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Abstract: Rheumatoid arthritis (RA) is an autoimmune disease that involves multiple joints bilaterally.
It is characterized by an inflammation of the tendon (tenosynovitis) resulting in both cartilage
destruction and bone erosion. While until the 1990s RA frequently resulted in disability, inability
to work, and increased mortality, newer treatment options have made RA a manageable disease.
Here, great progress has been made in the development of disease-modifying anti-rheumatic drugs
(DMARDs) which target inflammation and thereby prevent further joint damage. The available
DMARDs are subdivided into (1) conventional synthetic DMARDs (methotrexate, hydrochloroquine,
and sulfadiazine), (2) targeted synthetic DMARDs (pan-JAK- and JAK1/2-inhibitors), and (3) biologic
DMARDs (tumor necrosis factor (TNF)-α inhibitors, TNF-receptor (R) inhibitors, IL-6 inhibitors, IL-6R
inhibitors, B cell depleting antibodies, and inhibitors of co-stimulatory molecules). While DMARDs
have repeatedly demonstrated the potential to greatly improve disease symptoms and prevent disease
progression in RA patients, they are associated with considerable side-effects and high financial costs.
This review summarizes our current understanding of the underlying pathomechanism, diagnosis of
RA, as well as the mode of action, clinical benefits, and side-effects of the currently available DMARDs.
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1. Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease affecting the joints. It is characterized by
a progressive symmetric inflammation of affected joints resulting in cartilage destruction, bone erosion,
and disability [1]. While initially only a few joints are affected, in later stages many joints are affected
and extraarticular symptoms are common (see below) [2].

With a prevalence ranging from 0.4% to 1.3% of the population depending on both sex (women are
affected two to three times more often than men), age (frequency of new RA diagnoses peaks in
the sixth decade of life), and studied patient collective (RA frequency increases from south to north
and is higher in urban than rural areas) [1–5], RA is one of the most prevalent chronic inflammatory
diseases [1].

Clinically, the symptoms of RA significantly differ between early stage RA and insufficiently
treated later stages of the disease. Early stage RA is characterized by generalized disease symptoms
such as fatigue, flu-like feeling, swollen and tender joints, and morning stiffness; and is paralleled
by elevated levels of C-reactive protein (CRP) and an increased erythrocyte sedimentation rate
(ESR) [6]. In contrast, insufficiently treated RA displays a complex clinical picture with the occurrence
of serious systemic manifestations such as pleural effusions, lung nodules and interstitial lung
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disease, lymphomas, vasculitis in small or medium-sized arteries, keratoconjunctivitis, atherosclerosis,
hematologic abnormalities (e.g., anemia, leukopenia, neutropenia, eosinophilia, thrombocytopenia,
or thrombocytosis), joint malalignment, loss of range of motion, bone erosion, cartilage destruction,
and rheumatic nodules (in detail reviewed in [1,2,7]). Taken together, these systemic manifestations
caused by the chronic inflammatory state in RA patients result in an increased mortality.

2. Development of Rheumatoid Arthritis

While the cause of RA is unknown, both genetic and environmental factors were shown to
contribute to RA development [8] (Figure 1). As it is hypothesized for other autoimmune diseases,
it is likely that the initial establishment of RA requires two separate events: (1) genetic predisposition
of the respective patient resulting in the generation of autoreactive T and B cells, and (2) a
triggering event, such as viral and bacterial infections or tissue injury, providing the activated
Antigen-presenting cells (APCs) to activate the previously generated autoreactive lymphocytes,
resulting in disrupted tolerance and subsequent tissue/organ destruction. Therefore, RA likely develops
in genetically predisposed individuals due to a combination of genetic variation, epigenetic modification,
and environmental factors initiated by a stochastic event (e.g., injury or infection) [1]. Risk factors for the
development of RA were reported to include smoking, obesity, exposition to UV-light, sex hormones,
drugs, changes in microbiome of the gut, mouth, and lung, periodontal disease (periodontitis),
and infections [1,2,5,7,9,10]. Among these factors, the link between periodontal diseases and RA
development is especially interesting.

While the association between periodontitis and RA development was recognized as early as
the 19th century [11], recent studies have demonstrated that infections with the common periodontal
bacterium Porphyromonas gingivalis can result in the induction of autoimmune responses via the
citrullination of host peptides [2,9]. During this process, which is catalyzed by the enzyme protein
arginine deiminase (PAD), positively charged arginine residues of “self” proteins are converted into
neutral citrulline residues, resulting in a net loss of surface charge, an increased susceptibility of the
citrullinated “self” proteins to protein degradation, and the generation of neoepitopes [2,9].

This breach of local tolerance by P. gingivalis expressing PADi4 (facilitating the conversion of
arginine to citrulline) promotes autoimmune responses as well as the downstream generation of
anti-citrullinated protein antibodies (ACPAs) [12]. In addition, other viral (Epstein–Barr virus) and
bacterial infections (Proteus mirablis, Escherichia coli) were suggested to trigger the development of RA
by mechanisms of molecular mimicry caused by similarities between amino acid sequences of “self”
antigens and certain bacterial- or viral proteins [1,7,13–15].

Besides citrullination, carbamylation of lysine residues also contributes to the generation of
neoepitopes from several “self” proteins (e.g., collagen, fibrinogen, or vimentin) and the subsequent
breaking of immunological “self” tolerance [7,16].

Since both a family history of RA increases the risk to develop RA three to five times and
concordance risk rates in identical twins are increased compared to both non-related control collectives
and non-identical twins, we have to assume that genetic factors also contribute to RA development [1,17].

Genome wide association studies using single nucleotide polymorphisms (SNPs) have suggested
more than 100 loci to be associated with RA development [1,18]. As expected, many of these
loci are involved in the induction, regulation, and maintenance of immune responses and are
shared with other chronic inflammatory diseases. Some of the RA risk factors are the presence of
certain HLA alleles [19], alterations in co-stimulatory pathways (e.g., via changes in CD28 or CD40
expression) [20], as well as changes in innate immune cell activation [21], lymphocyte activation
thresholds (e.g., PTPN22) [22], or cytokine signaling [1]. Among the genes contributing to RA
development, HLA-DRB1 alleles (DRB1*01 and DRB1*04; DQ8) account for approximately 50% of the
observed genetic susceptibility [2,23,24]. Studies have suggested that these HLA alleles, which share
amino acid sequences within their peptide binding grooves, are able to preferentially present certain



Cells 2020, 9, 880 3 of 43

peptide epitopes derived from relevant RA autoantigens [1,25]. In addition, some of these HLA-DRB1
alleles are associated with more aggressive bone erosion and increased mortality rates [26].

Taken together, these findings suggest a strong T cell-dependent component in RA and indeed Th1
and Th17 T cell subsets are the predominant cell types found in the inflamed synovial tissue (see also
below “pathomechanism of RA”) [2,27].
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Figure 1. Factors contributing to rheumatoid arthritis (RA) development. Both environmental (smoking,
obesity, as well as infections with certain pathogens such as Porphyromonas gingivialis) and genetic
factors (epigenetic modifications, genetic polymorphisms influencing antigen presentation (e.g., the
HLA genes HLA-DRB1*01/04), T- and B cell function, cytokine production, and signal transduction
following immune cell activation) contribute to the development of RA. Moreover, also synovial injury
and hyperplasia of synovial fibroblasts can contribute to the establishment of RA via the triggering of
inflammatory conditions. Overall, these processes lead to the modification of autoantigens (mostly by
citrullination) which generates neoepitopes by a loss of surface charge and an increased susceptibility
to proteolytic degradation.

3. Pathomechanism of RA

In RA autoimmune tissue destruction presents as synovitis, an inflammation of the joint capsule
consisting of the synovial membrane, synovial fluid, and the respective bones [7]. This joint inflammation
is initiated and maintained by a complex interplay between different dendritic cell (DC) subtypes,
T cells, macrophages, B cells, neutrophils, fibroblasts, and osteoclasts. Since the ubiquitously present
RA-specific autoantigens cannot be completely cleared, this continuous immune cell activation results
in a self-perpetuating, chronic inflammatory state in the joint and swelling of the synovial membrane
that is recognized by the affected patients as pain and joint swelling [1]. This chronic inflammatory
milieu in the arthritic joint in turn leads to an expansion of the synovial membrane termed “pannus”
which invades the periarticular bone at the cartilage–bone junction, resulting in bone erosion and
cartilage degradation [7].
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3.1. Contribution of Dendritic Cells to Establishment and Maintenance of Inflammation in RA

DCs have a critical function in regulating immune responses by taking up, processing,
and presenting antigens to naïve T cells. In this context, the DC phenotype, characterized by the
expression of surface molecules and the production of both cytokines and chemokines, determines the
balance between either immune system activation or the induction and maintenance of tolerance.

Accumulating evidence suggests that both an altered distribution and function of DCs in RA as
well as other autoimmune diseases contribute to autoimmune inflammation (reviewed in [28]). In this
context, a reduced frequency of both conventional DCs and plasmacytoid DCs in the plasma of RA
patients was reported [29], likely caused by an enhanced migration of DCs to the inflamed joint [28].
This DC recruitment was hypothesized to be mediated by an increased expression of CCR6 on the
DCs, with CCR6 being the receptor for the chemokine CCL20 which is highly expressed in synovial
tissue [30].

Once attracted to the joint, mature DCs were shown to produce the cytokines IL-12 and
IL-23 which promote antigen-specific Th17 responses, resulting in imbalances between Th1-, Th2-,
and Th17 responses [31–33]. In this context, especially CD14+CD1a+CD1c+ inflammatory DCs
(locally differentiating from monocytes invading the inflamed joint) in synovial fluid were suggested
to play an important role in the pathogenesis of RA by effectively activating Th17 cells in RA joints via
their production of TGF-β, IL-1β, IL-6, and IL-23 [31].

Moreover, activated plasmacytoid dendritic cells (pDCs) were also reported to contribute to
overall inflammation in RA patients via the secretion of IFN-α, IFN-β, IL-18, and IL-23. In addition,
pDCs may promote the production of autoantibodies (see below) via the expression of anti-apoptotic B
cell activating factor (BAFF) [32]. In line with this, ACPA seropositive RA patients have been shown to
have higher numbers of pDCs in the synovium than their ACPA negative counterparts [32]. RA patients
also show an increased transcriptional activity of interferon-stimulated genes. Thus, IFNs might have
an important role both in the initial loss of “self” tolerance as well as in the chronic, established phase
of RA [34,35].

Therefore, enhanced pro-inflammatory cytokine production in conjunction with the activated status
of DCs may promote the presentation of autoantigens to T cells and the perpetuation of inflammatory
responses. In addition to changes in cytokine secretion, DC activation in the inflammatory milieu of the
synovium also modulates the expression pattern of e.g., chemokine receptors regulating DC migration.
For example, DCs in RA synovium were shown to express lower levels of CCR7, resulting in reduced
emigration rates of mature DC from inflamed tissues and the maintenance of local inflammation [30,36].

3.2. Joint Inflammation in RA is Mediated by T cells, B cells, Macrophages, and Fibroblasts

Initiated by both epithelial cells in the synovium and activated antigen presenting cells priming
autoantigen-specific T- and B cell responses in both lymph nodes and local tissues, the main infiltrating
cells in the affected joints are T cells, B cells, and monocytes [7].

Activated T cells migrating to the synovium locally interact with resident macrophages, dendritic
cells, synoviocytes, and osteoclasts. Here, several T cell subsets and their complex interactions likely
contribute to RA pathology (reviewed in [37]).

Via their secretion of IL-2, IFN-γ, and TNF-β, Th1 cells potently provide help to other immune cells,
resulting in the activation of macrophages and B cells, thereby initiating and perpetuating inflammatory
responses in the synovium [37–39]. In addition to their helper function in RA inflammation,
CD4+CD28null cells co-expressing perforin and granzymes, molecules more commonly found in
CD8+ cytotoxic T cells, were recently shown to be increased in peripheral blood of a subset of RA
patients [40–42]. Moreover, CD4+ cells expressing perforin have been observed in synovial fluid and
tissue [42–44], suggesting that these cells might contribute to tissue damage and the maintenance of
inflammation in RA patients.
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In addition, an increased frequency of CXCR5+ICOS+CD4+ T follicular helper cells correlating with
both ACPA titers and overall disease severity was reported in peripheral blood of RA patients [45–47].
However, currently, their contribution to RA pathology is unclear.

Th17 cells, induced by the cytokines IL-6, IL-1β, IL-21, TGF-β, and IL-23 present in synovial
joints [48,49], were shown to recruit neutrophils, activate B cells, and promote osteoclastogenesis [50,51].
However, the role of IL-17A in RA is up for debate, since therapeutic targeting of either IL-17A or
the IL-17R showed lower efficacy than for example in the treatment of psoriasis [52,53]. Moreover,
anti-TNF-α treatment was shown to trigger IL-10 production from human Th17 cells [54], suggesting
that Th17 cells could also have immunosuppressive capacities in RA. Therefore, it was suggested,
that Th17 cells may be important during early stages of the disease, while in later stages Th1 cells
differentiated into cytotoxic CD4+ T cells may drive both direct tissue damage and pro-inflammatory
cytokine production [37].

Moreover, the delicate balance between effector and regulatory T (Treg) cell subsets is likely to
influence both disease establishment and progression. Here, studies suggest that the inflammatory
milieu in RA patients may contribute to (1) Treg dysfunction preventing the control of autoreactive T cells
and (2) differentiation of Tregs into pathologic T cells. In line with this hypothesis, CD4+CD25+Foxp3+

Tregs with the potential to convert into pathogenic Th17 cells were shown to accumulate in inflamed
synovium [55,56]. Moreover, Tregs in RA patients were shown to locally lose their suppressive capacity
in synovial fluid while Tregs in peripheral blood retained their suppressive properties [57]. Finally,
a distinct population of Tregs with TGF-β-dependent suppressive capacity could be induced by
inhibition of TNF-α [58,59].

3.3. Contribution of Cytokines to Inflammation in RA

As signaling molecules both among immune cells as well as between immune- and tissue cells,
cytokines have an important function in the establishment of RA inflammation. The main effector
cytokines produced by infiltrating T cells are tumor necrosis factor (TNF)-α, IL-17A, interferon (IFN)-γ,
and receptor activator of nuclear factor KB ligand (RANK-L) [1] (Figure 2).

Especially TNF-α, which is also produced by synovial macrophages, B-, and NK-cells is one of
the most important mediators of joint inflammation in RA [60]. It is present in most arthritic biopsies
and its overexpression induces spontaneous inflammation in various rodent arthritis models [61].
Early in vitro studies demonstrated that TNF-α could induce both cartilage degradation [62] and
bone resorption [63]. Recently, TNF-α was also shown to enhance RANK-L secretion by osteocytes
which further promotes osteoclastogenesis [64]. Interestingly, some studies pointed out that TNF-α
can also directly induce the differentiation of monocyte/macrophage lineage cells into osteoclasts by a
RANK-L-independent mechanism [65–67]. The other important role of TNF-α in the pathogenesis
of RA is its ability to induce the production of other inflammatory cytokines, such as IL-1β and IL-6,
which attract leukocytes and promote the establishment of an inflammatory milieu in the synovium [60].

IL-17A produced by Th17 cells promotes both the production of the pro-inflammatory cytokines
IL-6, IL-8, and GM-CSF from epithelial, endothelial, and fibroblastic cells [68] and neutrophil
recruitment [69], which leads to local inflammation and promotes disease progression. By these actions,
IL-17A contributes to bone erosion, cartilage destruction, and neoangiogenesis in RA patients [70].
IL-17A triggers differentiation of osteoclast progenitors into mature osteoclasts and promotes RANK-L
production by osteoblasts and synoviocytes, resulting in both reduced bone formation and enhanced
bone erosion [71–73]. In addition, IL-17A was shown to also promote matrix metalloproteinase (MMP)-1
production by synoviocytes, leading to cartilage destruction [74]. Angiogenesis plays a critical role in
the pathogenesis of RA (see Section 3.5). In this context, IL-17A was shown to enhance both endothelial
cell migration [75] and the production of vascular endothelial growth factor (VEGF) by synovial
fibroblasts [76].

Another important cytokine in the pathology of RA is IFN-γ. RA patients have high levels
of IFN-γ in plasma, synovial tissue, and synovial fluid [77,78]. IFN-γ is produced by T cells,
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B cells, NK cells, monocytes/macrophages, DCs, and neutrophil granulocytes [79–83]. It binds
to the ubiquitously expressed IFN-γ receptor where it triggers the activation of IFN-stimulated
genes via multiple pathways including the Janus activated kinase-signal transducer and activator
of transcription 1 (JAK–STAT1) pathway as well as the mitogen activated protein (MAP) kinase-,
phosphatidylinositol 3-kinase (PI3K)-, and nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB)-pathways [84–86]. By these actions, IFN-γ enhances antigen presentation and macrophage
activation [86]. IFN-γ-activated macrophages and monocytes in turn produce the chemokine CXCL10
which promotes differentiation of osteoclasts by inducing RANK-L and TNF-α secretion from CD4+ T
cells [87,88]. Moreover, B cell-derived IFN-γ was shown to inhibit Treg differentiation in a murine
model of proteoglycan-induced arthritis, thereby further promoting autoimmune responses [82].

Therefore, IFN-γ contributes to the establishment of early inflammation in RA by the above
discussed mechanisms. However, it was also suggested to have tissue-protective effects in later stages of
the disease by inhibiting for example RANK–RANK-L-mediated osteoclastogenesis, neutrophil influx,
TNF-α-dependent synoviocyte proliferation, production of degradative enzymes, release of prostaglandin
E2 and granulocyte-macrophage colony-stimulating factor (GM-CSF) (reviewed in [86,89]).

RANK-L, a member of the TNF superfamily, is an important regulator of bone regeneration
and remodeling [90]. RANK-L binds to RANK and induces osteoclastogenesis [90]. Under normal
physiological conditions, RANK-L is mainly produced by osteoblasts. However, in RA joints, immune
cells (Th17 cells, macrophages, DCs, and activated B cells) [91,92] and fibroblast-like synoviocytes [93]
are the main source of RANK-L. In RA patients, RANK-L induces an abnormal activation of osteoclasts,
resulting in bone destruction [93]. In line with this, RANK-L knockout mice were protected from
serum transfer-induced arthritis [94].

Macrophages activated in the pro-inflammatory milieu of the inflamed synovium in turn produce
additional pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) that contribute to increased inflammation
by recruiting and activating other innate immune cells (e.g., neutrophils) to the site of synovitis.
Activated neutrophils subsequently release high levels of oxidants, cytokines, and inflammatory agents
including TNF-α, proteases, phospholipases, defensins, and myeloperoxidases at the site of RA in
affected joints which further contribute to joint destruction [95,96].

Moreover, the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α also both initiate and perpetuate
the production of further degradative enzymes (e.g., MMPs) [97,98] and prostaglandins [62]. In addition,
RANK-L produced by cytokine-activated fibroblasts in combination with TNF-α and IL-6 from activated
immune cells induces the differentiation of macrophages and preosteoclasts into osteoclasts that are
specialized in the degradation of bone material [1,7,99].

Activated fibroblasts not only produce RANK-L and MMPs directly contributing to local joint
damage but also migrate between joints, promoting inflammation at other joints (explaining the
symmetrical character of the disease) [100]. Therefore, besides activation of resident and infiltrating
immune cells, joint inflammation in RA is also characterized by a specific tissue response in which
local fibroblasts assume an aggressive pro-inflammatory phenotype characterized by matrix regulatory,
osteoclast-generating, and invasive properties [101,102].

3.4. Contribution of B Cells and Autoantibodies to the Pathogenesis of RA

Antibodies, resulting from aberrant activation of autoreactive B cells, also significantly contribute
to the pathology of RA by immune complex formation and subsequent complement activation [103].
Here, the two main types of autoantibodies found in RA are rheumatoid factor (RF) and anti-citrullinated
protein antibodies (ACPAs). The presence of these two autoantibodies defines a patient as having
“seropositive” RA [17]. While the pathology of RA can be heterogenous, the presence of RF and
ACPA autoantibodies was correlated to aggravated disease symptoms, joint damage, and increased
mortality [1].

RF autoantibodies are pentameric IgM antibodies that bind to the Fc portion of human
immunoglobulin G (IgG). RF is found in 69% of patients with RA and has a specificity of 60%–85%
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for the disease [104,105]. Of note, RF can also be detected both in other disease states (e.g., infections,
certain types of cancer, and other rheumatic diseases) as well as in healthy patients [106].

ACPA autoantibodies, which can be either of the IgG-, lgA-, or lgM-isotype, can bind to citrullinated
protein residues of many “self” proteins such as for example type II collagen, histones, fibrinogen,
fibronectin, vimentin, and α-enolase [107,108]. Similar to RF, ACPAs are found in 60–80% of RA
patients, but their specificity for the disease is up to 85–99% [109]. The risk of onset of disease in
patients positive for RF and ACPAs is 40% [110].

Interestingly, in a condition called pre-rheumatoid arthritis, ACPAs can be detected in the blood
circulation of patients up to 10 years before the patients experience the first disease symptoms,
making the presence of these antibodies a highly valuable tool for the diagnosis of early disease
stages. Both ACPA concentrations and epitope diversity increase alongside the concentration of
pro-inflammatory cytokines over the course of the disease and ACPAs were shown to contribute to RA
pathology by either activation of macrophages, activating osteoclasts by immune complex formation,
or directly promoting bone loss via binding to citrullinated vimentin found in bone membranes [1,103].

Studies showing a correlation between the presence of ACPAs and the risk of developing bone
erosions have suggested ACPAs to be involved in bone erosion [111–113]. Here, ACPAs may increase
bone resorption by either (1) immune complex-mediated activation of macrophages which in turn
secrete pro-inflammatory cytokines (e.g., TNF-α, RANK-L) promoting the differentiation of osteoclasts
(see above) or (2) the direct recognition of citrullinated proteins on the surface of osteoclast precursor
cells resulting in efficient osteoclast generation (reviewed in [114]). Moreover, both IL-8-dependent
osteoclast differentiation and activation by ACPAs was related to joint pain [115], suggesting that
ACPAs also actively contribute to the development of joint pain.

However, not all ACPAs seem to be equally detrimental in RA, since ACPAs are usually present
in patient´s sera for years without causing disease symptoms. Here, recent data suggested that
differences in ACPA glycosylation patterns might account for the observed differences between
pathologic and non-pathologic ACPAs [114,116]. Especially hyposialysation at position Asn297 in
the fragment crystallizable region of ACPAs was shown to generate highly pathogenic ACPAs [116],
and endoglycosylase treatment of IgG antibodies was shown to reduce the severity of collagen type
II-induced RA in a mouse model [117]. Since the constant region of an antibody is mainly responsible
for the respective antibody’s effector function, differences in glycosylation pattern can significantly
change the antibody´s biological effects even when the variable, antigen-binding part of the respective
antibody is unchanged.

In line with these results, both galactosylation and sialylation levels of ACPAs were shown
to decrease in ACPA-positive RA patients in the timeframe shortly before first onset of RA
symptoms [118–120]. Mechanistically, IL-21 and IL-22 produced by Th17 cells in the inflamed joint
were suggested to trigger the release of pathogenic, hyposialysated ACPAs by reducing expression of
the enzyme sialyltransferase ST6GAL1 [114].

3.5. RA also Results in Neovascularization

Moreover, the inflammatory processes in the joints of RA patients are often paralleled by
neovascularization (growth of new blood vessels) and synoviocyte hyperplasia (excessive proliferation
of synoviocytes) [121,122].

The prolonged exposure of synoviocytes to the inflammatory milieu of the arthritic joint was shown
to result in a transformed, cancer-like phenotype characterized by both uncontrolled proliferation
and reduced sensitivity towards apoptosis [123,124]. This phenotype was suggested to result from an
accumulation of mutations and epigenetic changes, e.g., somatic mutation of the tumor suppressor
gene p53 in RA synovium rather promoting p21-mediated cell cycle arrest than apoptosis [125–128]
under these inflammatory conditions.
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In light of the observation, that later stages of RA may be refractory to immunological treatment
approaches, these results suggest that late stage RA may have characteristics of a cell-autonomous
genetic and epigenetic synoviocyte disease, characterized by altered cell death pathways [128].
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Figure 2. Pathomechanism of RA. Inflammation in RA is induced by autoreactive Th1- or Th17 T cells
primed in the lymph nodes (LN) or locally by activated Antigen-presenting cells (APCs) that present
autoantigen-derived peptides. In the affected joint, activated autoreactive T cells subsequently activate
macrophages and fibroblasts via the secretion of the pro-inflammatory mediators TNF-α, IL-17, IFN-γ,
and receptor activator of nuclear factor KB ligand (RANK-L). Activated macrophages in turn secrete
large amounts of the strongly pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 which promote the
establishment and maintenance of an inflammatory milieu in the synovium. Activated T cells also
provide help to autoreactive B cells resulting in the production of anti-citrullinated protein antibodies
(ACPAs) and rheumatoid factor (RF) autoantibodies. These autoantibodies further drive inflammation
by either direct macrophage activation of triggering the complement cascade. In addition, RANK-L
produced by the activated fibroblasts promotes the differentiation of osteoclasts from macrophages.
Together with fibroblast-derived matrix metalloproteases (MMPs), osteoclasts, and antibodies, activated
neutrophils mediate inflammation-dependent cartilage destruction and bone erosion.

4. Diagnosis of RA

Clinically, RA patients typically present with a recent onset of tender and swollen joints, morning
joint stiffness, generalized sickness symptoms (see above), as well as abnormal laboratory tests [1].
Timely and precise diagnosis is of high importance in RA treatment, since early diagnosis can arrest
disease in many patients, thereby preventing or substantially slowing disease progression, irreparable
joint damage, and disability in up to 90% of RA patients [7].

Typically, RA is diagnosed by a combination of patient’s symptoms, results of doctor´s examination,
assessment of risk factors, family history, joint assessment by ultrasound sonography, and assessment
of laboratory markers such as elevated levels of CRP and ESR in serum and detection of RA-specific
autoantibodies (already discussed above) [7,129].
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Both ultrasound and MRI have been recommended for diagnosing and monitoring disease
activity in RA patients [130]. Ultrasound analysis (e.g., as high-resolution musculoskeletal ultrasound)
of inflamed joints allows imaging of synovial proliferation by grayscale as well as both active
inflammation and neoangiogenesis by power Doppler [131]. In addition, ultrasound is able to identify
bone erosions [132], as well as subclinical synovitis that may result in radiographic disease progression
even if the patient is in apparent clinical remission [133,134]. Due to these capabilities, ultrasound is
widely used in clinical practice as well as in clinical trials for the diagnosis of RA and the monitoring of
disease states [135].

The advantages of ultrasound are its relatively low cost, wide availability, lack of contraindications,
and non-invasive real-time imaging capabilities. Disadvantages are that ultrasound is considered an
operator-dependent technology because of it being training-intensive in terms of both measurement
and quality assessment [135].

While being a very sensitive diagnostic tool to detect e.g., synovial hypertrophy or pannus
formation before the occurrence of bone erosion, routine usage of magnetic resonance imaging (MRI)
techniques (preferably contrasted) in the diagnosis of RA is limited by cost factors and the limited
capacity to image multiple joints in one measurement [2,136].

As clinical biomarkers, CRP and ESR are routinely used to determine the general inflammatory
state of RA patients. CRP is an acute phase reactant, composed of five 23-kDa subunits belonging to
the pentraxin protein family. Its serum concentration can increase by three or more log steps in the
presence of either infection, inflammation, or tissue injury [137,138]. Triggered by the cytokines IL-6,
IL-1β, and TNF-α, the main sources of CRP production are hepatocytes, but also to a lower extent
vascular smooth muscle cells, monocytes, lymphocytes, adipocytes, and neurons [138–142].

As immunological effector function, CRP both activates the classical complement pathway and
stimulates the influx and phagocytotic activity of neutrophils [143,144]. Moreover, interaction of CRP
with the Fc gamma receptors FcγRI and FcγRIIA was shown to promote both survival and proliferation
of macrophages as well as pro-inflammatory cytokine production and subsequent amplification of
inflammation via production of MMPs, secretion of monocyte chemoattractant protein-1 (MCP-1)
and macrophage colony-stimulating factor (M-CSF), and inhibition of the anti-inflammatory cytokine
IL-10 [145–150]. Moreover, RANK-L expression by PBMCs induced by CRP also resulted in the
differentiation of osteoclast precursors into osteoclasts [151].

While being unaffected by factors like age, gender, and abnormalities in erythrocytes and serum
proteins [151], CRP levels were found to positively correlate with both disease activity, histological
changes in the synovium, and radiological progression and clinical parameters such as morning
stiffness, pain, fatigue, grip strength, articular index, and disability [152–155]. Therefore, CRP was
found to be a useful marker in RA diagnosis, as well as the monitoring of disease progression and
prognosis of joint damage [156–158].

ESR is a widely used standard laboratory test determining the speed at which erythrocytes
settle within a test tube containing a blood sample of the respective patient [159]. In the presence of
inflammatory processes, infections, autoimmune disorders (e.g., RA), but also pregnancy, anemia,
certain kidney diseases, and some cancers (e.g., lymphoma and multiple myeloma) increased
concentrations of fibrinogen in the blood cause a coagulation of the red blood cells (reviewed
in [160]). In this process, the erythrocytes form stacks called “rouleaux”, which settle faster in the test
tube because of their increased density [160].

EULAR Criteria for the Diagnosis of RA

Although primarily developed for the identification of homogenous patient populations in clinical
RA trials [17,161], the 2010 ACR-EULAR (American College of Rheumatology-European League against
Rheumatism) criteria can also be used by physicians to diagnose RA [7,17,161]. Hereby, the 2010
EULAR criteria incorporate all of the above discussed diagnostic parameters: joint involvement,
abnormalities in CRP and ESR, presence of RA-specific autoantibodies, and overall symptom duration.
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Using the 2010 EULAR criteria joint involvement is graded with 0–5 points depending on the
number and size of the involved joints (requiring the presence of at least one clinically swollen
joint), up to three points are given depending on the presence and concentration of ACPAs and RF
autoantibodies, and one point each for presence of abnormal levels of CRP and increased ESR as
well as the overall duration of disease symptoms (Figure 3). This classification allows for a maximum
disease score of 10 points (see Figure 3) and a RA diagnosis is made if (1) the overall score of the patient
is greater than six and (2) other causes for synovitis (e.g., other inflammatory arthritic conditions,
infection, or trauma) can be excluded [2]. Overall, the sensitivity of the 2010 EULAR criteria was
reported to be 82% with a specificity of 61% [17].
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Figure 3. Clinical parameters frequently used in the diagnosis of RA and their quantification using
the 2010 ACR-EULAR (American College of Rheumatology-European League against Rheumatism)
classification criteria. Clinical diagnosis (left) of RA relies on joint examination (mainly via sonography,
but also by magnetic resonance imaging (MRI)), and the serological determination of RA-specific
autoantibodies (Rehmatoid factor (RF) and ACPAs) and detection of elevated levels of C-reactive
protein (CRP) and an increased erythrocyte sedimentation rate (ESR). The 2010 ACR-EULAR RA
classification criteria (right). Scoring parameters are number and size of the involved joints, the presence
and concentration of RA-specific ACPAs and RF autoantibodies, presence of abnormal levels of CRP
and increased ESR, and overall duration of disease symptoms. According to the 2010 ACR-EULAR RA
classification criteria a RA diagnosis is made if the overall score is greater than six and other causes for
synovitis (see above) can be excluded.

5. Treatment of RA

Once RA is diagnosed in a patient, the overall treatment target is to either reach full remission
or at least significantly lower disease activity within a span of approximately 6 months in order to
prevent joint damage, disability, and systemic manifestations of RA [7,129].

The importance of prompt and targeted RA treatment is underlined by the fact that 80% of
insufficiently treated patients will have misaligned joints and 40% of patients will be unable to work
within 10 years of disease onset [7,162,163].
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To achieve the treatment goals, treatment should be initiated promptly and continuously with
frequent reassessment of both the state of the disease and the effectiveness of the applied treatment
strategy. Until the early 1990s the common treatment strategy of RA was based on a treatment pyramid
consisting of bed rest, the administration of non-steroidal anti-inflammatory drugs (NSAIDs), and if
these treatments failed disease-modifying anti-rheumatic drug (DMARD) therapy [129]. However,
the efficacy of this treatment strategy was limited and within years rheumatoid arthritis frequently
resulted in joint destruction, disability, inability to work, and increased mortality [164].

Fortunately, the repertoire of therapeutic drugs with benefit in the treatment of RA has grown
steadily in the last 30 years. Currently, the available drug classes include NSAIDs, immunosuppressive
glucocorticoids, and DMARDs. Drug treatment is typically supplemented by non-pharmacological
treatment which includes physical therapy to sustain joint mobility and patient counselling to slow
down disease progression (see Figure 4).
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Figure 4. Overview over the available treatment strategies for RA patients. The possible treatments
for RA are divided into four main strategies. Non-pharmacological treatments include a combination
of physical therapy, patient counseling in lifestyle factors, and surgical procedures to remove and/or
replace the affected joint and bone areas. Non-steroidal anti-inflammatory drugs (NSAIDs) are usually
used only for symptomatic treatment and/or until the RA diagnosis is established since these drugs
reduce pain and stiffness in the affected patients but have no influence on disease progression.
In contrast to this, non-specific immune system suppression via the application of glucocorticoids has
rapid disease-modifying effects but its long-term usage is limited due to severe side-effects. Finally,
disease-modifying anti-rheumatic drugs (DMARDs) are used to target inflammation and prevent
further joint damage and disease progression.

NSAIDs like for example aspirin, diclofenac, or ibuprofen effectively reduce pain and swelling
and improve joint function but are not disease-modifying since they do not prevent additional joint
damage [1]. Mechanistically, the anti-inflammatory properties of NSAIDs can be mainly attributed to
the inhibition of prostanoid biosynthesis [165]. Prostanoids, such as for example prostaglandin (PG)
E2, PGD2, PGF2α, thromboxane A2, and prostacyclin, are second messengers that interact with and
activate surface expressed G-protein coupled receptors thereby modulating many cellular functions.
While effectively reducing RA symptoms, the application of NSAIDs is frequently accompanied by
renal-, hepatic-, gastrointestinal-, and cardiovascular side-effects (reviewed in [166]).

Glucocorticoids like prednisolone are highly potent anti-inflammatory drugs that delay radiologic
progression in early disease stages by general suppression of gene expression [2,167]. Despite these
beneficial effects, the disease-modifying effects of glucocorticoids were described to be minimal and the
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long-term application of glucocorticoids is hampered by severe multisystemic metabolic side-effects
such as gastrointestinal bleeding, osteoporosis, and ulcer formation [1,2,168].

Finally, DMARDs are drugs that target rheumatoid inflammation and thereby prevent further
joint damage. Per definition DMARDs are drugs that, in contrast to drugs which do not prevent disease
progression (e.g., NSAIDs or pain medication), interfere with the signs and symptoms of RA, improve
physical function, and inhibit progression of structural joint damage [1,7].

The available DMARDs are further subdivided into (1) conventional synthetic DMARDs
(methotrexate, hydrochloroquine, and sulfadiazine), (2) targeted synthetic DMARDs (pan-JAK- and
JAK1/2-inhibitors), and (3) biologic DMARDs (TNF-α inhibitors, TNF-receptor ®inhibitors, IL-6
inhibitors, IL-6R inhibitors, B cell depleting antibodies, and inhibitors of co-stimulatory molecules)
(Figure 5). The following sections will discuss the different available DMARDs in more detail.
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anti-IL-6- and anti-IL-6R antibodies, B cell depleting anti-CD20 antibodies, as well as inhibitors of
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6. DMARDs in the Treatment of RA

Box 1. Commonly used scores to quantify effectiveness of RA treatment.

American College of Rheumatology response criteria 20/50/70 (ACR20/50/70): Composite measure defined
as either 20%/50%/70% improvement in both number of tender and swollen joints combined with 20%/50%/70%
improvement in three of the following five criteria: (1) patient global assessment, (2) physician global assessment,
(3) functional ability measure (via patient questionnaire), (4) visual analog pain scale, and (5) ESR/CRP level.

Disease Activity Score 28 (DAS28): Composite score including four disease parameters: (1) number of
swollen joints (maximum is 28), (2) number of tender joints (maximum is 28), (3) increased ESR, and (4) patient
global assessment. The overall score is calculated by a complex mathematical formula and scores greater than
5.1 suggest active disease, less than 3.2 low disease activity, and less than 2.6 indicate a state of remission.

Disease Activity Score 28-C-Reactive Protein (DAS28-CRP): DAS28 score that uses CRP as general
inflammation parameter instead of ESR.

6.1. Conventional Synthetic DMARDs

Currently, the class of synthetic DMARDs mainly comprises the three most frequently used
substances methotrexate, hydrochloroquine, and sulfadiazine. Developed empirically, the definitive
mode of action of these three drugs is still unknown.
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6.1.1. Methotrexate

After RA diagnosis, methotrexate is the suggested first-line therapy for RA. Accordingly, for more
than 20 years methotrexate has been predominantly used for the therapy for RA in the United
States [169,170]. Initially, it is suggested to be co-applied with low doses of glucocorticoids to efficiently
and timely reduce the levels of joint inflammation [7]. With this initial treatment regimen 30%–50%
of early RA patients are able to reach a state of either remission or low disease activity [7,171–173].
In addition to its high effectiveness, the safety and toxicity profile of methotrexate is well known,
and the costs of treatment are low if for example compared to targeted synthetic or biological DMARD
therapy [174]. Moreover, the efficacy of both targeted synthetic of biological DMARDs is increased if
these drugs are applied in combination with methotrexate, making methotrexate a staple in long-term
RA treatment [7,175].

Although its definitive mode of action is currently still unknown, several effector mechanisms were
suggested to contribute to the anti-inflammatory properties of methotrexate: structurally, methotrexate
is an analogue of folic acid that interferes with the activity of the dihydrofolate reductase, thereby both
inhibiting nucleotide synthesis and purine metabolism [176–178]. By these actions, it is resulting
in the production and release of adenosine, which was shown to have direct anti-inflammatory
properties [2,176–178].

Of note, many of the side-effects of methotrexate such as hair loss, stomatitis, nausea, and its
hepatotoxicity are directly caused by its disruption of folate metabolism and can be prevented by the
prophylactic supplementation of folate (mainly as folic acid) in patients treated with methotrexate [7,179].

Methotrexate was speculated to decrease tissue damage in RA patients by either suppressing
the accumulation of toxic compounds via tetrahydrofolate [169,170,180] or by decreasing
glutathione-mediated tissue damage caused by toxic oxygen metabolites [170,181].

Additionally, methotrexate was reported to inhibit the binding of IL-1ß to the IL-1ßR, preventing
IL-1ß-induced inflammatory responses [182]. Moreover, methotrexate was suggested to have effects
on many other enzymes such as for example methyltransferases (which are important in both B- and T
cell function) [183].

6.1.2. Sulfasalazin

First produced in Sweden in the 1930s, Sulfasalazine was introduced in RA therapy because of its
antibiotic activity and the supposed contribution of bacterial/viral infection to RA establishment [170].
Sulfasalazin, which can be efficacious in the treatment of moderate RA [2,184], is a pro-drug that
is metabolized in vivo by intestinal bacteria into its two active components sulfapyridine and
5-aminosalicylic acid [185].

While their exact mechanism of action is unknown, both sulfapyridine and 5-aminosalicylic
acid were shown to have anti-inflammatory, immune-modulatory, and antibiotic properties [186,187].
However, sulfapyridine was suggested to be the major therapeutic component of sulfasalazine [186,187].

Clinically, sulfasalazine was shown to significantly improve RA treatment in comparison to
placebo, improving articular index (46% improvement with sulfasalazine compared to 20% for
placebo) while reducing morning stiffness (61% improvement with sulfasalazine compared to 33% for
placebo), number of swollen joints (59% reduction for sulfasalazine vs. 33% for placebo), pain (42% for
sulfasalazine vs. 15% for placebo), as well as patient global self-assessment (26% for sulfasalazine vs.
1% for placebo) [188–190]. Compared to hydrochloroquine treatment, sulfasalazine tended to improve
number of swollen joints, pain, ESR (43% reduction for sulfasalazine vs. 26% for hydrochloroquine),
and duration of morning stiffness (59% reduction for sulfasalazine vs. 40% for hydrochloroquine),
while resulting in lower drop-out numbers due to lack of drug efficacy (5% for sulfasalazine vs. 15%
for hydrochloroquine) [189,190].

Typical side-effects of sulfasalazine include fatigue, CNS reactions, nausea, abdominal
pain (dyspepsia), diarrhea, hypersensitivity reactions, and with a lower frequency neutropenia,
thrombocytopenia, and pan-hypogammaglobulinaemia [191–194].
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6.1.3. Hydrochloroquine

Chloroquine and hydroxychloroquine, which are primarily used as antimalarial drugs, also display
anti-inflammatory and immunomodulatory properties which make these substances suitable for
the treatment of mild cases of inflammatory arthritic diseases. Of note, in the treatment of RA,
hydrochloroquine was shown to only have limited structural effects on joint damage [1,195].

The anti-inflammatory properties of the lipophilic hydroxychloroquine are likely mediated
by its inhibition of both lysosomal antigen degradation and subsequent reduction in the surface
presentation of antigen-derived peptide:MHC II complexes on APCs [196]. Together, these effects of
hydrochloroquine can prevent the activation of autoreactive T cells and subsequent inflammatory
responses. Furthermore, hydroxychloroquine also inhibits the production of RF antibodies and acute
phase reactants as well as many different enzymes including collagenase and proteases (which directly
cause cartilage breakdown) (reviewed in [197]).

Meta-analysis of four pooled clinical trials including approx. 600 total patients by Suarez-Almanor et al.
showed that hydrochloroquine treatment provided a significant benefit in RA patients in comparison
to placebo treatment without increasing the frequency of withdrawals due to either lack of efficacy
or toxicity [198]. In these studies, hydrochloroquine was shown to improve the following outcome
measures: tender joints, swollen joints, pain, both physician and patient global assessment (differences
in standardized mean differences compared to placebo: tender joints: −0.33, swollen joints: −0.52, pain:
−0.45, physician global assessment; −0.45, patient global assessment: −0.39), as well as ESR (weighted
mean difference of 6 mm compared to placebo treatment) [198].

Ophthalmic toxicity is the most important side-effect in RA patients after treatment with either
chloroquine or hydroxychloroquine (frequency: 4.4%–19%) [199,200]. Importantly, retinal degeneration
was shown to gradually progress even after cessation of chloroquine therapy [199,201].

6.1.4. Triple Therapy with Synthetic DMARDs

Importantly, synthetic DMARDs can be co-applied simultaneously. Indeed, triple therapy with
methotrexate, sulfasalazine, and hydroxychloroquine was a mainstay of RA therapy before biological
and targeted synthetic DMARDs were available [1,202]. Here, even triple therapy is more cost effective
than the application of biological DMARDs (see below for costs of biological DMARDs) and recently
triple therapy was shown to be as efficient as the combination treatment with methotrexate and the
TNF-blocker etanercept (mean DAS scores 3.8 ± 1.4 for triple therapy vs. 3.5 ± 1.3 methotrexate plus
etanercept) in patients that did not respond to monotherapy with methotrexate [1,202]. Moreover,
meta-analyses by Graudal et al. showed, that in preventing structural joint damage, combination
treatment with two to three conventional synthetic DMARDs was not inferior to treatment with
the combination of one biological DMARD plus one synthetic DMARD [203]. Here, no differences
in reduction of ACR response (see Box 1), disease progression, disability, and withdrawals due to
lack of efficacy were observed [203]. In line with this, several studies demonstrated comparable
treatment efficacies when comparing triple therapy with the combination of a TNF-α inhibitor plus
methotrexate [204–207].

However, tolerability and drug-induced liver toxicity are factors limiting the utility of triple
therapy. Liver toxicity with either chronically elevated levels of aminotransferases or hepatic fatty
infiltration with fibrosis that can progress to liver cirrhosis are known complications in long-term
treatment with methotrexate [208,209]. Sulfasalazine also causes acute clinically relevant liver damage
(jaundice, hepatic failure) in one in 1000 patients [210]. Cummings et al. assessed the tolerability,
longevity, and efficacy of triple therapy in 119 early-onset RA patients [211]. In this study retention on
standard triple therapy was reported to be 39 weeks [211]. Of the 119 patients starting triple therapy
only 32% remained on triple therapy at last follow-up (median duration of treatment: 70 weeks).
Reported reasons for first DMARDs withdrawal were adverse event (38%), active disease requiring
switching of drugs (28%), remission (7%), and non-adherence (4%) [211]. Among adverse events,
sulfosalazin was reported to be the most frequent cause for drug withdrawal (49%), followed by
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methotrexate (29%) and hydrochloroquine (13%) while the most common adverse events were upper
gastrointestinal intolerance (14%) and either allergy or rash (11%) [211].

6.2. Targeted Synthetic DMARDs

In contrast to the aforementioned conventional synthetic DMARDs, targeted synthetic DMARDs
were developed specifically to target a key step in the cytokine-mediated induction of inflammatory
responses, namely the JAK-STAT pathway.

Binding of either pro-inflammatory cytokines (e.g., IL-6, common γ-chain containing cytokines
like IL-2 or IL-15, type I and II interferons, or granulocyte-monocyte colony stimulating factor
(GM-CSF)) to their respective receptors on the surface of immune cells triggers both the recruitment
of JAKs to the respective cytokine receptors and phosphorylation of the intracytoplasmic parts of
these receptors by the JAKs (reviewed in [212]) (Figure 6). This phosphorylation in turn subsequently
induces the phosphorylation of different STATs (Figure 6). The phosphorylated STATs then undergo
a homodimerization which triggers their translocation in the respective cell’s nucleus where they
promote the expression of many pro-inflammatory genes that can initiate and sustain both joint
inflammation and tissue damage (reviewed in [212]) (Figure 6).Cells 2019, 8, x FOR PEER REVIEW 16 of 42 
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Figure 6. Molecular mode of action of Janus activated kinase (JAK) inhibitors. Binding of
pro-inflammatory cytokines (e.g., IL-6, common γ-chain-containing cytokines (e.g., IL-2 or IL-15),
type I and II interferons, or granulocyte-monocyte colony stimulating factor (GM-CSF)) to their
respective receptors on the surface of immune cells triggers the recruitment of JAKs. JAKs subsequently
phosphorylate the intracytoplasmic parts of the respective receptors, inducing the phosphorylation,
auto-homodimerization, and nuclear translocation of different signal transducer and activator of
transcription (STAT) molecules. In the respective cell’s nucleus STAT dimers promote the expression
of many pro-inflammatory genes that initiate and sustain joint inflammation and tissue damage.
The targeted DMARDs tofacitinib and baricitinib inhibit this activation of JAKs and thereby prevent
immune cell activation and subsequent inflammatory responses.
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Over the last years, drugs that inhibit the different JAKs have been a significant improvement in
the treatment of RA [129]. Tofacitinib, the first JAK inhibitor that was approved in many countries,
is a pan-JAK inhibitor [129] that prevents the recruitment and activation of JAK1, JAK2, and JAK3
(although with higher inhibitory activity towards JAK1/2 than JAK3) and therefore the downstream
activation of STAT1 and STAT5 [213]. In contrast to this, baricitinib is a specific JAK1/2-inhibitor [213].

Since all JAK inhibitors basically target different molecules belonging to the same pathway, it is
readily understandable that all of these drugs have similar treatment efficacies and side-effects in RA
patients [214].

In a 52-week, phase 3, double-blind, placebo- and active-controlled trial including 1307 patients
with active RA that were receiving background therapy with methotrexate, 70% of patients treated with
4 mg baricitinib daily (a dose twice as high as the 2 mg dose approved by the FDA) reached ACR20
at week 12 compared to 40% with placebo [215]. Baricitinib also inhibited radiographic progression
of joint damage (mean change of modified total Sharp score from baseline, 0.41 for baricitinib vs.
0.90 for placebo) [215]. While randomized, placebo-controlled trials have proven JAK inhibitors to be
effective with an acceptable safety profile, it is noteworthy that the application of JAK inhibitors is
frequently accompanied by side-effects such as increased frequency of infections (often with Herpes
zoster), formation of blood clots, elevation of blood cholesterol levels, cytopenia, and gastrointestinal
side-effects (bowel perforation) [214,216].

Clinically, tofacitinib and baricitinib can both be used as monotherapy or co-applied simultaneously
with methotrexate depending on the individual patient’s response to treatment [129].

6.3. Biologic DMARDs

The currently approved biological DMARDs have four underlying modes of action: (1) the
neutralization of either TNF-α or the TNF receptor, (2) the neutralization of IL-6 directly or the blockage
of the IL-6R and the associated inflammatory signaling, (3) the inhibition of T cell co-stimulation by
APCs, and (4) the depletion of B cells [217].

6.3.1. TNF-α Inhibitors

TNF-α neutralizing drugs are subdivided into neutralizing monoclonal antibodies (afelimomab,
infliximab, certolizumab, adalimumab, golimumab), antibody fragments (certolizumab pegol),
and soluble TNF receptor constructs (etanercept, onercept) [1]. TNF-α inhibitors were approved by the
US Food and Drug Administration for RA therapy in the following order: etanercept (1998), infliximab
(1999), adalimumab (2002), certolizumab pegol (2009), and golimumab (2009).

By neutralizing TNF-α and the inflammatory processes induced by this cytokine, these substances
effectively suppress joint inflammation as well as both cartilage and bone damage. TNF-α inhibitors
can be used in combination with methotrexate or other DMARDs, and are also frequently used as
second-line treatments when patients fail to respond to synthetic DMARDs monotherapy.

Clinically, the TNF-α neutralizing antibody infliximab (a chimeric mouse-anti human IgG1)
was shown to downregulate the production of other pro-inflammatory cytokines (IL-6 for days 1–28
compared to placebo control), reduce both leucocyte trafficking and tissue destruction, and to lead to
both hematological normalization and normalized T cell responses [218]. However, this clinical efficacy
is paralleled by frequently observed side-effects such as increased frequencies of infections [207,219,220]
and non-melanoma skin cancers [221–225], but not other types of cancer [223,226–229].

Adalimumab is a human IgG1 monoclonal antibody that binds both soluble and transmembrane
TNF-α. Several clinical trials have shown that treatment of RA patients with adalimumab results
in better ACR20 responses, reduction of swollen and tender joint counts, and a decrease in mean
CRP levels [230–233]. Here, adalimumab improved ACR20 (52.8% for adalimumab vs. 34.9% for
placebo), ACR50 (28.9% vs. 11.3%), and ACR70 (14.8% vs. 3.5%) responses at week 24 compared with
the placebo-treated group [230]. Adalimumab administration also reduced numbers of swollen and
tender joint counts, and decreased mean CRP levels at week 52 while CRP concentrations remained
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elevated at twice the normal range in placebo-controls [233]. A 10-year clinical trial also showed that
patients with baseline disease duration ≤2 years who were treated with adalimumab, had both better
ACR50 responses (71.9% of adalimumab treated patients vs. 52.9% in the placebo control group) and
physical function (Health Assessment Questionnaire without Disability Index (HAQ-DI) <0.5 in 60.6%
of adalimumab treated patients vs. 39.5% in the placebo control), highlighting the benefit of early
treatment [234]. As one of the second-line choices for RA treatment, patients who have failed synthetic
DMARD therapy often show significant and rapid improvement of several RA-related disease activities
with adalimumab monotherapy [231]. Here, patients treated weekly with 40 mg of adalimumab had
higher ACR50 (35.0% for adalimumab vs. 8.2% for placebo) and EULAR response rates (63.1% vs.
26.4%) as well as lower mean HAQ-DI scores (−0.49 vs. −0.07) compared to placebo controls [231].

A clinical analysis of 14,109 patients aggregated from 71 individual adalimumab clinical trials
showed that the most frequently reported serious adverse events were infections (incidence rates:
4.6/100 patient-years), pneumonia (0.7/100 patient-years), and cellulitis (0.3/100 patient-years) [235].

Different from infliximab and adalimumab, which are both full-length IgG1 antibodies,
certolizumab pegol only consist of a Fab fragment recognizing TNF-α, conjugated with polyethylene
glycol (PEG) to extend its half-life. A clinical study reported that patients previously not responding
to synthetic DMARD therapy, showed improved ACR50 and ACR70 responses compared to placebo
at week 24 (ACR50: 22.7% for certolizumab pegol vs. 3.7% in the placebo group, ACR70: 5.5% vs.
0%) [231]. In addition, physical function, arthritis pain, and fatigue were also improved after treatment
for 24 weeks [231].

No significant life-threatening side-effects were reported from certolizumab pegol-treated RA
patients. The reported side-effects included fatigue, mild skin rash, or mild upper respiratory tract
infections [236].

Etanercept is a fusion protein combining a TNF-α receptor-2 p75 subunit with the Fc domain
of a human IgG1 molecule which mediates the formation of TNF-α R2 p75:huIgG1 Fc homodimers.
A clinical study involving 180 patients revealed a dose–response effect on both swollen and tender
joints (number of swollen joints for placebo/0.25/2/16 mg etanercept treatment groups, 22/24/17/13) [237].
Moreover, treatment with etanercept improved pain and reduced duration of morning stiffness in RA
patients (pain evaluation and hours of morning stiffness for placebo/0.25/2/16 mg etanercept treatment
groups: 6.1/5.6/4.6/3.1 and 4.1/5.3/2.6/1.1, respectively) [237].

During clinical trials etanercept was well tolerated by RA patients. The percentage of treatment
discontinuations due to adverse effects was reported with approximately 4% [238]. Here, the most
frequently reported side-effects were non-upper respiratory tract infections (38%), injection site reactions
(37%), upper respiratory tract infections (29%), headache (17%), and rhinitis (12%) [238].

There are several clinical studies comparing treatment efficacy and side-effects between infliximab,
adalimumab, and etanercept [239–242]. Here, it was shown that TNF-α neutralizing antibodies possess
a high potential to induce the production of anti-drug antibodies (ADAs) (detection of ADAs within
18 months of treatment in either the adalimumab (19.2%–31.2% of patients) or infliximab group
(17.4–29.4% of patients)) [239–241,243]. ADAs can not only decrease drug levels in serum, but also raise
safety concerns like induction of type I–III hypersensitivity responses [244]. A clinical study also showed
that presence of anti-adalimumab ADAs increased the risk of developing thromboembolism [245].

The lack of the human Fc domain in certolizumab pegol reduces the possibility for ADA generation.
Consequently, clinical results demonstrated that none or only low levels of ADAs were detected in
certolizumab pegol-treated patients [241], while several studies indicated a high immunogenicity
of both infliximab and adalimumab which might lead to the development of ADAs [239–241,243].
The induction of ADAs against adalimumab and infliximab is associated with both major and minor
clinical adverse effects [243]. Moreover, the production of ADAs is also correlated with some disease
outcomes, such as the inflammation markers ESR (p = 0.0080) and CRP (p = 0.0011), which were shown
to be significantly different between patients with and without the presence of ADAs [240].
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Although there are side-effects or reports of ADA formation, taken together, all of the clinical
studies still suggest, that anti-TNF-α neutralizing drugs have the capacity to significantly improve
disease symptoms in RA patients compared to placebo treatment.

6.3.2. IL-6 Inhibitors, IL-6R Inhibitors

The development of IL-6 blockers provides another possibility for RA treatment. Monoclonal
antibodies currently used in RA patients to inhibit IL-6 signaling are subdivided into (1) antibodies
directly neutralizing IL-6 (elsilimomab, siltuximab, sirukumab) and (2) antibodies binding to the IL-6R
blocking the pro-inflammatory signaling induced by IL-6 binding (tocilizumab, satralizumab, sarilumab).

Pro-inflammatory signaling induced by IL-6 is mediated via the binding of IL-6 to the soluble
IL-6 receptor (sIL-6R) which subsequently forms a trimer with two transmembrane glycoprotein (gp)
130 subunits [134]. This complex of IL-6, sIL-6R, and two molecules of gp130 in turn mediates JAK
activation and subsequent phosphorylation, homodimerization, and nuclear translocation of STAT-3
driving pro-inflammatory gene expression [135].

Tocilizumab is a humanized monoclonal antibody binding to the human IL-6R and therefore
inhibiting IL-6 signaling [246]. Besides sarilumab (also binding to the IL-6R), it is the only approved
anti-IL-6(R) antibody for the treatment of RA [247]. Both, tocilizumab and sarilumab are widely used in
the treatment of RA [247]. Potential immunological effects of tocilizumab on RA include: (1) induction
and expansion of B-regulatory cells, (2) reduction of pro-inflammatory cytokines, (3) decrease of
T cell-related cytokine secretion as well as IL-21 production from memory/activated CD4+ cells,
(4) downregulation of chemokine genes, (5) induction of genes associated with synovial fluid healing,
and (6) increasing osteoprotegerin expression (likely blocking RANK-L-RANK signaling and inhibiting
bone resorption) [248,249]. Interestingly, during tocilizumab treatment, serum concentrations of both
IL-6 (58.4 ± 13.8 pg/mL at baseline vs. 92.8 ± 82.4 pg/mL at day 14) and sIL-6R (27.7 ± 4.4 ng/mL at
baseline vs. 251.4 ± 24.7 ng/mL at day 42) were shown to significantly increase [250].

Clinical research suggests that tocilizumab does not inhibit IL-6 production directly, instead, as long
as free tocilizumab is detectable, the sIL-6R is saturated with tocilizumab [250]. This tocilizumab-sIL-6R
immune complex in turn extends the half-life of sIL-6R and inhibits sIL-6R-mediated catabolism of IL-6,
resulting in increased serum concentrations of both IL-6 and sIL-6R [250]. Clinically, tocilizumab shows
beneficial effects in many RA patients, including patients with an insufficient response to traditional
synthetic DMARDs, methotrexate, or TNF-α inhibitors [251]. These effects include improvement of
RA symptoms, reduction of ESR (−3.3 mm compared to baseline before treatment) and mean CRP
levels (−10.27 in tocilizumab treated patients vs. −3.0 in the group with continuous TNF-inhibitor
treatment), reduced arterial stiffness, and higher ACR20/50/70 (47.3%/20.9%/8.1% of patients reaching
criteria) response rates [248,249].

The most common side-effect of tocilizumab application are skin- and subcutaneous infections [251].
Nevertheless, infection rates are rather low and comparable to those observed upon treatment
with anti-TNF-α antibodies [251]. Other adverse effects include dyslipidemia, neutropenia,
thrombocytopenia, and enhanced levels of liver enzymes [252]. While tocilizumab’s overall efficacy
and safety profiles are similar to TNF-α blockers when combined with other DMARDs (such as
methotrexate), tocilizumab also shows differences especially in its potential when used as monotherapy,
such as low production of ADAs and more effective improvement of certain disease symptoms such as
anemia and fatigue [252].

Sarilumab is a fully humanized monoclonal antibody that also binds to IL-6R. Compared with
tocilizumab, sarilumab has both a 15–22-fold higher binding affinity to IL-6R and a prolonged
half-life [253]. However, the overall efficacy and safety of sarilumab appears to be comparable with
tocilizumab, with for example mean CRP levels (23.8 for sarilumab vs. 24.9 for tocilizumab), tender
joint counts (24.7 vs. 23.5), HAQ-DI (1.71 vs. 1.78), and incidence of reported adverse effect (70.6% vs.
66.7%) being nearly identical between both drugs [254,255]. In addition, preclinical trials demonstrated,
that treatment with sarilumab resulted in reduced loss of cartilage matrix components, as well as
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reductions in both inflammatory- (synovitis and pannus formation) and erosive (bone erosion and loss
of tissue architecture) parameters compared to control antibody treatment [256].

Infections, elevations in alanine aminotransferase levels, and neutropenia were the most common
side-effects in sarilumab-treated RA patients [257,258]. Severity of neutropenia was shown to be
dosage-dependent, while there was no relationship between the grade of neutropenia and the frequency
of infections [257].

Apart from tocilizumab and sarilumab, other IL-6 neutralizing antibodies are not yet approved for
RA treatment, but can be used for treating multicentric Castleman’s disease. However, in vivo studies
have indicated the potential of IL-6 neutralizing antibodies for RA treatment [259,260]. RA patients
treated with sirukumab had significantly higher ACR20/50 (ACR20: 71.4% for sirukumab vs. 17.6 for
placebo control, ACR50: 28.6% vs. 5.9%) and DAS28-CRP response rates (2.1 vs. 0.6), as well as
improvement in fatigue scores and depressive symptoms [259,260].

6.3.3. Inhibitors of Co-Stimulation

Abatacept is currently the first member of a new class of biological agents suppressing the
induction of inflammation upstream of the pro-inflammatory signaling cascade. Abatacept is a chimeric
molecule consisting of the extracellular domain of the co-inhibitory molecule CTLA-4 fused to the
Fc portion of a human IgG1 antibody [261]. By neutralizing binding of the CTLA-4 part to either
CD80 or CD86 on the surface of activated APCs, abatacept prevents CD80/86-mediated transmission of
co-stimulatory signals from APCs to T cells and therefore subsequent T cell activation [262]. Abatacept
was approved for the treatment of adults with moderate-to-severe active RA that have either insufficient
responses or intolerances to other DMARDs or TNF-α inhibitors [263].

Mechanistically, Okada and colleagues showed abatacept to inhibit osteoclast differentiation,
reduce the expression of nuclear factor of activated T cells c 1(NFATc1), and suppress calcium oscillations
in bone marrow-derived macrophages in vitro in an FcyR-dependent manner [264]. In fibroblast-like
synoviocytes, abatacept treatment reduced levels of MMP1, MMP3, and MMP15 by 50%–60%, while also
inhibiting cell migration in a MAPK-dependent way [265].

In addition, human B cells, which can also act as APCS, were shown to be a direct target of abatacept
where the drug reduced both surface CD80 and CD86 expression by dynamin-dependent internalization
as well as the formation of memory B cells without generally affecting B cell development [266].
As suggested by Lorenzetti and colleagues, reduced surface expression of the co-stimulatory molecules
CD80 and CD86 on B cells may impair their ability to provide co-stimulation to T cells as well as the
selection and maintenance of autoreactive memory- and plasma cells [266]. In line with this, long-term
treatment with abatacept was repeatedly shown to reduce autoantibody levels in RA patients by
50%–90% [266,267]. Therefore, the anti-inflammatory effects of abatacept were more pronounced in
RA patients with higher levels of both ACPAs and RF autoantibodies [268,269].

Clinically, abatacept was shown to significantly improve ACR20, -50, and -70 values in comparison
to placebo treatment [270]. In the same study, 17.1% of patients treated with abatacept reached low
levels of disease activity, and 10% were able to achieve complete remission compared to either 3.1%
or 0.8% in the placebo control group, respectively [270]. In the AGREE trial (Abatacept study to
Gauge Remission and joint damage progression in methotrexate-naive patients with Early Erosive
rheumatoid arthritis) combination treatment with abatacept plus methotrexate was shown to be more
effective than treatment with methotrexate alone [271]. Here, both 1-year DAS28-CRP remission rates
(adjusted mean changes from baseline in DAS28 CRP were -3.22 for abatacept + methotrexate vs.
−2.49 for methotrexate alone) and ACR20, −50 (57.4% of patients achieving ACR50 at one year with
abatacept + methotrexate vs. 42.3% with methotrexate alone), −70 (42.6% versus 27.3%) response rates
as well as other major clinical response rates were significantly higher while radiographic progression
rates were significantly lower in the patient collective that received the combination treatment [271].
In another study comparing abatacept monotherapy with combination therapy of abatacept and
methotrexate, abatacept showed either higher or at least comparable efficacy (depending on the time
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point analyzed) [272]. Here, DAS28 CRP-defined remission (DAS28 CRP <2.6 in 60% of patients treated
with abatacept plus methotrexate compared to 45.2% for methotrexate only at 12 months), ACR20, -50,
-70 responses, tender and swollen joint counts, patient- as well as physician assessments of pain and
disease activity, and the clinical parameters CRP and ESR were all improved compared to placebo
treatment [272]. These results suggest that abatacept could also be used in monotherapy approaches.

There are some clinical studies that directly compared abatacept with adalimumab (both on
background treatment with methotrexate), which indicate some benefits of abatacept over the TNF-α
inhibitor [273–275]: two AMPLE studies (Abatacept versus Adalimumab Comparison in Biologic-Naïve
RA Patients with Background Methotrexate) showed that the overall disease outcome, improvement
on tender and swollen joint count (69.4% ± 2.9% improvement in swollen joint count for abatacept
vs. 69.3% ± 2.9% for adalimumab), physician’s global assessment (63.6% ± 4.8% for abatacept vs.
62.8% ± 4.7% for adalimumab), CRP levels, pain (mean ± SEM improvements in pain at year 2:
53.7% ± 6.2% for abatacept vs. 38.5% ± 6.1% for adalimumab), fatigue, as well as ability to perform
both work and daily activities were comparable between abatacept and adalimumab [273,274].
Moreover, the improvement in ACR50 response rates over 2 years was also similar (44.7% for abatacept
vs. 46.6% for adalimumab) [274]. However, there were less discontinuations in the abatacept group
compared with adalimumab due to adverse effects (3.8% for abatacept vs. 9.5% for adalimumab),
a lower frequency of serious adverse events (1.6% vs. 4.9%) and severe infections (0/12 vs. 9/19 patients),
as well as reduced occurrence of injection site reactions (4.1% vs. 10.4%) [274]. Economically, abatacept
was suggested to be a cost-effective alternative to adalimumab in patients with higher ACPAs by
Alemao and colleagues after analyzing 646 randomized patients treated with either abatacept or
adalimumab (both in combination with methotrexate treatment) [275].

Abatacept is generally well tolerated by RA patients with the most frequent side-effects being
upper respiratory tract infections, headaches, and nausea [276]. Thus, abatacept is contraindicated in
patients with ongoing severe or uncontrolled infections [276]. While infection was the most frequent
side-effect of abatacept therapy [277], patients treated with abatacept were shown to have a reduced
risk of hospitalized infections as well as severe infusion/injection reactions compared to other biological
DMARDs [278]. Of note, co-administration of abatacept and TNF-α inhibitors is not recommended
because of the increased risk of severe infections [276]. In contrast, the risk of malignancies induced by
abatacept was shown to be not significantly different from other conventional synthetic or biological
DMARDs [278]. Immunogenicity of abatacept was shown to be low with only 4.8% of patients
developing antibodies to the molecule [276].

6.3.4. B Cell Depleting Antibodies

While, compared to the activation of autoantigen-specific T cells, autoantibodies are probably not
the major driving factor in the establishment of RA, elevated levels of autoantibodies such as RF or
ACPAs are highly specific for RA and can precede the onset of the disease by many years [104,279].
Furthermore, immune complexes containing RF or ACPAs may lead to the activation of macrophages
resulting in an increased production of TNF-α and CXCL8 which are associated with the manifestation
of the disease [110]. Thus, several B cell targeting therapies have been investigated in the last years
with rituximab being the only one approved by the FDA in 2006 [104]. It is indicated for RA patients
with moderate to severe disease who do not respond adequately to treatment with other DMARDs or
at least one TNF inhibitor. Finckh et al. revealed that switching to rituximab after initial therapy failure
with one TNF inhibitor was significantly better than switching to a second TNF inhibitor (61% of
patients treated with rituximab had an improvement in DAS28 of more than 1.2 units compared to
37% with anti-TNF, decrease in DAS28 21.34 with rituximab compared to 20.93 for alternative anti
TNF treatments at 6 months) [280]. Clinically, combination treatment of either cyclophosphamide or
methotrexate with rituximab was shown to be both safe and effective for the treatment of RA without
resulting in an increased predisposition to infections (compared to placebo) or adversely modifying
immunoglobulin levels in patients [281].
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While rituximab is overall well tolerated by RA patients, side-effects can include infections, infusion
reactions, nervous system disorders, gastrointestinal disorders, and development of psoriasis [282].

Rituximab is a chimeric (mouse/human) monoclonal IgG1 antibody with reactivity against the B cell
surface molecule CD20 [104,283]. Originally, it was developed for the treatment of B cell malignancies
such as non-Hodgkin’s lymphoma [284]. CD20 is a membrane calcium channel expressed during B
cell development starting at the pre-B cell level while being absent from either bone marrow stem cells,
pre-B cells, or antibody-producing plasma cells [104,279]. In treated patients repeated administration
of rituximab effectively depletes CD20 positive B cells via either (1) antibody-dependent cellular
cytotoxicity, (2) complement-mediated cytotoxicity, or (3) apoptosis [285]. Consequently, application of
rituximab leads to a targeted depletion of B cells in the peripheral blood but only partial depletion of
tissue resident B cells [104,279,283].

A recent study revealed that 4 weeks after rituximab treatment a decrease of naïve and unswitched
memory B cells as well as CD21+CD23+IgDhighIgMvariable follicular B cells occurred [280]. Furthermore,
rituximab results in a diminished activation of T cells shown by significantly reduced frequencies of
CD3+CD4+CD69+ T cells in treated patients [279].

However, B cell depletion by rituximab treatment was shown to be incomplete as both memory B
cells and plasma cell precursors can be still detected in more than half of the RA patients after the first
rituximab infusion [283]. In addition, tissue resident B cells are not fully depleted by the treatment.
Ramwadhdoebe et al. demonstrated an increased frequency of CD21+CD23+IgDhighIgMvariable follicular
B cells in lymph node biopsies of RA patients [279]. Absence of autoantibodies, high DAS scores,
or previous failure of other biologics are associated with decreased response to rituximab. Interestingly,
low frequency of CD27+ memory B cells may predict better clinical responses to rituximab in RA
patients [104].

6.4. Limitations of DMARD Therapy

While DMARDs have repeatedly demonstrated the potential to greatly improve disease symptoms
and prevent disease progression in RA patients, they also have considerable side-effects (Figure 7).

In general, conventional synthetic DMARDs, which have been in use for decades at this
point, are considered to have less side-effects than either targeted or biological DMARDs [286].
For conventional synthetic DMARDs the profile of side-effects is well characterized including cytopenia,
rash, poor tolerability (with nausea, fatigue, hair loss, and stomatitis), as well as in rare cases interstitial
lung disease and liver damage (characterized by elevated levels of transaminases) [129].

Due to their overlap in inhibiting pro-inflammatory effector mechanisms, the side-effects associated
with the use of targeted synthetic DMARDs and biological DMARDs are similar. Observed side-effects
with both classes of DMARDs include increased frequencies of infections, elevated levels of cholesterol,
cytopenia (lymphopenia or neutropenia), and gastrointestinal side-effects [129].

In addition, usage of biological DMARDs may result in elevated levels of transaminases, induction
or reactivation of autoimmune conditions such as multiple sclerosis and psoriasis, as well as worsening
congestive heart failure [129,287,288]. Here, the more frequently observed serious infections include
Herpes zoster and other viral infections upon application of targeted synthetic DMARDs [129,289]
and the reactivation of latent tuberculosis infections by biological DMARDs (with the exception of
rituximab) [290,291]. Therefore, screening for and treatment of latent tuberculosis infections must be
conducted before commencing treatment with biological DMARDs.

In addition, the use of biological DMARDs during pregnancy is discussed controversially [1,291].
The idea of treating pregnant women with anti-TNF antibodies was met with skepticism because of
their capacity to be transferred from the mother to the unborn child via the umbilical cord. Indeed,
in children born to mothers receiving anti-TNF treatment during pregnancy, both adalimumab and
infliximab could be detected in the infant’s bloodstream until 12 months of age [292].

In contrast to these findings, results reported by both Mariette and Förger et al. suggested a lack
of active transplacental transfer of certolizumab pegol in pregnant women due to its lack of the Fc
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moiety [293,294]. Analysis of the UCB Pharma database in 2017 including data from 1137 prospectively
reported pregnancies did not show evidence of a potential teratogenic effect or an increased risk
of fetal death caused by certolizumab, compared to the general population [295]. In line with this,
other studies found no correlation between the usage of biological DMARDs and adverse pregnancy
outcomes [296] or increased rates of pregnancy-related complications [297].

Moreover, in contrast to conventional synthetic DMARDs therapy, either biological or targeted
synthetic DMARDs therapy is associated with a high financial cost, which currently prevents its
widespread application in financially restricted settings. Here, the cost of treatment varies between
10,000 Euro (Europe) and 36,000 USD (USA) per year depending on the applied DMARDs and
geographical region [7]. Treatment costs can be reduced by the use of biosimilars, if available [298].
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likely caused by the inhibition/neutralization of the respective inflammatory mediators and therefore
the induction of protective immune responses. TB: tuberculosis.

7. Novel Experimental Strategies in the Treatment of RA

Currently, several strategies to improve the treatment of RA are investigated in experimental
animal models. Among others, these include mesenchymal stem cells, application of NOD-, LRR-,
and pyrin domain-containing protein 3 (NLRP3) inhibitors, and the targeting of either GM-CSF,
GM-CSF receptor, or Toll-like receptor 4.

7.1. Mesenchymal Stem Cells

Mesenchymal stem cells (MSCs) are multipotent stromal cells, capable of differentiating
into mesenchymal tissues such as bone and cartilage [299], that have also been shown to have
immunosuppressive capacities by inhibiting T cell activation in vitro [300–302]. Zheng and coauthors
stimulated T cells, that were collected from either peripheral blood or synovial fluid of RA patients,
with MSCs to explore their therapeutic potential. Here, MSCs significantly suppressed both type II
collagen (CII)-stimulated T cell proliferation and T cell activation [303]. In addition, MSCs inhibited
IFN-γ and TNF-α secretion from both CD4+ and CD8+ T cells, which was paralleled by increased
production of IL-10 and restored IL-4 secretion [303]. An in vivo study indicated that treatment with
MSCs obtained from different sources (bone marrow, umbilical cord, or human exfoliated deciduous
teeth) in a mouse model of collagen-induced arthritis significantly improved bone erosions, synovitis,
and articular destruction [304]. This improvement of clinical symptoms was paralleled by reduced
levels of the pro-inflammatory cytokines TNF-α and IL-1β both in serum and joints [304].
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Two initial clinical studies also started to evaluate the safety and potential of umbilical
cord blood-derived MSCs on RA patients [305,306]. Here, no adverse events were observed after
intravenous infusion of MSCs, while MSC-treated patients showed a tendency towards decreasing Th17
populations and reduced levels of IL-1β, IL-6, IL-8, and TNF-α in peripheral blood [305,306]. However,
disease outcome indicators such as CRP, RF, or ESR were not significantly improved either 6 or 12
months after MSCs treatment [306].

7.2. Inhibition of NOD-, LRR-, and Pyrin Domain-Containing Protein 3 (NLRP3)

NLRP3 is an intracellular sensor belonging to the family of NOD-like receptors, which can form
inflammasome complexes that regulate IL-1β secretion after detection of a wide array of danger
signals [307]. Components of the NLRP3 inflammasome have recently been found to be expressed
in RA patient’s synovia [308]. These results indicated that inflammasome activation may contribute
to pro-inflammatory cytokine secretion in RA patients making inflammasome inhibition a possible
therapeutic strategy in the future treatment of RA. In line with this, Guo et al. demonstrated the
NLRP3 inflammasome to be strongly activated both in synovia of RA patients and in an in vivo mouse
model of collagen-induced arthritis [309]. Here, treatment with MCC950, a selective NLRP3 inhibitor,
resulted in both significantly reduced joint inflammation and bone destruction as well as reduced
production of IL-1β in vivo [310].

7.3. Targeting of GM-CSF and GM-CSF Receptor

GM-CSF is known as a pro-inflammatory cytokine that acts at the interface between innate and
adaptive immunity. Several studies have shown both GM-CSF levels to be increased in synovial
fluid and plasma of RA patients and the GM-CSF Receptor (GM-CSFR) to be overexpressed in
synovial tissue obtained from RA patients [310–312]. Cook et al. could show in a mouse model
of collagen-induced arthritis, that antibody-mediated neutralization of GM-CSF improved overall
disease severity [313,314]. Therefore, several monoclonal antibodies targeting either GM-CSF or
GM-CSFR were produced and analyzed. Mavrilimumab (CAM-3001), a monoclonal antibody against
the GM-CSFR alpha chain, was shown to improve ACR50 responses compared to placebo in different
clinical trials (30.8% for mavrilimumab vs. 12.0% for placebo at week 12; 28.4% vs. 12.3%, at week
24, respectively) [315,316]. Moreover, namilumab (MT203), lenzilumab (KB003), and gimsilumab
(MORAb-022) are fully humanized monoclonal IgG1 antibodies targeting GM-CSF [317]. Among these
antibodies, namilumab is the only antibody with published data from a phase II clinical trial, indicating
that namilumab (dosage 150 mg/every 4 weeks) improved both ACR50 responses (at week 12: 42.9%
vs. 14.3%) and DAS28-CRP responses compared to placebo treatment [318].

7.4. Toll-Like Receptor 4 (TLR4) Targeting

TLRs play an important role in the initiation and maintenance of both innate and adaptive immune
responses. Several endogenous TLR4-ligands such as the small heat shock protein crystalline, B8,
or tenascin C are present in the synovial membrane, where they promote joint inflammation with a
confirmed role for TLR4 in the pathogenesis of RA [319,320]. In a mouse model of collagen-induced
arthritis, TLR4 deficient mice also showed reduced cartilage destruction, lower ACPA production,
and decreased IL-17 concentrations compared to wild-type controls [321]. Recently, the first humanized
monoclonal antibody targeting TLR4, NI-0101, was tested in a phase II clinical study in patients
with RA that had shown inadequate responses to methotrexate. However, the authors reported no
significant improvement in the ACR50 response between placebo- and NI-0101-treated groups at week
12 (20.7% in placebo- vs. 14.3% NI-0101-treated patients) [322].
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8. Treatment Plan of RA

Once RA diagnosis is established, a sequential treatment strategy for the management of RA is
suggested considering factors such as clinical effects (reduction of inflammation and pain vs. additional
prevention of structural damage, see above), profile of side-effects, and costs of therapy (Figure 8).

In a first step non-pharmacological treatment, including physical therapy to maintain joint mobility
and patient counselling, is initiated to slow disease progression, which can be maintained during
the whole treatment period depending on the status of the individual patient. NSAIDs are usually
only used in this early disease stage to either reduce disease symptoms or until the RA diagnosis
is established.

First-lineRAtreatment isusuallyperformedwithDMARDmonotherapy[2].Here, non-pharmacological
treatment is usually combined with both methotrexate and glucocorticoids for a period of approx.
3–6 months to control inflammation in the newly diagnosed RA patients. Glucocorticoids are usually
tapered as soon as possible because their disease-modifying effects are minimal, and their long-term
application is associated with multi-systemic side-effects (see above). With this initial treatment regimen
30–50% of RA patients reach either remission or significantly reduced levels of disease activity [7].

In case the treatment target is not reached via methotrexate monotherapy within 3–6 months,
other conventional synthetic DMARDs are usually added [2,129]. As reported, compared to
monotherapy with methotrexate alone, the addition of hydrochloroquine and sulfasalazine in a
triple therapy approach allows disease control in an additional approx. 27% of RA patients [323].

If triple therapy does not achieve the desired outcome, patients (especially with continued high
disease activity) should be treated with a combination of methotrexate and either targeted synthetic or
biological DMARDs [7]. This drug combination results in disease control in additional 30–40% of RA
patients [1].

Of note, biological or targeted synthetic DMARDs should not be considered as first-line treatment
since many patients that respond to these drugs were shown to also respond to methotrexate alone.
Here, methotrexate has both a lower cost, reduced side-effects, and frequencies of infections compared
to the biological or targeted synthetic DMARDs [7].

During the overall treatment process, it is highly important to constantly reassess both the
individual patient’s disease state and treatment effectiveness to make timely adjustments.

While there are no genetic or laboratory markers identified yet that predict the response of
individual patients to RA treatment, the presence of either ACPAs or RF antibodies, high disease
activity despite treatment with methotrexate, early bone erosion, or cartilage destruction are usually
correlated with poor prognosis [1,129]. In contrast to this, early responses to RA treatment (measured in
low disease activity after initialization of treatment) correlates with better long-term outcomes [1,7,324].

In patients with persistent remission (usually for at least 6 months), stepwise tapering of RA
treatment should be considered to reduce both side-effects (especially for NSAIDs because of toxicity
and glucocorticoids because of side-effects) and cost (especially for biological and targeted synthetic
DMARDs) of treatment [7,325]. The treatment goal when tapering RA medication is to maintain low
disease activity with the lowest medication dose and the fewest number of drugs possible. In this
context, tapering of biological DMARDs might be considered, especially if the patient is still treated
with methotrexate [129]. If the patient stays in persistent remission after tapering of the biological
DMARDs, also tapering of methotrexate can be considered [129].

However, two out of three patients tapering all RA drugs experience disease flare-ups within
one year [17,129,325]. Therefore, dose reduction or interval increases between applications should be
preferred over complete cessation of therapy [7,326].
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Figure 8. Common treatment plan for the management of RA. Upon initial RA diagnosis (see above)
non-pharmacological treatment is provided alongside the application of methotrexate and short-term
application of glucocorticoids to reduce joint inflammation, resulting in remission/significantly lower
disease activity rates in 30–50% of patients. In non-responsive patients triple therapy consisting of the
addition of the conventional synthetic DMARDs hydrochloroquine and sulfadiazine to methotrexate
treatment can achieve remission in an additional 10–27% of the patients. Subsequent application of
either JAK inhibitors or biological DMARDs can achieve remission/reduced disease activity in an
additional 30–40% of RA patients. For optimal treatment it is necessary to constantly reassess both
the individual patient’s disease state and efficacy of treatment to make timely adjustments. Once the
patient has reached stable remission over at least 6 months, sequential tapering or dose reduction of the
administered drugs can be considered in order to reduce treatment-associated side-effects and costs.

9. Summary and Conclusion

Although still incurable, both the development of DMARDs and the refinement of non-DMARD
therapy have made RA a mostly manageable disease. With the combination of the different available
DMARDs many patients are able to reach either full remission or at least significantly reduced
disease activity if the disease is diagnosed in an early stage (see above). However, there are still many
patients that do not respond to the therapies available so far, demonstrating the need to develop
novel drugs/treatment strategies. In this context, markers that allow to predict either therapy outcome
or the occurrence of side-effects in individual patients would be highly beneficial for RA treatment.
Additionally, the benefits and risks of combinatorial treatment with different DMARDs are yet to be
fully understood.

While many drugs can either delay or prevent the onset of RA (methotrexate, sulfasalazine,
infliximab, etanercept, abatacept, and rituximab), these positive effects do not seem to prevail once the
treatment is stopped [129,240,327,328]. In line with this, the complex network of cell types, cytokines,
and chemokines initiating the onset of RA and even more importantly the mechanisms underlying
the maintenance of inflammation in the joint need to be further understood in order to improve the
existing therapies, identify new targets, and develop new drugs. Finally, despite the great progress in
the diagnosis and treatment of RA (see above), the widespread application of (especially biological and
targeted synthetic) DMARD therapy is currently still hindered by the associated high costs and frequent
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occurrence of side-effects (such as for example liver damage, cytopenia or increased frequencies of
infections and certain cancers).
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Wiśniewski, A.; et al. Association of PTPN22 single nucleotide polymorphism with rheumatoid arthritis but
not with allergic asthma. Eur. J. Hum. Genet. 2007, 15, 1043–1048. [CrossRef] [PubMed]

23. Arleevskaya, M.I.; Kravtsova, O.A.; Lemerle, J.; Renaudineau, Y.; Tsibulkin, A.P. How Rheumatoid Arthritis
Can Result from Provocation of the Immune System by Microorganisms and Viruses. Front. Microbiol. 2016,
7, 81. [CrossRef] [PubMed]

24. Baka, Z.; Buzás, E.; Nagy, G. Rheumatoid arthritis and smoking: Putting the pieces together. Arthritis Res.
Ther. 2009, 11, 238. [CrossRef] [PubMed]

25. Van Drongelen, V.; Holoshitz, J. Human Leukocyte Antigen–Disease Associations in Rheumatoid Arthritis.
Rheum. Dis. Clin. North. Am. 2017, 43, 363–376. [CrossRef] [PubMed]

26. Viatte, S.; Plant, D.; Han, B.; Fu, B.; Yarwood, A.; Thomson, W.; Symmons, D.; Worthington, J.; Young, A.;
Hyrich, K.L.; et al. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality,
and treatment response. JAMA 2015, 313, 1645–1656. [CrossRef]

27. Chen, J.; Li, J.; Gao, H.; Wang, C.; Luo, J.; Lv, Z.; Li, X. Comprehensive Evaluation of Different T-Helper
Cell Subsets Differentiation and Function in Rheumatoid Arthritis. J. Biomed. Biotechnol. 2012, 2012, 1–6.
[CrossRef]

28. Coutant, F.; Miossec, P. Altered dendritic cell functions in autoimmune diseases: Distinct and overlapping
profiles. Nat. Rev. Rheumatol. 2016, 12, 703–715. [CrossRef]

29. Jongbloed, S.L.; Lebre, M.C.; Fraser, A.R.; Gracie, J.A.; Sturrock, R.D.; Tak, P.-P.; McInnes, I. Enumeration
and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis.
Arthritis Res. Ther. 2005, 8, R15. [CrossRef]

30. Page, G.; Miossec, P. Paired synovium and lymph nodes from rheumatoid arthritis patients differ in dendritic
cell and chemokine expression. J. Pathol. 2004, 204, 28–38. [CrossRef]

31. Segura, E.; Touzot, M.; Bohineust, A.; Cappuccio, A.; Chiocchia, G.; Hosmalin, A.; Dalod, M.; Soumelis, V.;
Amigorena, S. Human Inflammatory Dendritic Cells Induce Th17 Cell Differentiation. Immunity 2013,
38, 336–348. [CrossRef] [PubMed]

32. Lebre, M.C.; Jongbloed, S.L.; Tas, S.W.; Smeets, T.J.; McInnes, I.; Tak, P.P. Rheumatoid Arthritis Synovium
Contains Two Subsets of CD83−DC-LAMP− Dendritic Cells with Distinct Cytokine Profiles. Am. J. Pathol.
2008, 172, 940–950. [CrossRef] [PubMed]

33. Tournadre, A.; Lenief, V.; Miossec, P. Immature muscle precursors are a source of interferon-β in myositis:
Role of Toll-like receptor 3 activation and contribution to HLA class I up-regulation. Arthritis Rheum. 2012,
64, 533–541. [CrossRef] [PubMed]

34. Castañeda-Delgado, J.E.; Bastian, Y.; Macias-Segura, N.; Santiago-Algarra, D.; Castillo-Ortiz, J.D.;
Alemán-Navarro, A.L.; Martínez-Tejada, P.; Enciso-Moreno, L.; Lira, Y.G.-D.; Olguín-Calderón, D.; et al. Type
I Interferon Gene Response Is Increased in Early and Established Rheumatoid Arthritis and Correlates with
Autoantibody Production. Front. Immunol. 2017, 8, 279. [CrossRef]

35. Cooles, F.A.; Anderson, A.; Lendrem, D.; Norris, J.; Pratt, A.; Hilkens, C.M.U.; Isaacs, J.D. The interferon
gene signature is increased in patients with early treatment-naive rheumatoid arthritis and predicts a poorer
response to initial therapy. J. Allergy Clin. Immunol. 2018, 141, 445–448. [CrossRef] [PubMed]

36. Page, G.; Lebecque, S.; Miossec, P. Anatomic Localization of Immature and Mature Dendritic Cells in an
Ectopic Lymphoid Organ: Correlation with Selective Chemokine Expression in Rheumatoid Synovium.
J. Immunol. 2002, 168, 5333–5341. [CrossRef]

http://dx.doi.org/10.2147/OARRR.S14725
http://dx.doi.org/10.1038/ng.3379
http://dx.doi.org/10.1016/j.immuni.2016.04.017
http://dx.doi.org/10.3390/cells7100161
http://www.ncbi.nlm.nih.gov/pubmed/30304822
http://dx.doi.org/10.1038/sj.ejhg.5201879
http://www.ncbi.nlm.nih.gov/pubmed/17579671
http://dx.doi.org/10.3389/fmicb.2016.01296
http://www.ncbi.nlm.nih.gov/pubmed/27582741
http://dx.doi.org/10.1186/ar2751
http://www.ncbi.nlm.nih.gov/pubmed/19678909
http://dx.doi.org/10.1016/j.rdc.2017.04.003
http://www.ncbi.nlm.nih.gov/pubmed/28711139
http://dx.doi.org/10.1001/jama.2015.3435
http://dx.doi.org/10.1155/2012/535361
http://dx.doi.org/10.1038/nrrheum.2016.147
http://dx.doi.org/10.1186/ar1864
http://dx.doi.org/10.1002/path.1607
http://dx.doi.org/10.1016/j.immuni.2012.10.018
http://www.ncbi.nlm.nih.gov/pubmed/23352235
http://dx.doi.org/10.2353/ajpath.2008.070703
http://www.ncbi.nlm.nih.gov/pubmed/18292234
http://dx.doi.org/10.1002/art.33350
http://www.ncbi.nlm.nih.gov/pubmed/22094963
http://dx.doi.org/10.3389/fimmu.2017.00285
http://dx.doi.org/10.1016/j.jaci.2017.08.026
http://www.ncbi.nlm.nih.gov/pubmed/28987811
http://dx.doi.org/10.4049/jimmunol.168.10.5333


Cells 2020, 9, 880 28 of 43

37. Chemin, K.; Gerstner, C.; Malmström, V. Effector Functions of CD4+ T Cells at the Site of Local Autoimmune
Inflammation-Lessons from Rheumatoid Arthritis. Front. Immunol. 2019, 10, 353. [CrossRef]

38. Hume, D.A. The Many Alternative Faces of Macrophage Activation. Front. Immunol. 2015, 6, 370. [CrossRef]
39. Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 2000, 85, 9–18. [CrossRef]
40. Schmidt, D.; Goronzy, J.J.; Weyand, C.M. CD4+ CD7- CD28- T cells are expanded in rheumatoid arthritis and

are characterized by autoreactivity. J. Clin. Investig. 1996, 97, 2027–2037. [CrossRef]
41. Fasth, A.E.R.; Cao, D.; Van Vollenhoven, R.; Trollmo, C.; Malmström, V. CD28nullCD4+ T Cells -

Characterization of an Effector Memory T-Cell Population in Patients with Rheumatoid Arthritis. Scand. J.
Immunol. 2004, 60, 199–208. [CrossRef] [PubMed]

42. Namekawa, T.; Wagner, U.G.; Goronzy, J.J.; Weyand, C.M. Functional subsets of CD4 T cells in rheumatoid
synovitis. Arthritis Rheum. 2020, 41, 2108–2116. [CrossRef]

43. Griffiths, G.M.; Alpert, S.; Lambert, E.; McGuire, J.; Weissman, I.L. Perforin and granzyme A expression
identifying cytolytic lymphocytes in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 1992, 89, 549–553.
[CrossRef] [PubMed]

44. Chemin, K.; Ramsköld, D.; Diaz-Gallo, L.M.; Herrath, J.; Houtman, M.; Tandre, K.; Rönnblom, L.; Catrina, A.;
Malmström, V. EOMES-positive CD4+ T cells are increased in PTPN22 (1858T) risk allele carriers. Eur. J.
Immunol. 2018, 48, 655–669. [CrossRef]

45. Wang, J.; Shan, Y.; Jiang, Z.; Feng, J.; Li, C.; Ma, L.; Jiang, Y. High frequencies of activated B cells and T
follicular helper cells are correlated with disease activity in patients with new-onset rheumatoid arthritis.
Clin. Exp. Immunol. 2013, 174, 212–220. [CrossRef]

46. Ma, J.; Zhu, C.; Ma, B.; Tian, J.; Baidoo, S.E.; Mao, C.; Wu, W.; Chen, J.-G.; Tong, J.; Yang, M.; et al. Increased
Frequency of Circulating Follicular Helper T Cells in Patients with Rheumatoid Arthritis. Clin. Dev. Immunol.
2012, 2012, 1–7. [CrossRef]

47. Zhang, Y.; Li, Y.; Lv, T.-T.; Yin, Z.-J.; Wang, X.-B. Elevated circulating Th17 and follicular helper CD4 + T cells
in patients with rheumatoid arthritis. APMIS 2015, 123, 659–666. [CrossRef]

48. Gaffen, S.L.; Jain, R.; Garg, A.V.; Cua, D.J. The IL-23–IL-17 immune axis: From mechanisms to therapeutic
testing. Nat. Rev. Immunol. 2014, 14, 585–600. [CrossRef]

49. Cascão, R.; Moura, R.A.; Perpetuo, I.; Vieriea-Sousa, E.; Mourao, A.F.; Rodrugues, A.M.; Polido-Pereira, J.;
Queiroz, M.V.; Rosario, H.S.; Souto-Carneiro, M.M.M.; et al. Identification of a cytokine network sustaining
neutrophil and Th17 activation in untreated early rheumatoid arthritis. Arthritis Res. Ther. 2020. [CrossRef]

50. Azizi, G.; Jadidi-Niaragh, F.; Mirshafiey, A. Th17 Cells in Immunopathogenesis and treatment of rheumatoid
arthritis. Int. J. Rheum. Dis. 2013, 16, 243–253. [CrossRef]

51. Kaplan, M.J. Role of neutrophils in systemic autoimmune diseases. Arthritis Res. 2013, 15, 219. [CrossRef]
[PubMed]

52. Koenders, M.; Berg, W.B.V.D. Secukinumab for rheumatology: Development and its potential place in
therapy. Drug Des. Dev. Ther. 2016, 10, 2069–2080. [CrossRef] [PubMed]

53. Baker, K.F.; Isaacs, J.D. Novel therapies for immune-mediated inflammatory diseases: What can we learn
from their use in rheumatoid arthritis, spondyloarthritis, systemic lupus erythematosus, psoriasis, Crohn’s
disease and ulcerative colitis? Ann. Rheum. Dis. 2018, 77, 175–187. [CrossRef] [PubMed]

54. Evans, H.G.; Roostalu, U.; Walter, G.J.; Gullick, N.; Frederiksen, K.S.; Roberts, C.; Sumner, J.; Baeten, D.L.;
Gerwien, J.G.; Cope, A.P.; et al. TNF-α blockade induces IL-10 expression in human CD4+ T cells.
Nat. Commun. 2014, 5, 3199. [CrossRef] [PubMed]

55. Möttönen, M.; Heikkinen-Eloranta, J.; Mustonen, L.; Isomäki, P.; Luukkainen, R.; Lassila, O. CD4+ CD25+ T
cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial
fluid of patients with rheumatoid arthritis. Clin. Exp. Immunol. 2005, 140, 360–367. [CrossRef]

56. Komatsu, N.; Okamoto, K.; Sawa, S.; Nakashima, T.; Oh-Hora, M.; Kodama, T.; Tanaka, S.A.; Bluestone, J.;
Takayanagi, H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med.
2013, 20, 62–68. [CrossRef] [PubMed]

57. Wang, T.; Sun, X.; Zhao, J.; Zhang, J.; Zhu, H.; Li, C.; Gao, N.; Jia, Y.; Xu, D.; Huang, F.-P.; et al. Regulatory T
cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in
peripheral blood. Ann. Rheum. Dis. 2014, 74, 1293–1301. [CrossRef]

http://dx.doi.org/10.3389/fimmu.2019.00353
http://dx.doi.org/10.3389/fimmu.2015.00370
http://dx.doi.org/10.1016/S1081-1206(10)62426-X
http://dx.doi.org/10.1172/JCI118638
http://dx.doi.org/10.1111/j.0300-9475.2004.01464.x
http://www.ncbi.nlm.nih.gov/pubmed/15238090
http://dx.doi.org/10.1002/1529-0131(199812)41:12&lt;2108::AID-ART5&gt;3.0.CO;2-Q
http://dx.doi.org/10.1073/pnas.89.2.549
http://www.ncbi.nlm.nih.gov/pubmed/1731326
http://dx.doi.org/10.1002/eji.201747296
http://dx.doi.org/10.1111/cei.12162
http://dx.doi.org/10.1155/2012/827480
http://dx.doi.org/10.1111/apm.12399
http://dx.doi.org/10.1038/nri3707
http://dx.doi.org/10.1186/ar3168
http://dx.doi.org/10.1111/1756-185X.12132
http://dx.doi.org/10.1186/ar4325
http://www.ncbi.nlm.nih.gov/pubmed/24286137
http://dx.doi.org/10.2147/DDDT.S105263
http://www.ncbi.nlm.nih.gov/pubmed/27445458
http://dx.doi.org/10.1136/annrheumdis-2017-211555
http://www.ncbi.nlm.nih.gov/pubmed/28765121
http://dx.doi.org/10.1038/ncomms4199
http://www.ncbi.nlm.nih.gov/pubmed/24492460
http://dx.doi.org/10.1111/j.1365-2249.2005.02754.x
http://dx.doi.org/10.1038/nm.3432
http://www.ncbi.nlm.nih.gov/pubmed/24362934
http://dx.doi.org/10.1136/annrheumdis-2013-204228


Cells 2020, 9, 880 29 of 43

58. Nie, H.; Zheng, Y.; Li, R.; Guo, T.B.; He, N.; Fang, L.; Liu, X.; Xiao, L.; Chen, X.; Wan, B.; et al. Phosphorylation
of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med.
2013, 19, 322–328. [CrossRef]

59. Nadkarni, S.; Mauri, C.; Ehernstein, M.R. Anti-TNF-alpha therapy induces a distinct regulatory T cell
population in patients with rheumatoid arthritis via TGF-beta. J. Exp. Med. 2007, 204, 33–39. [CrossRef]

60. Brennan, F.M.; McInnes, I. Evidence that cytokines play a role in rheumatoid arthritis. J. Clin. Investig. 2008,
118, 3537–3545. [CrossRef]

61. Ma, H.; Xu, M.; Song, Y.; Zhang, T.; Yin, H.; Yin, S. Interferon-γ facilitated adjuvant-induced arthritis at early
stage. Scand. J. Immunol. 2019, 89, e12757. [CrossRef] [PubMed]

62. Dayer, J.M.; Beutler, B.; Cerami, A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin
E2 production by human synovial cells and dermal fibroblasts. J. Exp. Med. 1985, 162, 2163–2168. [CrossRef]
[PubMed]

63. Bertolini, D.R.; Nedwin, G.E.; Bringman, T.S.; Smith, D.D.; Mundy, G.R. Stimulation of bone resorption and
inhibition of bone formation in vitro by human tumour necrosis factors. Nat. 1986, 319, 516–518. [CrossRef]
[PubMed]

64. Marahleh, A.; Kitaura, H.; Ohori, F.; Kishikawa, A.; Ogawa, S.; Shen, W.-R.; Qi, J.; Noguchi, T.; Nara, Y.;
Mizoguchi, I. TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation.
Front. Immunol. 2019, 10, 2925. [CrossRef] [PubMed]

65. Lam, J.; Takeshita, S.; Barker, J.E.; Kanagawa, O.; Ross, F.P.; Teitelbaum, S.L. TNF-α induces osteoclastogenesis
by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Investig. 2000,
106, 1481–1488. [CrossRef]

66. Kobayashi, K.; Takahashi, N.; Jimi, E.; Udagawa, N.; Takami, M.; Kotake, S.; Nakagawa, N.; Kinosaki, M.;
Yamaguchi, K.; Shima, N.; et al. Tumor Necrosis Factorα Stimulates Osteoclast Differentiation by a Mechanism
Independent of the Odf/Rankl–Rank Interaction. J. Exp. Med. 2000, 191, 275–286. [CrossRef]

67. Azuma, Y.; Kaji, K.; Katogi, R.; Takeshita, S.; Kudo, A. Tumor Necrosis Factor-α Induces Differentiation of
and Bone Resorption by Osteoclasts. J. Boil. Chem. 2000, 275, 4858–4864. [CrossRef]

68. Fossiez, F.; Djossou, O.; Chomarat, P.; Flores-Romo, L.; Ait-Yahia, S.; Maat, C.; Pin, J.J.; Garrone, P.; Garcia, E.;
Saeland, S.; et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic
cytokines. J. Exp. Med. 1996, 183, 2593–2603. [CrossRef]

69. Borregaard, N. Neutrophils, from Marrow to Microbes. Immun. 2010, 33, 657–670. [CrossRef]
70. Robert, M.; Miossec, P. IL-17 in Rheumatoid Arthritis and Precision Medicine: From Synovitis Expression to

Circulating Bioactive Levels. Front. Med. 2019, 5, 364. [CrossRef]
71. Kotake, S.; Udagawa, N.; Takahashi, N.; Matsuzaki, K.; Itoh, K.; Ishiyama, S.; Saito, S.; Inoue, K.; Kamatani, N.;

Gillespie, M.; et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of
osteoclastogenesis. J. Clin. Investig. 1999, 103, 1345–1352. [CrossRef] [PubMed]

72. Chabaud, M.; Lubberts, E.; Joosten, L.; Berg, W.V.D.; Miossec, P. IL-17 derived from juxta-articular bone and
synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res. 2001, 3, 168–177. [CrossRef]
[PubMed]

73. Van Bezooijen, R.L.; Papapoulos, S.E.; Lowik, C.W. Effect of interleukin-17 on nitric oxide production and
osteoclastic bone resorption: Is there dependency on nuclear factor-kappaB and receptor activator of nuclear
factor kappaB (RANK)/RANK ligand signaling? Bone 2001, 28, 378–386. [CrossRef]

74. Chabaud, M.; Garnero, P.; Dayer, J.-M.; Guerne, P.-A.; Fossiez, F.; Miossec, P. Contribution of interleukin 17
to synovium matrix destruction in rheumatoid arthritis. Cytokine 2000, 12, 1092–1099. [CrossRef] [PubMed]

75. Pickens, S.R.; Volin, M.V.; Mandelin, A.M.; Kolls, J.K.; Pope, R.M.; Shahrara, S. IL-17 contributes to
angiogenesis in rheumatoid arthritis. J. Immunol. 2010, 184, 3233–3241. [CrossRef]

76. Ryu, S.; Lee, J.H.; Kim, S.I. IL-17 increased the production of vascular endothelial growth factor in rheumatoid
arthritis synoviocytes. Clin. Rheumatol. 2005, 25, 16–20. [CrossRef]

77. Xie, Y.-D.; Jin, L.; Yu, Q.-W. [The role of IFN-gamma, IL-10, IL-12 and TRAIL in sera and synovium fluids
from patients with rheumatoid arthritis]. Chin. J. Cell. Mol. Immunol. 2007, 23, 536–537.

78. Kokkonen, H.; Sãderstrãm, I.; Rocklãv, J.; Hallmans, G.; Lejon, K.; Rantapää-Dahlqvist, S.; Söderström, I.;
Rocklov, J. Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis.
Arthritis Rheum. 2010, 62, 383–391. [CrossRef]

http://dx.doi.org/10.1038/nm.3085
http://dx.doi.org/10.1084/jem.20061531
http://dx.doi.org/10.1172/JCI36389
http://dx.doi.org/10.1111/sji.12757
http://www.ncbi.nlm.nih.gov/pubmed/30739356
http://dx.doi.org/10.1084/jem.162.6.2163
http://www.ncbi.nlm.nih.gov/pubmed/2999289
http://dx.doi.org/10.1038/319516a0
http://www.ncbi.nlm.nih.gov/pubmed/3511389
http://dx.doi.org/10.3389/fimmu.2019.02925
http://www.ncbi.nlm.nih.gov/pubmed/31921183
http://dx.doi.org/10.1172/JCI11176
http://dx.doi.org/10.1084/jem.191.2.275
http://dx.doi.org/10.1074/jbc.275.7.4858
http://dx.doi.org/10.1084/jem.183.6.2593
http://dx.doi.org/10.1016/j.immuni.2010.11.011
http://dx.doi.org/10.3389/fmed.2018.00364
http://dx.doi.org/10.1172/JCI5703
http://www.ncbi.nlm.nih.gov/pubmed/10225978
http://dx.doi.org/10.1186/ar294
http://www.ncbi.nlm.nih.gov/pubmed/11299057
http://dx.doi.org/10.1016/S8756-3282(00)00457-9
http://dx.doi.org/10.1006/cyto.2000.0681
http://www.ncbi.nlm.nih.gov/pubmed/10880256
http://dx.doi.org/10.4049/jimmunol.0903271
http://dx.doi.org/10.1007/s10067-005-1081-1
http://dx.doi.org/10.1002/art.27186


Cells 2020, 9, 880 30 of 43

79. Steiner, G.; Tohidast-Akrad, M.; Witzmann, G.; Vesely, M.; Studnicka-Benke, A.; Gal, A.; Kunaver, M.; Zenz, P.;
Smolen, J.S. Cytokine production by synovial T cells in rheumatoid arthritis. Rheumatology 1999, 38, 202–213.
[CrossRef]

80. Morita, Y.; Yamamura, M.; Kawashima, M.; Harada, S.; Tsuji, K.; Shibuya, K.; Maruyama, K.; Makino, H.
Flow cytometric single-cell analysis of cytokine production by CD4+ T cells in synovial tissue and peripheral
blood from patients with rheumatoid arthritis. Arthritis Rheum. 1998, 41, 1669–1676. [CrossRef]

81. Thanapati, S.; Ganu, M.; Giri, P.; Kulkarni, S.; Sharma, M.; Babar, P.; Ganu, A.; Tripathy, A. Impaired NK
cell functionality and increased TNF-α production as biomarkers of chronic chikungunya arthritis and
rheumatoid arthritis. Hum. Immunol. 2017, 78, 370–374. [CrossRef] [PubMed]

82. Olalekan, S.A.; Cao, Y.; Hamel, K.M.; Finnegan, A. B cells expressing IFN-γ suppress Treg-cell differentiation
and promote autoimmune experimental arthritis. Eur. J. Immunol. 2015, 45, 988–998. [CrossRef]

83. Karonitsch, T.; Von Dalwigk, K.; Steiner, C.W.; Blüml, S.; Steiner, G.; Kiener, H.P.; Ramiro, S.; Aringer, M.;
Steiner, G. Interferon signals and monocytic sensitization of the interferon-γ signaling pathway in the
peripheral blood of patients with rheumatoid arthritis. Arthritis Rheum. 2012, 64, 400–408. [CrossRef]
[PubMed]

84. Bach, E.A.; Aguet, M.; Schreiber, R.D. THE IFNγ RECEPTOR: A Paradigm for Cytokine Receptor Signaling.
Annu. Rev. Immunol. 1997, 15, 563–591. [CrossRef] [PubMed]

85. Schreiber, R.D.A.; Farrar, M.; Farrar, M.; Hershey, G.K.; Fernandez-Luna, J. The structure and function of
interferon-gamma receptors. Int. J. Immunopharmacol. 1992, 14, 413–419. [CrossRef]

86. Tang, M.; Tian, L.; Luo, G.; Yu, X. Interferon-Gamma-Mediated Osteoimmunology. Front. Immunol. 2018,
9, 1508. [CrossRef] [PubMed]

87. Kwak, H.B.; Ha, H.; Kim, H.N.; Lee, J.H.; Kim, H.S.; Lee, S.; Kim, H.M.; Kim, J.Y.; Kim, H.H.; Song, Y.W.; et al.
Reciprocal cross-talk between RANKL and interferon-gamma-inducible protein 10 is responsible for
bone-erosive experimental arthritis. Arthritis Rheum. 2008, 58, 1332–1342. [CrossRef]

88. Luster, A.D.; Ravetch, J.V. Biochemical characterization of a gamma interferon-inducible cytokine (IP-10).
J. Exp. Med. 1987, 166, 1084–1097. [CrossRef]

89. Kim, E.Y.; Moudgil, K.D. Immunomodulation of autoimmune arthritis by pro-inflammatory cytokines.
Cytokine 2017, 98, 87–96. [CrossRef]

90. Fuller, K.; Wong, B.; Fox, S.; Choi, Y.; Chambers, T. TRANCE Is Necessary and Sufficient for
Osteoblast-mediated Activation of Bone Resorption in Osteoclasts. J. Exp. Med. 1998, 188, 997–1001.
[CrossRef]

91. Okamoto, K.; Takayanagi, H. Regulation of bone by the adaptive immune system in arthritis. Arthritis Res.
2011, 13, 219. [CrossRef] [PubMed]

92. Yeo, L.; Schmultz, K.; Toellner, K.; Salmon, M.; Filer, A.D.; Buckley, C.; Raza, K.; Scheel-Toellnew, D. Cytokine
mRNA profiling identifies B cells as a major source of RANKL in rheumatoid arthritis. Ann. Rheum. Dis.
2011, 70, 2022–2028. [CrossRef] [PubMed]

93. Jung, S.M.; Kim, K.W.; Yang, C.-W.; Park, S.-H.; Ju, J.H. Cytokine-Mediated Bone Destruction in Rheumatoid
Arthritis. J. Immunol. Res. 2014, 2014, 1–15. [CrossRef] [PubMed]

94. Pettit, A.; Ji, H.; Von Stechow, D.; Müller, R.; Goldring, S.R.; Choi, Y.; Benoist, C.; Gravallese, E.M.
TRANCE/RANKL Knockout Mice Are Protected from Bone Erosion in a Serum Transfer Model of Arthritis.
Am. J. Pathol. 2001, 159, 1689–1699. [CrossRef]

95. Goh, F.G.; Midwood, K.S. Intrinsic danger: Activation of Toll-like receptors in rheumatoid arthritis. Rheumatol.
2011, 51, 7–23. [CrossRef] [PubMed]

96. Chen, Z.; Bozec, A.; Ramming, A.; Schett, G. Anti-inflammatory and immune-regulatory cytokines in
rheumatoid arthritis. Nat. Rev. Rheumatol. 2018, 15, 9–17. [CrossRef]

97. Reboul, P.; Pelletier, J.P.; Tardif, G.; Cloutier, J.M.; Martel-Pelletier, J. The new collagenase, collagenase-3, is
expressed and synthesized by human chondrocytes but not by synoviocytes. A role in osteoarthritis. J. Clin.
Investig. 1996, 97, 2011–2019. [CrossRef]

98. Borden, P.; Solymar, D.; Sucharczuk, A.; Lindman, B.R.; Cannon, P.; Heller, R.A. Cytokine Control of
Interstitial Collagenase and Collagenase-3 Gene Expression in Human Chondrocytes. J. Boil. Chem. 1996,
271, 23577–23581. [CrossRef]

99. Redlich, K.; Smolen, J.S. Inflammatory bone loss: Pathogenesis and therapeutic intervention. Nat. Rev. Drug
Discov. 2012, 11, 234–250. [CrossRef]

http://dx.doi.org/10.1093/rheumatology/38.3.202
http://dx.doi.org/10.1002/1529-0131(199809)41:9&lt;1669::AID-ART19&gt;3.0.CO;2-G
http://dx.doi.org/10.1016/j.humimm.2017.02.006
http://www.ncbi.nlm.nih.gov/pubmed/28213049
http://dx.doi.org/10.1002/eji.201445036
http://dx.doi.org/10.1002/art.33347
http://www.ncbi.nlm.nih.gov/pubmed/21953607
http://dx.doi.org/10.1146/annurev.immunol.15.1.563
http://www.ncbi.nlm.nih.gov/pubmed/9143700
http://dx.doi.org/10.1016/0192-0561(92)90171-G
http://dx.doi.org/10.3389/fimmu.2018.01508
http://www.ncbi.nlm.nih.gov/pubmed/30008722
http://dx.doi.org/10.1002/art.23372
http://dx.doi.org/10.1084/jem.166.4.1084
http://dx.doi.org/10.1016/j.cyto.2017.04.012
http://dx.doi.org/10.1084/jem.188.5.997
http://dx.doi.org/10.1186/ar3323
http://www.ncbi.nlm.nih.gov/pubmed/21635718
http://dx.doi.org/10.1136/ard.2011.153312
http://www.ncbi.nlm.nih.gov/pubmed/21742639
http://dx.doi.org/10.1155/2014/263625
http://www.ncbi.nlm.nih.gov/pubmed/25295284
http://dx.doi.org/10.1016/S0002-9440(10)63016-7
http://dx.doi.org/10.1093/rheumatology/ker257
http://www.ncbi.nlm.nih.gov/pubmed/21984766
http://dx.doi.org/10.1038/s41584-018-0109-2
http://dx.doi.org/10.1172/JCI118636
http://dx.doi.org/10.1074/jbc.271.38.23577
http://dx.doi.org/10.1038/nrd3669


Cells 2020, 9, 880 31 of 43

100. Lefèvre, S.; Knedla, A.; Tennie, C.; Kampmann, A.; Wunrau, C.; Dinser, R.; Korb, A.; Schnäker, E.-M.;
Tarner, I.H.; Robbins, P.D.; et al. Synovial fibroblasts spread rheumatoid arthritis to unaffected joints.
Nat. Med. 2009, 15, 1414–1420. [CrossRef]

101. Smolen, J.S.; Aletaha, D.; Koeller, M.; Weisman, M.H.; Emery, P. New therapies for treatment of rheumatoid
arthritis. Lancet Lond. Engl. 2007, 370, 1861–1874. [CrossRef]

102. McInnes, I.; Schett, G. The Pathogenesis of Rheumatoid Arthritis. N. Engl. J. Med. 2011, 365, 2205–2219.
[CrossRef] [PubMed]

103. Holers, V.M.; Banda, N.K. Complement in the Initiation and Evolution of Rheumatoid Arthritis.
Front. Immunol. 2018, 9, 1057. [CrossRef] [PubMed]

104. Scher, J.U. B-cell therapies for rheumatoid arthritis. Bull. Nyu Hosp. Jt. Dis. 2012, 70, 200–203. [PubMed]
105. Nishimura, K. Meta-analysis: Diagnostic Accuracy of Anti–Cyclic Citrullinated Peptide Antibody and

Rheumatoid Factor for Rheumatoid Arthritis. Ann. Intern. Med. 2007, 146, 797. [CrossRef] [PubMed]
106. Ingegnoli, F.; Castelli, R.; Gualtierotti, R. Rheumatoid Factors: Clinical Applications. Dis. Markers 2013,

35, 727–734. [CrossRef]
107. Steiner, G. Auto-antibodies and autoreactive T-cells in rheumatoid arthritis: Pathogenetic players and

diagnostic tools. Clin. Rev. Allergy Immunol. 2007, 32, 23–36. [CrossRef]
108. Wegner, N.; Lundberg, K.; Kinloch, A.J.; Fisher, B.; Malmström, V.; Feldmann, M.; Venables, P.J. Autoimmunity

to specific citrullinated proteins gives the first clues to the etiology of rheumatoid arthritis. Immunol. Rev.
2010, 233, 34–54. [CrossRef]

109. Aggarwal, R.; Liao, K.; Nair, R.; Ringold, S.; Costenbader, K.H. Anti-citrullinated peptide antibody assays
and their role in the diagnosis of rheumatoid arthritis. Arthritis Rheum. 2009, 61, 1472–1483. [CrossRef]

110. Gerlag, D.M.; Safy, M.; Maijer, K.I.; Tang, M.W.; Tas, S.W.; Starmans-Kool, M.J.F.; van Tubergen, A.; Janssen, M.;
de Hair, M.; Hansson, M.; et al. Tak PP7F1000Prime recommendation of Effects of B-cell directed therapy on
the preclinical stage of rheumatoid arthritis: The PRAIRI study. Ann. Rheum. Dis. 2019, 78, 179–185.

111. Forslind, K.; Ahlmen, M.; Eberhardt, K.; Hafström, I.; Svensson, B. Prediction of radiological outcome in early
rheumatoid arthritis in clinical practice: Role of antibodies to citrullinated peptides (anti-CCP). Ann. Rheum.
Dis. 2004, 63, 1090–1095. [CrossRef] [PubMed]

112. Rönnelid, J.; Wick, M.C.; Lampa, J.; Lindblad, S.; Nordmark, B.; Klareskog, L.; Van Vollenhoven, R.F.
Longitudinal analysis of citrullinated protein/peptide antibodies (anti-CP) during 5 year follow up in early
rheumatoid arthritis: Anti-CP status predicts worse disease activity and greater radiological progression.
Ann. Rheum. Dis. 2005, 64, 1744–1749. [CrossRef] [PubMed]

113. De Rycke, L.; Peene, I.; Hoffman, I.; Kruithof, E.; Union, A.; Meheus, L.; Lebeer, K.; Wyns, B.; Vincent, C.;
Mielants, H.; et al. Rheumatoid factor and anticitrullinated protein antibodies in rheumatoid arthritis:
Diagnostic value, associations with radiological progression rate, and extra-articular manifestations.
Ann. Rheum. Dis. 2004, 63, 1587–1593. [CrossRef] [PubMed]

114. Coutant, F. Pathogenic effects of anti-citrullinated protein antibodies in rheumatoid arthritis – role for
glycosylation. Jt. Bone Spine 2019, 86, 562–567. [CrossRef] [PubMed]

115. Krishnamurthy, A.; Joshua, V.; Hensvold, A.H.; Jin, T.; Sun, M.; Vivar, N.; Ytterberg, A.; Engström, M.;
Fernandes-Cerqueira, C.; Amara, K.; et al. Identification of a novel chemokine-dependent molecular
mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann. Rheum. Dis.
2015, 75, 721–729. [CrossRef]

116. Scherer, H.U.; Van Der Woude, D.; Ioan-Facsinay, A.; El Bannoudi, H.; Trouw, L.A.; Wang, J.; Häupl, T.;
Burmester, G.-R.; Deelder, A.M.; Huizinga, T.W.J.; et al. Glycan profiling of anti-citrullinated protein
antibodies isolated from human serum and synovial fluid. Arthritis Rheum. 2010, 62, 1620–1629. [CrossRef]

117. Nandakumar, K.S.; Collin, M.; Olsén, A.; Nimmerjahn, F.; Blom, A.M.; Ravetch, J.V.; Holmdahl, R.
Endoglycosidase treatment abrogates IgG arthritogenicity: Importance of IgG glycosylation in arthritis.
Eur. J. Immunol. 2007, 37, 2973–2982. [CrossRef]

118. Rombouts, Y.; Ewing, E.A.; Van De Stadt, L.; Selman, M.H.J.; Trouw, L.A.; Deelder, A.M.; Huizinga, T.W.J.;
Wuhrer, M.; Van Schaardenburg, D.; Toes, R.; et al. Anti-citrullinated protein antibodies acquire a
pro-inflammatory Fc glycosylation phenotype prior to the onset of rheumatoid arthritis. Ann. Rheum. Dis.
2013, 74, 234–241.

http://dx.doi.org/10.1038/nm.2050
http://dx.doi.org/10.1016/S0140-6736(07)60784-3
http://dx.doi.org/10.1056/NEJMra1004965
http://www.ncbi.nlm.nih.gov/pubmed/22150039
http://dx.doi.org/10.3389/fimmu.2018.01057
http://www.ncbi.nlm.nih.gov/pubmed/29892280
http://www.ncbi.nlm.nih.gov/pubmed/23259629
http://dx.doi.org/10.7326/0003-4819-146-11-200706050-00008
http://www.ncbi.nlm.nih.gov/pubmed/17548411
http://dx.doi.org/10.1155/2013/726598
http://dx.doi.org/10.1007/BF02686079
http://dx.doi.org/10.1111/j.0105-2896.2009.00850.x
http://dx.doi.org/10.1002/art.24827
http://dx.doi.org/10.1136/ard.2003.014233
http://www.ncbi.nlm.nih.gov/pubmed/15308518
http://dx.doi.org/10.1136/ard.2004.033571
http://www.ncbi.nlm.nih.gov/pubmed/15843452
http://dx.doi.org/10.1136/ard.2003.017574
http://www.ncbi.nlm.nih.gov/pubmed/15547083
http://dx.doi.org/10.1016/j.jbspin.2019.01.005
http://www.ncbi.nlm.nih.gov/pubmed/30685537
http://dx.doi.org/10.1136/annrheumdis-2015-208093
http://dx.doi.org/10.1002/art.27414
http://dx.doi.org/10.1002/eji.200737581


Cells 2020, 9, 880 32 of 43

119. Ercan, A.; Cui, J.; Chatterton, D.E.W.; Deane, K.D.; Hazen, M.M.; Brintnell, W.; O’Donnell, C.I.; Derber, L.A.;
Weinblatt, M.E.; Shadick, N.A.; et al. IgG galactosylation aberrancy precedes disease onset, correlates
with disease activity and is prevalent in autoantibodies in rheumatoid arthritis. Arthritis Rheum. 2010,
62, 2239–2248. [CrossRef]

120. Pfeifle, R.; Rothe, T.; Ipseiz, N.; Scherer, H.U.; Culemann, S.; Harre, U.A.; Ackermann, J.; Seefried, M.;
Kleyer, A.; Uderhardt, S.; et al. Regulation of autoantibody activity by the IL-23–TH17 axis determines the
onset of autoimmune disease. Nat. Immunol. 2016, 18, 104–113. [CrossRef]

121. Elshabrawy, H.A.; Chen, Z.; Volin, M.V.; Ravella, S.; Virupannavar, S.; Shahrara, S. The pathogenic role of
angiogenesis in rheumatoid arthritis. Angiogenesis 2015, 18, 433–448. [CrossRef]

122. Bartók, B.; Firestein, G.S. Fibroblast-like synoviocytes: Key effector cells in rheumatoid arthritis. Immunol. Rev.
2010, 233, 233–255. [CrossRef] [PubMed]

123. Fassbender, H.G.; Simmling-Annefeld, M. The potential aggressiveness of synovial tissue in rheumatoid
arthritis. J. Pathol. 1983, 139, 399–406. [CrossRef] [PubMed]

124. Baier, A.; Meineckel, I.; Gay, S.; Pap, T. Apoptosis in rheumatoid arthritis. Curr. Opin. Rheumatol. 2003,
15, 274–279. [CrossRef]

125. Yamanishi, Y.; Boyle, D.L.; Green, D.R.; Keystone, E.C.; Connor, A.; Zollman, S.; Firestein, G.S. p53 tumor
suppressor gene mutations in fibroblast-like synoviocytes from erosion synovium and non-erosion synovium
in rheumatoid arthritis. Arthritis Res. Ther. 2004, 7, R12–R18. [CrossRef]

126. Yamanishi, Y.; Boyle, D.L.; Rosengren, S.; Green, D.R.; Zvaifler, N.J.; Firestein, G.S. Regional analysis of p53
mutations in rheumatoid arthritis synovium. Proc. Natl. Acad. Sci. USA 2002, 99, 10025–10030. [CrossRef]
[PubMed]

127. Cha, H.-S.; Rosengren, S.; Boyle, D.L.; Firestein, G.S. PUMA regulation and proapoptotic effects in
fibroblast-like synoviocytes. Arthritis Rheum. 2006, 54, 587–592. [CrossRef]

128. Coutant, F.; Miossec, P. Evolving concepts of the pathogenesis of rheumatoid arthritis with focus on the early
and late stages. Curr. Opin. Rheumatol. 2020, 32, 57–63. [CrossRef]

129. Burmester, G.; Pope, J.E. Novel treatment strategies in rheumatoid arthritis. Lancet 2017, 389, 2338–2348.
[CrossRef]

130. D’Agostino, M.A.; Terslev, L.; Wakefield, R.; Østergaard, M.; Balint, P.; Naredo, E.; Iagnocco, A.; Backhaus, M.;
Grassi, W.; Emery, P. Novel algorithms for the pragmatic use of ultrasound in the management of patients
with rheumatoid arthritis: From diagnosis to remission. Ann. Rheum. Dis. 2016, 75, 1902–1908. [CrossRef]

131. Prado, A.D.D.; Staub, H.L.; Bisi, M.C.; Da Silveira, I.G.; Mendonça, J.A.; Pereira, J.P.; Fonseca, J.E. Ultrasound
and its clinical use in rheumatoid arthritis: Where do we stand? Adv. Rheumatol. 2018, 58, 19. [CrossRef]
[PubMed]

132. Zayat, A.S.; Ellegaard, K.; Conaghan, P.G.; Terslev, L.; Hensor, E.M.A.; Freeston, J.; Emery, P.; Wakefield, R.J.
The specificity of ultrasound-detected bone erosions for rheumatoid arthritis. Ann. Rheum. Dis. 2014,
74, 897–903. [CrossRef] [PubMed]

133. Yoshimi, R.; Hama, M.; Takase, K.; Ihata, A.; Kishimoto, D.; Terauchi, K.; Watanabe, R.; Uehara, T.;
Samukawa, S.; Ueda, A.; et al. Ultrasonography is a potent tool for the prediction of progressive joint
destruction during clinical remission of rheumatoid arthritis. Mod. Rheumatol. 2013, 23, 456–465. [CrossRef]
[PubMed]

134. Iwamoto, T.; Ikeda, K.; Hosokawa, J.; Yamagata, M.; Tanaka, S.; Norimoto, A.; Sanayama, Y.; Nakagomi, D.;
Takahashi, K.; Hirose, K.; et al. Prediction of Relapse after Discontinuation of Biologic Agents by
Ultrasonographic Assessment in Patients With Rheumatoid Arthritis in Clinical Remission: High Predictive
Values of Total Gray-Scale and Power Doppler Scores That Represent Residual Synovial. Arthritis Rheum.
2014, 66, 1576–1581. [CrossRef]

135. Takase-Minegishi, K.; Horita, N.; Kobayashi, K.; Yoshimi, R.; Kirino, Y.; Ohno, S.; Kaneko, T.; Nakajima, H.;
Wakefield, R.J.; Emery, P. Diagnostic test accuracy of ultrasound for synovitis in rheumatoid arthritis:
Systematic review and meta-analysis. Rheumatology 2017, 57, 49–58. [CrossRef]

136. Cohen, S.; Potter, H.; Deodhar, A.; Emery, P.; Conaghan, P.G.; Østergaard, M. Extremity magnetic resonance
imaging in rheumatoid arthritis: Updated literature review. Arthritis Rheum. 2011, 63, 660–665. [CrossRef]

137. Shrive, A.K.; Holden, D.; Myles, D.A.; Greenhough, T.J. Structure Solution of C-Reactive Proteins: Molecular
Replacement With a Twist. Acta Crystallogr. Sect. D Boil. Crystallogr. 1996, 52, 1049–1057. [CrossRef]

138. Baumann, H.; Gauldie, J. The acute phase response. Immunol. Today 1994, 15, 74–80.

http://dx.doi.org/10.1002/art.27533
http://dx.doi.org/10.1038/ni.3579
http://dx.doi.org/10.1007/s10456-015-9477-2
http://dx.doi.org/10.1111/j.0105-2896.2009.00859.x
http://www.ncbi.nlm.nih.gov/pubmed/20193003
http://dx.doi.org/10.1002/path.1711390314
http://www.ncbi.nlm.nih.gov/pubmed/6834180
http://dx.doi.org/10.1097/00002281-200305000-00015
http://dx.doi.org/10.1186/ar1448
http://dx.doi.org/10.1073/pnas.152333199
http://www.ncbi.nlm.nih.gov/pubmed/12119414
http://dx.doi.org/10.1002/art.21631
http://dx.doi.org/10.1097/BOR.0000000000000664
http://dx.doi.org/10.1016/S0140-6736(17)31491-5
http://dx.doi.org/10.1136/annrheumdis-2016-209646
http://dx.doi.org/10.1186/s42358-018-0023-y
http://www.ncbi.nlm.nih.gov/pubmed/30657086
http://dx.doi.org/10.1136/annrheumdis-2013-204864
http://www.ncbi.nlm.nih.gov/pubmed/24445255
http://dx.doi.org/10.3109/s10165-012-0690-1
http://www.ncbi.nlm.nih.gov/pubmed/22802010
http://dx.doi.org/10.1002/acr.22303
http://dx.doi.org/10.1093/rheumatology/kex036
http://dx.doi.org/10.1002/acr.20413
http://dx.doi.org/10.1107/S0907444996008311


Cells 2020, 9, 880 33 of 43

139. Kuta, A.E.; Baum, L. C-reactive protein is produced by a small number of normal human peripheral blood
lymphocytes. J. Exp. Med. 1986, 164, 321–326. [CrossRef]

140. Calabrò, P.; Chang, D.W.; Willerson, J.T.; Yeh, E.T. Release of C-Reactive Protein in Response to Inflammatory
Cytokines by Human Adipocytes: Linking Obesity to Vascular Inflammation. J. Am. Coll. Cardiol. 2005,
46, 1112–1113. [CrossRef]

141. Zhang, D.; Sun, M.; Samols, D.; Kushner, I. STAT3 Participates in Transcriptional Activation of the C-reactive
Protein Gene by Interleukin-6. J. Boil. Chem. 1996, 271, 9503–9509. [CrossRef] [PubMed]

142. Calabrò, P.; Willerson, J.T.; Yeh, E.T. Inflammatory Cytokines Stimulated C-Reactive Protein Production by
Human Coronary Artery Smooth Muscle Cells. Circ. 2003, 108, 1930–1932. [CrossRef] [PubMed]

143. Siegel, J.; Osmand, A.P.; Wilson, M.F.; Gewurz, H. Interactions of C-reactive protein with the complement
system. II. C-reactive protein-mediated consumption of complement by poly-L-lysine polymers and other
polycations. J. Exp. Med. 1975, 142, 709–721. [CrossRef] [PubMed]

144. Mold, C.; Gewurz, H.; Du Clos, T.W. Regulation of complement activation by C-reactive protein.
Immunopharmacology 1999, 42, 23–30. [CrossRef]

145. Bharadwaj, D.; Bharadwaj, D.-P.; Volzer, M.; Mold, C.; Du Clos, T.W. The major receptor for C-reactive
protein on leukocytes is fcgamma receptor II. J. Exp. Med. 1999, 190, 585–590.

146. Lu, J.; Marnell, L.L.; Marjon, K.D.; Mold, C.; Du Clos, T.W.; Sun, P.D. Structural recognition and functional
activation of FcγR by innate pentraxins. Nature 2008, 456, 989–992. [CrossRef]

147. Williams, T.N.; Zhang, C.X.; Game, B.A.; He, L.; Huang, Y. C-reactive protein stimulates MMP-1 expression in
U937 histiocytes through Fc[gamma]RII and extracellular signal-regulated kinase pathway: An implication
of CRP involvement in plaque destabilization. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 61–66. [CrossRef]

148. Nabata, A.; Kuroki, M.; Ueba, H.; Hashimoto, S.; Umemoto, T.; Wada, H.; Yasu, T.; Saito, M.; Momomura, S.-I.;
Kawakami, M. C-reactive protein induces endothelial cell apoptosis and matrix metalloproteinase-9
production in human mononuclear cells: Implications for the destabilization of atherosclerotic plaque.
Atherosclerosis 2008, 196, 129–135. [CrossRef]

149. Devaraj, S.; Yun, J.-M.; Duncan-Staley, C.; Jialal, I. C-reactive protein induces M-CSF release and macrophage
proliferation. J. Leukoc. Boil. 2008, 85, 262–267. [CrossRef]

150. Han, K.H.; Hong, K.-H.; Park, J.-H.; Ko, J.-S.; Kang, D.-H.; Choi, K.-J.; Hong, M.-K.; Park, S.-W.;
Park, S.-J. C-Reactive Protein Promotes Monocyte Chemoattractant Protein-1—Mediated Chemotaxis
Through Upregulating CC Chemokine Receptor 2 Expression in Human Monocytes. Circulation 2004,
109, 2566–2571. [CrossRef]

151. Kim, K.-W.; Kim, B.M.; Moon, H.W.; See, S.H.; Kim, H.R. Role of C-reactive protein in osteoclastogenesis in
rheumatoid arthritis. Arthritis Res. Ther. 2015. [CrossRef] [PubMed]

152. Mallya, R.K.; De Beer, F.C.; Berry, H.; Hamilton, E.D.; Mace, B.; Pepys, M.B. Correlation of clinical parameters
of disease activity in rheumatoid arthritis with serum concentration of C-reactive protein and erythrocyte
sedimentation rate. J. Rheumatol. 1982, 9, 224–228. [PubMed]

153. Matsuno, H.; Yudoh, K.; Nakazawa, F.; Koizumi, F. Relationship between histological findings and clinical
findings in rheumatoid arthritis. Pathol. Int. 2002, 52, 527–533. [CrossRef] [PubMed]

154. Wolfe, F. Comparative usefulness of C-reactive protein and erythrocyte sedimentation rate in patients with
rheumatoid arthritis. J. Rheumatol. 1997, 24, 1477–1485.

155. Van Leeuwen, M.; Van Der Heijde, D.M.; Van Rijswijk, M.H.; Houtman, P.M.; Van Riel, P.L.; Van De Putte, L.B.;
Limburg, P.C. Interrelationship of outcome measures and process variables in early rheumatoid arthritis.
A comparison of radiologic damage, physical disability, joint counts, and acute phase reactants. J. Rheumatol.
1994, 21, 425–429.

156. Rhodes, B.; Fürnrohr, B.G.; Vyse, T. C-reactive protein in rheumatology: Biology and genetics. Nat. Rev.
Rheumatol. 2011, 7, 282–289. [CrossRef]

157. Jansen, L.E.; Van Der Horst-Bru, I.; Van Schaardenburg, D.; Bezemer, P.D.; Dijkmans, B.A.C. Predictors of
radiographic joint damage in patients with early rheumatoid arthritis. Ann. Rheum. Dis. 2001, 60, 924–927.
[CrossRef]

158. Devlin, J.; Gough, A.; Huissoon, A.; Perkins, P.; Holder, R.; Reece, R.; Arthur, V.; Emery, P. The acute phase
and function in early rheumatoid arthritis. C-reactive protein levels correlate with functional outcome.
J. Rheumatol. 1997, 24, 9–13.

http://dx.doi.org/10.1084/jem.164.1.321
http://dx.doi.org/10.1016/j.jacc.2005.06.017
http://dx.doi.org/10.1074/jbc.271.16.9503
http://www.ncbi.nlm.nih.gov/pubmed/8621622
http://dx.doi.org/10.1161/01.CIR.0000096055.62724.C5
http://www.ncbi.nlm.nih.gov/pubmed/14530191
http://dx.doi.org/10.1084/jem.142.3.709
http://www.ncbi.nlm.nih.gov/pubmed/809531
http://dx.doi.org/10.1016/S0162-3109(99)00007-7
http://dx.doi.org/10.1038/nature07468
http://dx.doi.org/10.1161/01.ATV.0000104014.24367.16
http://dx.doi.org/10.1016/j.atherosclerosis.2007.03.003
http://dx.doi.org/10.1189/jlb.0808458
http://dx.doi.org/10.1161/01.CIR.0000131160.94926.6E
http://dx.doi.org/10.1186/s13075-015-0563-z
http://www.ncbi.nlm.nih.gov/pubmed/25889630
http://www.ncbi.nlm.nih.gov/pubmed/7097681
http://dx.doi.org/10.1046/j.1440-1827.2002.01389.x
http://www.ncbi.nlm.nih.gov/pubmed/12366812
http://dx.doi.org/10.1038/nrrheum.2011.37
http://dx.doi.org/10.1136/ard.60.10.924


Cells 2020, 9, 880 34 of 43

159. Isiksacan, Z.; Elbuken, C.; Erel, O. A portable microfluidic system for rapid measurement of the erythrocyte
sedimentation rate. Lab. A Chip 2016, 16, 4682–4690. [CrossRef]

160. Ramsay, E.S.; Lerman, M.A. How to use the erythrocyte sedimentation rate in paediatrics. Arch. Dis. Child.
Educ. Pr. Ed. 2014, 100, 30–36. [CrossRef]

161. Radner, H.; Neogi, T.; Smolen, J.S.; Aletaha, D. Performance of the 2010 ACR/EULAR classification criteria
for rheumatoid arthritis: A systematic literature review. Ann. Rheum. Dis. 2013, 73, 114–123. [CrossRef]

162. Sokka, T.; Kautiainen, H.; Möttönen, T.; Hannonen, P. Work disability in rheumatoid arthritis 10 years after
the diagnosis. J. Rheumatol. 1999, 26, 1681–1685.

163. Wolfe, F. The natural history of rheumatoid arthritis. J. Rheumatol. Suppl. 1996, 44, 13–22.
164. Fries, J. Current treatment paradigms in rheumatoid arthritis. Rheumatology 2000, 39, 30–35. [CrossRef]

[PubMed]
165. Brune, K.; Patrignani, P. New insights into the use of currently available non-steroidal anti-inflammatory

drugs. J. Pain Res. 2015, 8, 105–118. [CrossRef] [PubMed]
166. Crofford, L.J. Use of NSAIDs in treating patients with arthritis. Arthritis Res. Ther. 2013, 15, S2. [CrossRef]

[PubMed]
167. Van Everdingen, A.A.; Jacobs, J.W.; Van Reesema, D.R.S.; Bijlsma, J.W. Low-dose prednisone therapy for

patients with early active rheumatoid arthritis: Clinical efficacy, disease-modifying properties, and side
effects: A randomized, double-blind, placebo-controlled clinical trial. Ann. Intern. Med. 2002, 136, 1–12.
[CrossRef]

168. Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.;
Agrawal, N.M.; Stenson, W.F.; et al. Gastrointestinal Toxicity with Celecoxib vs. Nonsteroidal Anti-inflammatory
Drugs for Osteoarthritis and Rheumatoid Arthritis. JAMA 2000, 284, 1247. [CrossRef]

169. Cronstein, B.N. Low-Dose Methotrexate: A Mainstay in the Treatment of Rheumatoid Arthritis. Pharmacol. Rev.
2005, 57, 163–172. [CrossRef]

170. Abbasi, M.; Mousavi, M.J.; Jamalzehi, S.; Alimohammadi, R.; Bezvan, M.H.; Mohammadi, H.; Aslani, S.
Strategies toward rheumatoid arthritis therapy; the old and the new. J. Cell. Physiol. 2018, 234, 10018–10031.
[CrossRef]

171. Emery, P.O.; Bingham, C.; Burmester, G.R.; Bykerk, V.P.E.; Furst, D.; Mariette, X.; Van Vollenhoven, R.;
Arendt, C.; Mountian, I. Certolizumab pegol in combination with dose-optimised methotrexate in
DMARD-naïve patients with early, active rheumatoid arthritis with poor prognostic factors: 1-year results
from C-EARLY, a randomised, double-blind, placebo-controlled phase III study. Ann. Rheum. Dis. 2016,
76, 96–104. [PubMed]

172. Nam, J.L.; Villeneuve, E.; Hensor, E.M.A.; Conaghan, P.G.I.; Keen, H.; Buch, M.H.; Gough, A.K.;
Green, M.J.; Helliwell, P.S.; Keenan, A.M.; et al. Remission induction comparing infliximab and high-dose
intravenous steroid, followed by treat-to-target: A double-blind, randomised, controlled trial in new-onset,
treatment-naive, rheumatoid arthritis (the IDEA study). Ann. Rheum. Dis. 2013, 73, 75–85. [PubMed]

173. Sethi, M.K.; O’Dell, J.R. Combination conventional DMARDs compared to biologicals. Curr. Opin. Rheumatol.
2015, 27, 183–188. [CrossRef] [PubMed]

174. Weinblatt, M.E. Methotrexate in Rheumatoid Arthritis: A Quarter Century of Development. Trans. Am. Clin.
Clim. Assoc. 2013, 124, 16–25.

175. Nam, J.L.; Takase-Minegishi, K.; Ramiro, S.; Chatzidionysiou, K.; Smolen, J.S.; Van Der Heijde, D.;
Bijlsma, J.W.; Burmester, G.R.; Dougados, M.; Scholte-Voshaar, M.; et al. Efficacy of biological
disease-modifying antirheumatic drugs: A systematic literature review informing the 2016 update of
the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2017,
76, 1113–1136. [CrossRef]

176. Cronstein, B.N.; Naime, D.; Ostad, E. The antiinflammatory mechanism of methotrexate. Increased adenosine
release at inflamed sites diminishes leukocyte accumulation in an in vivo model of inflammation. J. Clin.
Investig. 1993, 92, 2675–2682. [CrossRef]

177. Rajagopalan, P.T.R.; Zhang, Z.; McCourt, L.; Dwyer, M.; Benkovic, S.J.; Hammes, G.G. Interaction of
dihydrofolate reductase with methotrexate: Ensemble and single-molecule kinetics. Proc. Natl. Acad.
Sci. USA 2002, 99, 13481–13486. [CrossRef]

178. Borchers, A.T.; Keen, C.L.; Cheema, G.S.; Gershwin, M.E. The use of methotrexate in rheumatoid arthritis.
Semin. Arthritis Rheum. 2004, 34, 465–483. [CrossRef]

http://dx.doi.org/10.1039/C6LC01036A
http://dx.doi.org/10.1136/archdischild-2013-305349
http://dx.doi.org/10.1136/annrheumdis-2013-203284
http://dx.doi.org/10.1093/oxfordjournals.rheumatology.a031492
http://www.ncbi.nlm.nih.gov/pubmed/11001377
http://dx.doi.org/10.2147/JPR.S75160
http://www.ncbi.nlm.nih.gov/pubmed/25759598
http://dx.doi.org/10.1186/ar4174
http://www.ncbi.nlm.nih.gov/pubmed/24267197
http://dx.doi.org/10.7326/0003-4819-136-1-200201010-00006
http://dx.doi.org/10.1001/jama.284.10.1247
http://dx.doi.org/10.1124/pr.57.2.3
http://dx.doi.org/10.1002/jcp.27860
http://www.ncbi.nlm.nih.gov/pubmed/27165179
http://www.ncbi.nlm.nih.gov/pubmed/23912798
http://dx.doi.org/10.1097/BOR.0000000000000153
http://www.ncbi.nlm.nih.gov/pubmed/25603037
http://dx.doi.org/10.1136/annrheumdis-2016-210713
http://dx.doi.org/10.1172/JCI116884
http://dx.doi.org/10.1073/pnas.172501499
http://dx.doi.org/10.1016/j.semarthrit.2003.12.003


Cells 2020, 9, 880 35 of 43

179. Van Ede, A.E.; Laan, R.F.J.M.; Rood, M.J.; Huizinga, T.W.J.; Van De Laar, M.A.F.J.; Van Denderen, C.J.;
Westgeest, T.A.A.; Romme, T.C.; De Rooij, D.-J.R.A.M.; Jacobs, M.J.M.; et al. Effect of folic or folinic acid
supplementation on the toxicity and efficacy of methotrexate in rheumatoid arthritis: A forty-eight-week,
multicenter, randomized, double-blind, placebo-controlled study. Arthritis Rheum. 2001, 44, 1515–1524.
[CrossRef]

180. Hawkes, J.S.; Cleland, L.G.; Proudman, S.M.; James, M.J. The effect of methotrexate on ex vivo lipoxygenase
metabolism in neutrophils from patients with rheumatoid arthritis. J. Rheumatol. 1994, 21, 55–58.

181. Phillips, D.C.; Woollard, K.; Griffiths, H.R. The anti-inflammatory actions of methotrexate are critically
dependent upon the production of reactive oxygen species. Br. J. Pharmacol. 2003, 138, 501–511. [CrossRef]
[PubMed]

182. Brody, M.; Böhm, I.; Bauer, R. Mechanism of action of methotrexate: Experimental evidence that methotrexate
blocks the binding of interleukin 1 beta to the interleukin 1 receptor on target cells. Eur. J. Clin. Chem. Clin.
Biochem. J. Forum Eur. Clin. Chem. Soc. 1993, 31, 667–674. [CrossRef] [PubMed]

183. Wennerstrand, P.; Mårtensson, L.-G.; Söderhäll, S.; Zimdahl, A.; Appell, M.L. Methotrexate binds to
recombinant thiopurine S-methyltransferase and inhibits enzyme activity after high-dose infusions in
childhood leukaemia. Eur. J. Clin. Pharmacol. 2013, 69, 1641–1649. [CrossRef]

184. Plosker, G.L.; Croom, K.F. Sulfasalazine: A review of its use in the management of rheumatoid arthritis.
Drugs 2005, 65, 1825–1849. [CrossRef] [PubMed]

185. Sousa, T.; Yadav, V.; Zann, V.; Borde, A.; Abrahamsson, B.; Basit, A.W. On the Colonic Bacterial Metabolism
of Azo-Bonded Prodrugsof 5-Aminosalicylic Acid. J. Pharm. Sci. 2014, 103, 3171–3175. [CrossRef] [PubMed]

186. Situnayake, R.D.; McConkey, B. Which component of sulphasalazine is active in rheumatoid arthritis?
Br. Med. J. Clin. Res. Ed. 1985, 291, 138. [CrossRef]

187. Kumar, P.; Banik, S. Pharmacotherapy Options in Rheumatoid Arthritis. Clin. Med. Insights: Arthritis
Musculoskelet. Disord. 2013, 6, 35–43. [CrossRef]

188. Felson, D.; Anderson, J.J.; Meenan, R. Use of short-term efficacy/toxicity tradeoffs to select second-line drugs
in rheumatoid arthritis. A metaanalysis of published clinical trials. Arthritis Rheum. 1992, 35, 1117–1125.
[CrossRef]

189. Weinblatt, M.E.; Reda, D.; Henderson, W.; Giobbie-Hurder, A.; Williams, D.; Diani, A.; Docsa, S. Sulfasalazine
treatment for rheumatoid arthritis: A metaanalysis of 15 randomized trials. J. Rheumatol. 1999, 26, 2123–2130.
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