

protein localization to endoplasmic reticulum 2.22E-30 31.79

Canonical pathway adj p-value % associated gen

eIF2 signalling 4.29E-28 21.90
mTOR signalling 3.04E-13 14.80
regulation of eIF4 and p70S6K signalling 1.70E-12 16.60
coronavirus pathogenesis pathway 1.63E-10 15.30
oxidative phosphorylation 1.04E-06 13.80

Top Gene Ontology (GO) terms identified by ClueGO (70) and canonical pathways identifie
lated genes in leprosy progressor before clinical diagnosis compared to household contacts
roni correction (adj p-value). Percentages of associated upregulated or downregulated gene
amongst HC. Random Forest was performed splitting the samples
into training (80%, n=62) and test (20%, n=16) subsets, followed
by a LOOCV approach and limiting the model to 8 to 20 features/-
genes. TMM-normalized CPM of genes differentially expressed
(n=1,613) between progressors and HC in RNA-Seq of whole
blood were used as input. The model (Table S3, 19-gene RNA-
Seq) which included 19 genes (Table 3, Fig. S5), showed a strong pre-
dictive potential for leprosy with an accuracy of 87.5% (sensitivity
100.0%, specificity 80.0%) and AUC of 96.7% (Fig. 3A, Table S4). This set
of genes contained protein coding genes but also long non-coding (lnc)
RNA and pseudogenes.
Downregulated genes

es GO terms adj p-value % associated genes

organelle organization 1.33E-20 5.92

cellular component organization 1.50E-17 5.02
regulation of cellular component organization 7.92E-15 6.31
regulation of organelle organization 5.61E-14 7.49

positive regulation of organelle organization 6.43E-13 9.28

es Canonical pathway adj p-value % associated genes

clathrin-mediated endocytosis signalling 3.57E-08 11.40
14-3-3-mediated signalling 6.72E-07 12.60
integrin signalling 8.44E-07 9.90
FAK signalling 2.92E-06 13.70
p70S6K signalling 4.13E-06 11.60

d by Ingenuity Pathway Analysis (Qiagen) from 836 upregulated and 777 downregu-
who did not develop leprosy. P-values were adjusted for multiple testing with Bonfer-
s from the pathway are shown.



Table 3
Gene selection using a machine learning approach.

Gene name Ensembl ID Type of RNA

SNHG32 or C6orf48 ENSG00000204387 ncRNA, small nuclear RNA
MT-ND4 ENSG00000198886 protein coding
MT-ND5 ENSG00000198786 protein coding
MT-ND2 ENSG00000198763 protein coding
lnc-IL17RA-36 or AC005301.9 ENSG00000283633 lncRNA
MT-CO1 ENSG00000198804 protein coding
TAOK3 ENSG00000135090 protein coding
REPS1 ENSG00000135597 protein coding
MT-CYB ENSG00000198727 protein coding
TPGS1 ENSG00000141933 protein coding
MMRN1 ENSG00000138722 protein coding
UBC ENSG00000150991 protein coding
MTATP6P1 ENSG00000248527 pseudogene
RP11-385D13.4 ENSG00000266538 lncRNA
REX1BD or C19orf60 ENSG00000006015 protein coding
CCDC85B ENSG00000175602 protein coding
HCG4P12 ENSG00000225864 pseudogene
RNU6-238P ENSG00000200183 pseudogene
AC009303.2 ENSG00000279227 lncRNA

Genes identified by Random Forest to predict leprosy progression amongst household
contacts of leprosy patients. In bold genes that were included in the final RNA-Seq sig-
nature and tested by reverse transcription quantitative PCR (RT-qPCR). Underlined the
genes present in the final RT-qPCR RISK4LEP signature.

Fig. 3. AUC of leprosy risk RNA-Seq and RT-qPCR signatures in blood. Area Under the Cur
within household contacts (HC). The models were built using Random Forest, were trained w
where 8 to 20 features/genes were automatically selected by the model from a total of 1,61
excluding pseudogenes and long non-coding (lnc)RNA (n=6). c) AUC of reverse transcriptio
AUC of RT-qPCR 4-gene signature RISK4LEP (final RT-qPCR signature) where only genes signi
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To validate the signature in an independent sample set, we aimed
at selecting a set of genes with commercially available probes for RT-
qPCR. For this reason, the lncRNA and pseudogenes were excluded
(n=6). A new model (Table S3, 13-gene RNA-Seq) was re-trained and
re-evaluated in the reduced 13-gene signature (Table 3, SNHG32/
C6orf48, MT-ND4, MT-ND5, MT-ND2, MT-CO1, TAOK3, REPS1, MT-CYB,
TPGS1, MMRN1, UBC, REX1BD/C19orf60, CCDC85B) and showed an
accuracy of 87.5% with a sensitivity of 88.9%, specificity of 85.7% and
AUC of 95.2% (Fig. 3B, Table S4). It is of note that five of these 13 genes
(MT-ND2, MT-ND4, MT-ND5, MT-CO1, and MT-CYB) are mitochondrial
genes involved in oxidative phosphorylation, and are all down-regu-
lated in leprosy progressors.

In addition, we evaluated whether using genes from previously
described tuberculosis risk signatures could also predict leprosy. For
this purpose, a Random Forest was performed with genes from the
Sweeney3 (GBP5, DUSP3, KLF2) [73], the Suliman2 (ANKRD22,
OSBPL10) [50] or the RISK6 (GBP2, FCGR1B, SERPING1, TUBGCP6,
TRMT2A, SDR39U1) [51] signatures as input. However, the tuberculo-
sis risk signatures showed poor or moderate performance to predict
leprosy with AUCs of 51.6%, 58.7% and 78.3% respectively (Table S4).
Thus, the Sweeney3 and Suliman2 signatures resemble an algorithm
that predicts leprosy randomly. The RISK6 signature, although pre-
senting a reasonably good prediction of leprosy, showed lower per-
formance compared to our novel 19-gene (AUC=96.7%) and 13-gene
RNA-Seq (AUC=95.2%) signatures.
ve (AUC) of risk signatures in whole blood to prospectively predict leprosy progressors
ith 80% of the sample sets and evaluated in 20%. a) AUC of RNA-Seq 19-gene signature
3 features. b) AUC of RNA-Seq 13-gene signature based on the 19-gene signature but
n quantitative PCR (RT-qPCR) 13-gene signature selected in the RNA-Seq signature. d)
ficantly differentially expressed in the RT-qPCR were selected.



Table 4
RT-qPCR DCts of the 13-gene signature in leprosy progressors and household
contacts.

Gene p-value DCt progressors DCt HC DDCt FC Log2FC

CCDC85B 0.840901 12.32 12.48 -0.16 1.12 0.16
MMRN1 0.654911 7.73 7.88 -0.15 1.11 0.15
MT-CO1 0.594361 -2.22 -2.31 0.09 0.94 -0.09
MT-CYB 0.054951 -1.50 -1.90 0.40 0.76 -0.40
MT-ND2 0.048303 -1.03 -1.26 0.23 0.85 -0.23
MT-ND4 0.062337 -1.64 -1.90 0.26 0.84 -0.26
MT-ND5 0.159386 -0.94 -1.17 0.24 0.85 -0.24
REPS1 0.298712 4.24 4.40 -0.16 1.12 0.16
REX1BD 0.010086 2.92 3.18 -0.27 1.20 0.27
SNHG32 0.238032 1.77 2.03 -0.26 1.20 0.26
TAOK3 0.178822 4.26 4.30 -0.04 1.03 0.04
TPGS1 0.000448 5.20 5.62 -0.42 1.34 0.42
UBC 0.005958 -1.07 -0.89 -0.18 1.13 0.18

P-values of Mann-Whitney U test of reverse transcription quantitative PCR (RT-qPCR)
DCts (Cycle threshold (Ct) of target gene � Ct of reference gene) between leprosy pro-
gressors (n=47) and household contact (HC) controls (n=47). In bold genes signifi-
cantly differentially expressed (p-value <0.05). Median of DCts per group, DDCt
(median DCt progressors � median DCt HC), Fold Change (FC, 2�ΔΔCt) for progressors
and log2 of Fold Change (log2FC).
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3.5. Validation of a leprosy predictive biomarker signature

The 13-gene RNA-Seq signature was validated by RT-qPCR in an
independent set of subjects. Gene expression of the 13 genes and a
reference gene (GAPDH_m1) were tested using Biomark HD system
(Fluidigm), a high-throughput RT-qPCR. Validation was performed on
a separate set which included 43 leprosy progressors at t=1 and 43
Fig. 4. Boxplot showing -DCts of 13 genes. Boxplot of -DCts (-(Cycle threshold (Ct) target
(RT-qPCR) in whole blood. Genes identified in the RNA-Seq signature (n=13) are shown. Le
household contact (HC) controls in blue (n=47). *Genes significantly differentially expresse
UBC).
HC controls as well as four progressors (at t=1) and four controls
from the discovery set that were included to improve training of the
model. Two outlier samples (one progressor and one control) pre-
senting Cts of the reference gene >15 (median 7.3 GAPDH) were
excluded from the analysis (Fig. S6).

Significantly differentially expressed genes were determined
using DCts (Ct of target gene � Ct of reference gene). Four genes, MT-
ND2, REX1BD, TPGS1 and UBC (Table 4), presented significant differen-
tial expression (p-values 0.0483, 0.0101, 0.0004 and 0.0060 respec-
tively, Mann-Whitney U test) between leprosy progressors and
controls (Fig. 4).

An RT-qPCR model to predict leprosy risk and validate the RNA-
Seq signature was established by Random Forest using DCts as input.
Samples from the discovery set (n=8) were only used in the training
subset which included 80% of samples (n=73). Thus, the model was
evaluated in a separate subset from the validation set consisting of
20% (n=19) of the sample set. A Random Forest model including the
13 genes (Table S3, 13-gene RT-qPCR) showed an AUC of 84.1%
(Fig. 3C, Table S4) and accuracy of 73.7% (sensitivity 87.5%, specificity
63.6%). Slightly improved predictive potential for leprosy was
observed if Random Forest was performed using only the four genes
significantly differentially expressed (Table S3, 4-gene RT-qPCR RIS-
K4LEP), showing an AUC of 86.4% (Fig. 3D, Table S4), accuracy of
79.0%, sensitivity of 87.5% and specificity of 72.7%. From these four
genes, REX1BD, TPGS1 and UBCwere upregulated, whilstMT-ND2was
downregulated in leprosy progressors before clinical diagnosis com-
pared to HC (Fig. 4). This is in line with the RNA-Seq results in the dis-
covery set, except for UBC (Fig. 2). However, removing UBC from the
signature (3-gene signature) and addition of the following gene with
lowest p-value (MT-CYB) in the 3-gene signature led to decreased
gene � Ct reference gene, GAPDH)) obtained by reverse transcription quantitative PCR
prosy progressors before clinical diagnosis of leprosy are shown in red (t=1, n=47) and
d between the two groups using Mann-Whitney U test (MT-ND2, REX1BD, TPGS1 and
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performances (Table S4). Addition of demographic variables (sex, age
and Ridley-Jopling [5] classification of the index leprosy contact) into
the 4-gene or a reduced 2-gene (TPGS1 and UBC) signature did not
improve the performance either (Table S4). Therefore, the 4-gene RT-
qPCR risk signature, which we named RISK4LEP, is preferred to pre-
dict leprosy development in HC due to the improved performance
and the lower number of genes required (Table 3).

4. Discussion

Leprosy diagnosis is often ascertained after the occurrence of clin-
ical symptoms, which may already coincide with the presence of irre-
versible tissue damage. Early diagnosis and prompt treatment are
critical to reduce leprosy-associated disabilities and block M. leprae
transmission. However, a sensitive diagnostic test with potential to
predict the development of leprosy is not available.

To identify a transcriptomic risk signature for leprosy, this study
investigated gene expression differences by RNA-Seq between HC of
leprosy patients in Bangladesh who later developed leprosy and
those who remained without clinical sign and symptoms. Initially a
13-gene signature that could predict leprosy development was iden-
tified using Random Forest, a machine learning approach. Subse-
quently, the signature was adapted and validated in a separate set by
RT-qPCR. Validation of the signature in a new sample set (validation
set) showed that reducing the signature to four genes improved pre-
diction of leprosy in this sample set. The RISK4LEP signature allowed
discrimination of leprosy progressors with a sensitivity of 87.5%, a
specificity of 72.3% and an AUC of 86.4%. This 4-gene signature identi-
fied leprosy progressors amongst individuals exposed to leprosy
bacilli from 4 to 61 months before clinical diagnosis, thus represent-
ing the first transcriptomic risk signature to prospectively predict
leprosy progressors at an asymptomatic stage. This signature is
unique for leprosy and does not overlap with known tuberculosis
risk signatures. Since leprosy has a long incubation time and low dis-
ease prevalence, more than 5,000 samples had to be collected during
8 years to obtain samples of 85 individuals before and at disease
onset. As such, this is the first study of its kind in leprosy research.

The RISK4LEP predictive signature is composed by four genes:MT-
ND2, REX1BD, TPGS1 and UBC. MT-ND2 encodes a subunit (core sub-
unit 2) of the mitochondrial NADH:Ubiquinone Oxidoreductase [74].
MT-ND2 together with MT-ND6 are the essential subunits forming
the mitochondrial membrane respiratory chain NADH dehydroge-
nase which plays a critical role in oxidative phosphorylation. One of
the functions of mitochondrial reactive oxygen species resulting from
oxidative phosphorylation is to regulate immunity. MT-ND2 is under-
expressed in leprosy progressors, hence presenting a disadvantage to
successful elimination of M. leprae [75]. Little is known of REX1BD
and TPGS1: REX1BD encodes the Required For Excision 1-B Domain
Containing Protein and TPGS1, Tubulin Polyglutamylase Complex
Subunit 1, is a gene related to microtubule binding and tubulin-gluta-
mic acid ligase activity that may act in the targeting of the tubulin
polyglutamylase complex [74]. UBC is one of the four genes encoding
the human ubiquitin involved in several pathways such as protein
degradations, DNA repair, cell cycle regulation, kinase modification,
endocytosis and regulation of other cell signalling. It has been previ-
ously reported as having a high degree of connectivity in a protein-
protein interaction network with differentially expressed genes in
patients with active tuberculosis [76]. The ubiquitin system is
involved in the innate immune response in tuberculosis and has been
suggested as a potential target for host-directed therapy, indicating
that UBC might play a role in the innate response against M. leprae as
well. Moreover, variants in the regulation regions of the PRKN gene
(previously known as PARK2), which is part of the ubiquitin system,
have been associated with susceptibility to leprosy [14]. PRKN codes
a ubiquitin ligase that is essential for autophagy of mycobacteria and
damaged mitochondria [77,78].
Our data show that differences in gene expression could be
observed up to 61 months before the disease manifests (Fig. S1). In
contrast, intra-individual expression remains stable in individuals
between the pre-symptomatic phase and time of diagnosis. This indi-
cates that differences in expression of some genes in blood of leprosy
progressors precede appearance of symptoms.

Further exploration of the pathways that could be responsible for
the observed differences in gene expression between leprosy pro-
gressors and controls showed that genes overexpressed in leprosy
progressors are involved in translation pathways and cotranslation of
membrane and ER proteins. EIF2, eIF4 and p70S6K signalling path-
ways, overexpressed in leprosy progressors, are downstream path-
ways to the mTOR pathway which also displayed higher levels in
progressors and regulates protein translation, gene expression, meta-
bolic processes, immune receptor signalling and migratory activity
[79,80]. Likewise, in several other diseases such as cancer, type 2 dia-
betes, rheumatoid arthritis and viral infections the mTOR pathway is
deregulated [79,81]. In general, antigen recognition activates the
mTOR signalling pathway as a result of which naïve CD4+ T-cells dif-
ferentiate into Th1, Th2 and Th17 [80]. This process may thus lead to
a higher expression of mRNA related to Th1, Th2 and Th17 in leprosy
patients compared to healthy individuals as previously observed
[82]. Interestingly, upregulation of the coronavirus pathogenesis
pathway was also observed in leprosy progressors. This could be
caused by activation of the inflammatory and autophagy regulation
pathways in individuals infected with coronaviruses as well as BT
leprosy patients [83,84].

Downregulated gene expression in leprosy progressors was
observed and occurred in organelle and cellular component organiza-
tion pathways as well as integrin and FAK signalling pathways. FAK is
a tyrosine kinase downstream of integrin growth factor. Nuclear FAK
regulates transcription of inflammatory signalling, immune escape,
angiogenesis and p53 [85]. Moreover, overexpression of FAK has
been linked to advanced cancer and metastasis [85,86]. Although FAK
inhibitors are currently being tested for use in cancer treatment, the
FAK signalling pathway has never been studied in leprosy. Hence the
significance of under-expression in leprosy progressors before diag-
nosis as observed in this study requires further investigation.

Recently, Leal-Calvo and Moraes performed a comprehensive
reanalysis of nine publicly available microarrays of leprosy patients
from variable origin. The authors found DGE in skin development
processes including genes such as AQP3, AKR1C3, CYP27B1, LTB, VDR
and keratinocyte biology with CSTA, DSG1, KRT14, KRT5, PKP1 and IVL
[87]. None of the genes identified by that study were, however, found
in our analysis. This could be due to the fact that this reanalysis
mainly investigated DGE between different leprosy types (BT vs LL),
ENL reaction and LL or LL and healthy controls, whereas our study
included mostly BT leprosy patients and HC. Moreover, RNA was
obtained from skin biopsies or cell cultures instead of whole blood.
Consequently, comparison of their results with the present work is
limited andwhile possible biomarker genes were identified in themicro-
array reanalysis, application for diagnosis would be restricted to patients
with visible symptoms as well as requiring more invasive samples (skin
biopsies or cell culture). In contrast, the prospective 4-gene signature RIS-
K4LEP identified in this study is measured in whole blood.

Similarly, other transcriptomic studies described leprosy bio-
markers associated with leprosy but after occurrence of symptoms
and using skin biopsies [53,63,88,89]. Serrano-Coll and colleagues
showed that RT-qPCR of Oct-6 identified multibacillary (MB) patients
(n=30) in Colombia with an AUC of 83.0% (89]. However, S-100
immunohistochemistry alone showed a better AUC (96.0%). Pinto et
al. investigated the expression of non-coding RNAs in leprosy
patients (5 TT and 6 LL) from Brazil [89] and found five P-element-
induced wimpy testis (PIWI)-interacting RNAs (piRNAs) that classi-
fied leprosy patients with an AUC of 90.0%. Jorge et al. established a
non-coding RNA signature consisting of four miRNA, that
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discriminated leprosy patients (6 LL and 6 TT; AUC=87.3%) in Brazil
[53]. Furthermore, Guerreiro and colleagues using nerve biopsies of
PN leprosy patients (n=28) identified a transcriptomic signature
based on a classification tree including LDR and CCL4 which could
ascertain 80% of PN leprosy patients [63]. Although CCL4 and LDR
were not significantly differentially expressed in our study, we also
found lower expression levels of mitochondrial genes involved in the
oxidative phosphorylation pathway in blood of leprosy progressors,
in line with their findings in M. leprae-infected Schwann cells and
nerve biopsies of Brazilian leprosy patients. This reduction may be
caused by down-regulation of mitochondrial genes by mycobacteria
during M. leprae infection to inhibit apoptosis and promote intracel-
lular bacterial survival [90].

We found moderate prediction (AUC=78.3%) of leprosy when the
RISK6 genes (GBP2, FCGR1B, SERPING1, TUBGCP6, TRMT2A, SDR39U1)
were used as input in the Random Forest with RNA-Seq data. This is
likely due to similarities in the immune response to mycobacteria in
leprosy and tuberculosis patients [91]. In line with this, FCGR1A and
GBP genes were previously found to be upregulated in leprosy
patients or during leprosy reactions in and outside Bangladesh
[48,54,92].

It has been previously reported that RNA profiles in blood of lep-
rosy patients are different from those derived from skin [62].
Although transcriptomic analysis in skin of leprosy patients provide
deeper insight into leprosy pathogenesis, the aim of this study was to
identify leprosy predictive biomarkers, preferably measurable in
rapid diagnostic tests. Thus, whole blood is a preferred biosample
because it can be collected relatively easily and translated into field-
friendly tests applying fingerstick blood [51].

In summary, the RISK4LEP signature described here, offers poten-
tial for the development of a point of care test allowing the identifica-
tion of leprosy progression among HC in blood years before symptom
development. Since the present study was performed in Bangladesh,
additional, longitudinal studies are required to determine whether
this signature predicts leprosy progression in endemic populations
from different origins. Moreover, since the majority of the Banglade-
shi patients who developed leprosy during this study developed BT
leprosy, similar studies will also need to provide information on
the performance of the signature to predict occurrence of LL types.
It is tempting to speculate that this signature could identify early
forms of BT leprosy, thus preventing the more severe LL types from
developing.

Nevertheless, the novel RISK4LEP signature predicts development
of (BT) leprosy up to 61 months before clinical diagnosis. Such signa-
tures, when properly validated in other populations as well, can be
applied for targeted preventive treatment and reduction of M. leprae
transmission among HC.
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