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Aims A diverse set of factors influence cardiovascular diseases (CVDs), but a systematic investigation of the interplay between 
these determinants and the contribution of each to CVD incidence prediction is largely missing from the literature. In 
this study, we leverage one of the most comprehensive biobanks worldwide, the UK Biobank, to investigate the contribution 
of different risk factor categories to more accurate incidence predictions in the overall population, by sex, different age 
groups, and ethnicity.

Methods  
and results

The investigated categories include the history of medical events, behavioural factors, socioeconomic factors, environmental 
factors, and measurements. We included data from a cohort of 405 257 participants aged 37–73 years and trained various 
machine learning and deep learning models on different subsets of risk factors to predict CVD incidence. Each of the models 
was trained on the complete set of predictors and subsets where each category was excluded. The results were bench
marked against QRISK3. The findings highlight that (i) leveraging a more comprehensive medical history substantially im
proves model performance. Relative to QRISK3, the best performing models improved the discrimination by 3.78% and 
improved precision by 1.80%. (ii) Both model- and data-centric approaches are necessary to improve predictive perform
ance. The benefits of using a comprehensive history of diseases were far more pronounced when a neural sequence model, 
BEHRT, was used. This highlights the importance of the temporality of medical events that existing clinical risk models fail to 
capture. (iii) Besides the history of diseases, socioeconomic factors and measurements had small but significant independent 
contributions to the predictive performance.

Conclusion These findings emphasize the need for considering broad determinants and novel modelling approaches to enhance CVD 
incidence prediction.
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Introduction
Cardiovascular diseases (CVDs) are associated with a broad range of 
risk factors including genetic, behavioural, psychological, socioeconom
ic, environmental factors, and the history of diseases and treatments.1–3

The identification of individuals who have a high risk of CVDs is an ef
fective strategy to initiate further evaluations and treatments. 
Therefore, CVD risk models such as QRISK3, Framingham, SCORE, 
and the model recommended by the American Heart Association/ 
American College Cardiology (AHA/ACC) have become an integral 
part of clinical practice and research. Rooted in the statistical modelling 
tradition, these models are characterized by (i) a small number of pre
dictors pertaining to well-established risk factors such as hypertension, 
age, smoking status, diabetes, and composite predictors such as total 
cholesterol:high-density lipoprotein cholesterol ratio, and (ii) simple, in
terpretable, functional forms. Therefore, improvements to the predict
ive performance of these models may be achieved using more advanced 
models (model-centric approach), albeit at the cost of interpretability, 
or by adding new predictors (data-centric approach).

Over the past few decades, machine learning (ML) has introduced a 
paradigm shift in predictive modelling. Owing to their improved func
tional forms and their ability in extracting complex patterns from high- 
dimensional, multimodal data, new ML models with little or no feature 
engineering have achieved unprecedented predictive performance 
across different fields. This model-centric approach has inspired 
much of the recent CVD risk model studies, albeit often accompanied 
with the inclusion of new predictors. Weng et al.4 compared the 

performance of several ML CVD risk models with the ACC/AHA mod
el using electronic health records (EHRs). In addition to the predictors 
from the ACC/AHA model, they included 22 new predictors in ML 
models. Compared with the ACC/AHA model, the neural network 
(NN) model improved area under the receiver operating characteristic 
(AUROC) curve by 3.6%.4 Similar findings have been reported in other 
studies where ML models are shown to outperform clinical CVD risk 
models as well as statistical models such as Cox regression with the 
same predictors.5,6

The data-centric approach has a longer history. The Framingham study, 
a US cohort study with prospectively collected data over several genera
tions, helped establish major risk factors of CVDs, namely, age, sex, high 
blood pressure, smoking, dyslipidaemia, and diabetes, which are used in 
the Framingham risk model, and many others.7 But the study also laid 
the foundations for others that used primary and secondary data to dis
cover other determinants of cardiovascular health. QRISK3 was devel
oped from a large UK cohort using retrospective EHRs, included 
several new predictors such as the diagnosis of rheumatoid arthritis, 
chronic kidney disease (CKD), severe mental illness, and erectile dysfunc
tion.8 In recent years, the genetic determinants of CVDs have attracted 
much interest.9 Khera et al.10 and Inouye et al.11 showed polygenic risk 
scores can identify those who have four times higher risk of CVDs. 
The addition of the polygenic risk score proposed by Inouye et al. to 
the established risk factors improved the discrimination of CVD risk pre
diction by 3.7%. Others have shown significant associations between en
vironmental factors such as air pollution, noise, access to green space, and 
built environment with overall health and CVD.12–17

338                                                                                                                                                                                        M. Mamouei et al.



The most promising approach is to align model-centric efforts with 
the increasing complexity of augmented data. Several studies have in
vestigated the applications of novel deep learning (DL) models on lon
gitudinal EHR for the prediction of CVD events with promising 
results.18–22 In these studies instead of relying on clinically established 
risk factors, the entire history of medical events is used to train models. 
In doing so, novel DL models, namely sequence models, may offer clear 
advantages relative to conventional statistical and ML models. Novel 
neural sequence models can learn from the sequence of medical events 
while using conventional models the information pertaining to the se
quence of medical events is either completely lost or requires manual 
feature engineering (assuming the relationship is known a priori). Li 
et al trained a large transformer-based model, BEHRT, on the entire pa
tients’ EHR to predict the risk of CVD events and compared the results 
with QRISK3, Framingham, and ASSIGN. This model substantially out
performed all the conventional models on several CVD risk prediction 
tasks.23

Despite the wealth of studies available on different determinants of 
CVDs, no study has provided a comparative investigation of the com
plementarity and contribution of different predictors in CVD risk pre
diction. Additionally, the interplay between the data- and model-centric 
approaches in the context of CVD risk prediction has not been ana
lysed before. This study aims to fill this gap. We leveraged one of the 
most comprehensive biobanks worldwide, the UK Biobank, extracted 
information about demographic, socioeconomic, anthropometric, 
physiological, behavioural, environmental factors, and disease history 
(linked EHR and self-reported) for a cohort of 405 257 participants 
and analysed the independent contribution of different categories of 
predictors to the accuracy of predictions. Moreover, we used a variety 
of ML and DL models, namely, logistic regression (LR), gradient- 
boosted trees, and several NN models, including a transformer-based 
sequence model, BEHRT. The results were benchmarked against 
QRISK3. An outline of the study set-up is shown in Figure 1.

The main contributions of this study are: 

(1) Delivering a better understanding of the independent contribution 
of different predictor categories to CVD risk prediction within a 
large cohort of 405 257 individuals in the UK.

(2) Evaluating the contribution of different predictor categories within 
the two sexes, different age groups, and ethnicities to evaluate pos
sible discrepancies and biases.

(3) Identification of predictors associated with increased likelihood of 
CVD.

(4) Incorporating statistical, ML, and DL models, including the 
state-of-the-art sequence model, BEHRT, to provide a better 

understanding of the potentials and limitations of the model-centric 
and data-centric approaches in the context of CVD risk prediction.

(5) Using an established clinical model, QRISK3, as a benchmark to in
form the expected gains.

Methods
Study design and cohort selection
This is a large population-based, cohort study using the UK Biobank baseline 
data and the linked in-patient hospital data for all participants (N = 502  
527). The cohort was recruited in the UK between 2006 and 2010. 
Although the UK Biobank cohort is not representative of the sampling 
population and there is evidence of a ‘healthy volunteer’ selection bias, valid 
assessment of exposure–disease relationships may be widely generalizable 
and does not require participants to be representative of the population at 
large, which makes it suitable for our study.24

We included all the participants without any CVD at the baseline based on 
both self-reported medical conditions and linked hospital in-patient records 
using the codes detailed in the Supplementary material online, Appendix S1. 
Individuals who reported the regular use of statin (simvastatin, atorvastatin 
fluvastatin, pravastatin, rosuvastatin) were excluded from the analysis. This 
led to a cohort of 405 257 participants who met the inclusion criteria 
(Figure 2). And descriptive statistics of the cohort are reported in Table 1.

Predictors
We included a variety of predictors in our models according to previous re
search on CVD and its determinants. In total, we included nine categories of 
predictors namely demographics, socioeconomics, anthropometric, home 
location, indicators of cardiac function, behavioural factors, self-reported 
medical conditions, medical diagnoses, and environmental factors, each cat
egory containing multiple predictors. These data were represented with 
1110 continuous and binary variables. All variables in each category are 
listed at the end of the Supplementary material.

QRISK3
The predictors of QRISK3 were included. Predictors pertaining to diseases 
were ascertained based on EHR and self-reported diseases and included 
diabetes Type I and II, CKD, migraine, rheumatoid arthritis, systemic lupus 
erythematosus, severe mental illness, erectile dysfunction, and atrial fibrilla
tion. Further details are included in Supplementary material online, Table S1. 
The use of atypical antipsychotic medication and steroid tablets was ascer
tained based on participants reported regular medications during the base
line interview. The list of drugs used for ascertainment is reported in 
Supplementary material online, Appendix S2. The following predictor was 
not available in the UK Biobank: diagnoses of angina or heart attack in a first- 
degree relative younger than 60 years old. Other extracted predictors are 

Figure 1 An outline of the study design.
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Figure 2 Schematic representation of the cohort selection.
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Table 1 Overview of the cohort

Variables Women Men
(n = 233 591) (n = 171 666)

Age, mean (SD) 55.57 ± 7.99a 55.34 ± 8.22
Townsend deprivation index, mean (SD) −1.41 ± 3.00 −1.32 ± 3.12

Ethnicity: British (%) 87.94% 88.12%

Ethnicity: any other white background (%) 3.77% 2.88%
Ethnicity: Irish (%) 2.52% 2.82%

Ethnicity: Caribbean (%) 1.03% 0.77%

Ethnicity: Indian (%) 1.00% 1.18%
Ethnicity: other (%) 3.58% 4.02%

Household income: <18 000 GBP (%) 18.51% 15.45%

Household income: 18 000–30 999 GBP (%) 21.38% 20.73%
Household income: 31 000–51 999 GBP (%) 21.82% 24.98%

Household income: 52 000–100 000 GBP (%) 16.57% 21.68%

Household income: other (%) 20.61% 15.97%
Employment: in paid employment or self-employed (%) 58.57% 66.85%

Employment: retired (%) 31.08% 25.43%

Employment: other (%) 10.19% 7.52%
Qualifications: O levels/GCSEs or equivalent (%) 23.26% 18.60%

Qualifications: A levels/AS levels or equivalent (%) 12.15% 10.63%

Qualifications: College or University degree (%) 32.64% 35.64%
Qualifications: other (%) 31.01% 34.15%

BMI (% non-missing values) 27 ± 5.01 (99.48%) 27 ± 4.04 (99.33%)

Pulse rate (% non-missing values) 70 ± 10.40 (93.96%) 68 ± 11.54 (93.95%)
Systolic blood pressure (% non-missing values) 134 ± 19.19 (93.96%) 140 ± 17.36 (93.95%)

Diastolic blood pressure (% non-missing values) 81 ± 10.02 (93.96%) 84 ± 10.00 (93.95%)

Cholesterol:HDL cholesterol ratio (% non-missing values) 4 ± 1.01 (84.61%) 5 ± 1.15 (86.63%)
Age at first CVD diagnosis 64.74 ± 7.29 64.12 ± 7.38

Number of self-reported medical conditions 1.54 IQR: [1, 2] 1.29 IQR: [1, 2]

Number of diagnosed medical conditions 2.53 IQR: [0, 4] 1.83 IQR: [0, 3]
Years of follow-up 8.07 ± 1.29 7.91 ± 1.57

Number of new CVD events 12 659 (5.42%) 16 727 (9.74%)

CVD incidence rate, per 1000 person-years 7 12

aThe values following the symbol  ± show the standard deviation.
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age, sex, ethnicity, smoking status, average systolic blood pressure (SBP), 
body mass index (BMI), cholesterol/HDL ratio.

To evaluate the predictive value of different determinants of CVD, we 
grouped all predictors into five categories.

Socioeconomic category
We included the demographic and socioeconomic predictors of sex and 
ethnic background as demographic factors and household income before 
tax, current employment status, Townsend deprivation index at recruit
ment, and education qualifications as socioeconomic factors.

Measurements category
We included common anthropometric risk factors such as BMI and birth 
weight and well-established risk factors for CVD outcomes such as average 
diastolic blood pressure, SBP and pulse rate, and cholesterol to HDL ratio.

Behavioural category
Smoking status and alcohol consumption status were included in the 
models.

Diagnosis category
This category consists of two different sources of medical records that are 
available in the UKBB. 

(1) Self-reported medical conditions: The baseline medical conditions were 
assessed for all the participants and were classified into 445 different 
categories. Since each participant may have more than one present 
medical condition, we used one-hot encoding to represent the baseline 
medical conditions: each participant was represented as a binary vector 
with 445 elements where each element stands for one medical condi
tion with present conditions coded as 1 and otherwise 0.

(2) Diagnosed medical conditions: We included the entire medical history, 
as recorded by ICD-10 codes, in the models. ICD-10 is a hierarchical 
coding system; at the highest level, it categorizes diseases into 22 chap
ters. Operating at this level leads to a loss of specificity as distinct dis
eases fall within the same chapter. The lowest level of the coding 
hierarchy captures the most detailed description of the diagnoses, 
but there are 19 155 distinct ICD-10 codes in the UK Biobank and 
the great majority of these codes appear only a few times each. 
Operating at this level leads to many features, most of which do not 
have enough training examples to learn from. To address this, we 
used a rule-based method to map the diagnoses to higher levels if 
the numbers of events at the lowest level of the hierarchy were insuf
ficient. Here, we considered events with fewer than 1000 occurrences 
insufficient, leading to 595 binary columns, some at the ICD-10 sub
chapter level, and some at lowest level of the hierarchy ICD-10 4-digit 
codes.

Environmental category
We included the annual average concentration of PM2.5 (particulate matter 
with an aerodynamic diameter of <2.5 µm), PM10 (particulate matter with 
diameter ≤10 µm), PMcoarse (particulate matter with an aerodynamic diam
eter between 2.5 and 10 µm), PM2.5 absorbance (a measurement of the 
blackness of PM2.5 filters—a proxy for elemental carbon, which is the dom
inant light absorbing substance), NO2 (nitrogen dioxide), and NOx (nitro
gen oxides) which were calculated using a Land Use Regression model 
developed by the ESCAPE project.25,26 We included the average values 
of NO2 and PM10 concentration data for 2010. Traffic-related predictors, 
namely vicinity to major roads, inverse distance to the nearest major 
road, inverse distance to the nearest road, sum of road length of major 
roads within 100 m, total traffic load on major roads, traffic intensity on 
the nearest major road, and traffic intensity on the nearest road were 
also calculated in the ESCAPE project and were included in the analysis.

Data pre-processing
The continuous predictors were normalized to aid with algorithm conver
gence and categorical columns were converted into one-hot encoding vec
tors. The missing data were imputed using Multiple Imputation by Chained 
Equations with gradient-boosted trees (miceforest 5.4.0 package in 

Python). We used four iterations and during each, a random subsample 
containing half of the observations was used for imputation. Comparing 
the distribution of the imputed data and non-imputed data verified that 
they were aligned.

Outcome and time window
The outcome of interest in this study was the incidence of CVD, including 
coronary heart disease, myocardial infarction, heart failure, and valvular 
heart disease. All outcomes were ascertained using ICD codes (see 
Supplementary material online, Appendix S2) from the linked in-patient hos
pital data after baseline. Consistent with established risk models, we consid
ered a 10-year follow-up period.

Model development and evaluation
To examine the independent contribution of each category we excluded 
each from the total collection of 1100 predictors, models were trained 
on the reduced subset and evaluated using five-fold cross-validation. We 
used LR and extreme gradient-boosted trees (XGB). These models have 
been reported to have superior performance relative to clinical CVD risk 
models.4 We also included a multi-layer feedforward NN and a similar net
work but with the addition of an embedding layer for the categorical pre
dictors (NN-EMB).

We also trained a sequence model, BEHRT, on the sequence of medical 
diagnoses and compared its performance with other models to investigate 
whether capturing the sequence of medical events, rather than considering 
their absence or presence alone (known as the bag-of-words representa
tion), can improve the predictive performance. For this comparison, all in
dividuals without any medical diagnoses were excluded from the analysis, 
leading to a separate cohort of 234 938 individuals. Other than a higher 
CVD incidence rate in this cohort, other characteristics were comparable 
in the two cohorts (see Supplementary material online, Table S2). While 
it is preferable to limit the analysis to individuals with much longer se
quences of medical events, this will lead to very small subgroups and due 
to the absence of sufficient training examples BEHRT-like models perform 
poorly.27,28 Details about the BEHRT can be found in the related 
publication.21

To benchmark the results, we also included QRISK3 in our analysis, a 
CVD risk model developed and validated in the UK population.29 This mod
el was implemented using Cox regression, a survival model which accounts 
for censoring. We would like to highlight that we used a different definition 
of CVD than that of QRISK3, for instance, we included valvular heart dis
ease as an outcome and angina as a predictor. Similar to other models, 
QRISK 3 was trained and evaluated using cross-validation. The hyperpara
meters of all models were selected using Bayesian search and are reported 
in Supplementary material online, Appendix S3 and Table S3.

For the classification models, censored participants were considered 
event-free. This is a limitation arising from the comparison of classification 
models with survival models. It is known to produce bias and leads to under
estimation of risk in classification models, but compared with the alternative 
of excluding all censored patients, it is the preferred choice.30 Lastly, one of 
the main objectives of our study is to investigate the extent to which differ
ent data modalities contribute to the prediction of CVD incidence. Since no 
subset of data is expected to systematically affect the censoring of patients, 
we believe the comparison remains valid.

We used the AUROC and the area under the precision recall curve 
(AUPRC) (or average precision) as metrics to evaluate the performance 
of our models during cross-validation.

Results
Detailed results from five-fold cross-validation for all models and all 
data exclusions are reported in Table 2, which highlights the best 
AUROC and AUPRC scores in each column in bold text. We refer 
to the data sets by which category of predictors has been excluded. 
For example, -SocioEcon refers to the data set where all of the socio
economic predictors are removed. An extended version of this table 
that includes the standard deviation of the models is included in 
Supplementary material online, Table S4. The ROC, precision–recall, 
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and calibration curves for all models are presented in Supplementary 
material online, Figure S1. The average AUROC and AUPRC of 
QRISK3, without any changes to its predictors, was similarly obtained 
from five-fold cross-validation and is included in the table for 
comparison.

The differences in performance arising from the use of different 
models are small. However, regarding average precision, XGB and LR 
deliver better performances relative to the NN models. The NN 
with learnt embeddings (disease representations), i.e. NN-EMB, obtains 
the best discrimination in all cases where the extensive medical history 
is used as predictors. Compared with the NN model, this model deli
vers around 0.1% improvement in discrimination as well as a robust im
provement in precision. This clearly highlights the value of learned 
representations. It is also important to note that all models that use 
the entire available medical information substantially outperform the 
QRISK3 model.

To facilitate the interpretation of the differences arising from data 
exclusions, we evaluated the statistical significance of the differences 
in AUROC and AUPRC using Welch’s t-test. Since, the patterns remain 
largely true for other models, for brevity only the results for the LR 
model are visualized in Figure 3.

The exclusion of the history of diagnoses has the largest effect on 
the performance of the model, resulting in a −2.97% change in 
AUPRC and −1.67% change in AUROC. This is followed by the socio
economic, measurements, and behavioural categories. The exclusion 
of the socioeconomic predictors changed the AUPRC by −0.32% 
(AUROC change of 0.41%). For measurements and behavioural pre
dictors, the exclusion resulted in −0.16% reduction in AUPRC (−0.03 
and −0.02% reduction in AUROC, respectively). The environmental 
category despite the large number and the diversity of the included 
predictors made the smallest contribution to the predictive 
performance.
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Table 2 Area under the receiver operating characteristic and area under the precision recall curve for all models with 
different subsets of predictors

Model Model performance for different predictor exclusions (%AUROC|%AUPRC)

Diagnoses SocioEcon Measurements Behavioural Environment All

LR 71.55|16.18 72.79|17.72 72.93|17.90 73.01|17.89 73.20|18.02 73.21|18.03
XGB 71.75|16.38 72.85|17.73 72.81|17.76 72.98|17.84 73.24|18.18 73.20|17.99

NN 71.58|16.06 72.81|17.52 72.85|17.62 72.96|17.63 73.19|17.83 73.19|17.82

NN-EMB 71.64|15.97 72.91|17.60 72.99|17.69 73.09|17.72 73.26|17.84 73.28|17.89
QRISK3 69.50|16.38

Each column highlights the performance of models after excluding a subset of predictors. 
Bold figures represent the best measure of performance (AUROC/AUPRC) in each column.

Figure 3 The performance of the logistic regression model with different data exclusions obtained with five-fold cross-validation: area under the 
receiver operating characteristic (left plot) and area under the precision recall curve (right plot). The pairwise mean differences are noted above 
the horizontal lines. The P-values are obtained using Welch’s t-tests.
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Model performance in subgroups
The predictive value of each category could be different across different 
subgroups. For instance, the history of medical events might be longer 
in older age groups and its exclusion might lead to a larger reduction in 
predictive performance. To investigate this, we analysed the perform
ance of the models in different subgroups, specifically in different age 
groups, sexes, and ethnic backgrounds. To ensure the performance 
for different age subgroups is not affected by the number of observa
tions, they were grouped based on age quartiles. For ethnicities, we 
used the higher-level classification used in the UK Biobank as detailed 
in Supplementary material online, Appendix S4. The findings were con
sistent across all models. Therefore, for brevity only the results pertain
ing to the LR models are presented. Apart from the diagnoses category, 
the exclusion of other categories did not produce notable changes in 
the performance of the models across different subgroups. Figure 4
shows a summary of the results. All results pertaining to the LR model 
are reported in Supplementary material online, Appendix S4.

The analysis highlights inconsistencies both in the performance of the 
models and in the predictive value of medical history within various 
strata. Firstly, the AUPRC is notably higher for females. The value of 
medical diagnoses also seems to be higher for this subgroup. The higher 
number of self-reported and diagnosed conditions in females may pro
vide an explanation for this (Table 1).

Secondly, medical history notably has a higher predictive value for the 
second age quartile, i.e. the subgroup between 56 and 62 years of age. 
This is counter-intuitive as the oldest subgroup has both larger number 
of diagnosed conditions and higher event rates (see Supplementary 
material online, Table S5). The lengthier medical history and more posi
tive labels should both contribute to more precision. Three hypotheses 
could provide possible explanations for this observation: (i) the process 
of ageing accompanies more rapid changes in the medical conditions of 
the oldest age group and that could make a 10-year risk prediction 
more challenging. (ii) In the light of the improving quality of care over 
time,31,32 the oldest subgroup may have experienced a lower quality 
of care and therefore might have less informative medical history, 
and finally (iii) competing risks that increasingly become more import
ant in the oldest age subgroup might be less adequately captured in 
medical diagnoses alone.

Regarding differences within various ethnicities, the substantial differ
ences in the number of participants in each stratum and the broad 
standard deviations make the interpretation of findings challenging; 

however, the Chinese and the mixed subgroup were least affected by 
the exclusion of medical history. The analysis of the number of self- 
reported and diagnosed medical condition shows that the Chinese sub
group have substantially less recorded conditions (see Supplementary 
material online, Table S6). The Chinese had the average 1.00 self- 
reported and 1.63 diagnosed conditions compared with the average 
of 1.44 self-reported and 2.23 diagnosed conditions in the rest of the 
population. We could not identify plausible explanations for the ‘other’ 
subgroup. The Asian and the black subgroups had the most notable de
creases in AUROC and AUPRC after the exclusion of the medical 
diagnoses.

Modelling the sequence of diagnoses
Table 3 shows the performance of BEHRT with medical diagnoses only. 
This analysis was carried out on the cohort of patients with at least one 
diagnosis (see Supplementary material online, Table S2). For compari
son, we similarly retrained the LR model with only medical diagnosis. 
As both models were trained on only medical diagnosis, the differences 
in their performance could be attributed to architectural merits of 
BEHRT and the importance of capturing the sequence of medical 
events. QRISK, without any changes to its predictors, was also retrained 
on the same cohort and included in Table 3. The AUROC and AUPRC 
are averaged over five-fold cross-validation.

Using medical diagnoses alone, BEHRT significantly improves the 
performance of the LR model. This highlights the importance of con
textualized embeddings and the sequence of medical events. The model 
also achieves higher discrimination and precision compared with 
QRISK3.

Discussion
Over the past few decades, numerous studies have shown the associ
ation of socioeconomic, physiological, behavioural, and environmental 
factors with CVDs. Additionally, many studies have shown that clinical 
CVD risk models can be improved by incorporation of new predictors, 
use of new models, or a combination of the two. However, joint inves
tigation of both model-centric and data-centric approaches is scarce, 
making it challenging to draw clear conclusions about the merits, limita
tions, and synergies of the two.

Figure 4 The stratified analysis of the area under the precision recall curve for the logistic regression model with and without the diagnoses category: 
sex-stratified analysis (left plot), age-stratified analysis (middle plot), and ethnicity-stratified analysis (right plot). The error bars show the standard de
viation of the metrics within five-fold cross-validation.
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In this study, we investigated the independent contribution of various 
CVD predictor categories to the performance of risk models in a co
hort of 405 257 UK Biobank participants. This was complemented by 
a model-centric approach and incorporation of several statistical and 
DL models in the analysis. The results highlight that using a more com
prehensive history of diseases instead of established CVD risk factors 
which are used in existing clinical risk models could substantially im
prove the identification of individuals who are at a high risk of CVD in
cidence. In our study, we were limited to the use of self-reported and 
in-patient diagnosis data in the UK Biobank. The incorporation of other 
clinical data such as operations, lab tests, measurements, and medical 
records from general practitioners could lead to even more substantial 
improvements in CVD risk prediction.21,23,27

While in our study socioeconomic, measurements, behavioural, and 
environmental predictors independently contributed little to the accur
acy of predictions, in the absence of any causal assumptions, this does 
not reflect a lack of strong causal pathways between these predictors 
and CVD incidence.

We analysed the coefficients of the LR model with P-value smaller 
than 0.001. In the model with the diagnosis category excluded, inability 
to work due to sickness, age, and being male were associated with a 
higher CVD risk. The remaining significant predictors that increased 
the risk of CVD were BMI, SBP, standing height, cholesterol/HDL ratio, 
inverse distance to nearest major road, PM2.5, traffic intensity on near
est major road, nitrogen oxides, Townsend deprivation index, and pulse 
rate. In the models that included the diagnosis category, the positive and 
negative values were largely similar. The top 10 features that increased 
the risk of CVD were Wolff–Parkinson–White syndrome, aortic aneur
ysm and dissection, palpitations, sickle cell disease, pericardial problem 
hyperprolactinaemia, condition originating in the perinatal period, 
non-Hodgkin’s lymphoma, Sjogren’s syndrome/Sicca syndrome, and 
systemic sclerosis. The features that reduced the likelihood CVD 
were less informative and many of them were established risk factors 
of mortality. For instance, HIV had the highest negative coefficient. 
This is an artefact of using a classification model and marking censored 
patients as event-free. Feature importance plots for these models are 
included in Supplementary material online, Appendix S5.

We observed substantial inconsistencies in the performance of mod
els within the two sexes, age groups, and ethnicities. Individuals of 
Chinese background and males were observed to have less reported 
and diagnosed conditions. While the findings should be interpreted in 
the context of the UK Biobank and possible biases in its recruitment 
process, it might reflect a broader difference in how these subgroups 
interact with the healthcare system. The use of other observational 
data such as the Clinical Practice Research Datalink (CPRD) could 
shed light on this. Two recent studies based on CPRD show that com
pared with other ethnic groups, people of Chinese ethnicity have the 

lowest mean number of EHR-determined long-term conditions and 
lowest prevalence of complex multimorbidity across all age groups.33,34

Our study suggests the predictive value of diagnosed and self-reported 
conditions within the Chinese ethnicity is lower than others ethnic 
groups. A possible explanation to this might be lower diagnoses of med
ical conditions in this subpopulation. It is worth mentioning that people 
of Chinese ethnicity are reported to have the best mortality outcome 
and health-related quality of life compared with other ethnic groups; 
however, this may be attributed to their substantially better self- 
care.33,35 Viewed together, this highlights a possible mechanism for 
bias in similar risk models.

Comparing the performance of different models shows that using 
tabular representation of data, an interpretable, statistical model name
ly, LR, can deliver comparable performance with, and outperform, ML 
and DL alternatives. But we showed that a neural sequence model 
trained on the sequence of diagnoses can substantially improve the per
formance of a LR model that was trained on the tabular representation 
of the same data. The improved predictive performance of such models 
should be viewed along with the challenges pertaining to their 
interpretability.

Compared with QRISK3, all other models were miscalibrated. This is 
a limitation; however, it should not be immediately viewed as an indica
tion of poor predictive performance. QRISK3, although well calibrated, 
generally produced much lower risk scores relative to other models. In 
the study cohort, the highest decile of risk based on QRISK3 had an 
average predicted risk score of 0.26 from which 21% had incident 
CVDs. The ML models produced much broader range of risk estimates. 
The highest decile of risk in the ML models was around 0.7 from which 
nearly 30% had incident CVDs. While this is a notable overestimation of 
absolute risk, it is important to note that the ML models produced 
much more graded risk scores across the population and the risk esti
mates positively correlated with the likelihood of CVDs; as evident 
from the monotonically increasing calibration curve. The higher reso
lution of the ML model translates into better discrimination and preci
sion, i.e. better ability of the models in distinguishing higher risk 
individuals from lower risk individuals in a classification setting, as 
seen in AUROC and AUPRC. Contrary to this, QRISK3 groups many 
individuals who may have different underlying risks in the same risk 
brackets. In the light of this, the estimates derived from miscalibrated 
ML models should be viewed as a measure of rank rather than the ab
solute risk of CVD incidence. The risk thresholds for binary classifica
tion are also commonly selected based on the discrimination/ 
precision trade-offs and not the default 0.5. In practical applications 
where predicted risk scores of uncalibrated models may be incorrectly 
interpreted as the likelihood of disease incidence, post hoc calibration 
could deliver accurate absolute risk estimates at no or minimal cost 
to predictive performance.36 These statements do not undermine 
the importance of calibration curves, but rather highlight the necessity 
of considering precision, discrimination, the shape and range of the cali
bration curve, as well as its alignment with the diagonal line.

In addition, to training the BEHRT model on the sequence of diagno
ses, inspired by Targeted-BEHRT, we used an extended version of 
BEHRT, to combine the static predictors with the sequence of medical 
diagnoses.37 We explored several early and joint fusion models to com
bine the static and longitudinal data. All models delivered lower per
formance than the LR model with all predictors. This underlines the 
need for tailored, more data-efficient models for fusion of various 
data modalities.

This study was first and foremost a methodological investigation 
of the predictive value of various predictors and modelling ap
proaches; without further external validations, considerations per
taining to model explainability and other practical implications 
such as the availability of data, the developed models per se are 
not intended for clinical use case.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Area under the receiver operating 
characteristic and area under the precision recall curve 
of BEHRT and logistic regression trained on only 
diagnosis data in the cohort of participants with at least 
one diagnosis

Model Model performance (%AUROC|%AUPRC)

LR 65.07|15.54

BEHRT 69.83|17.90
QRISK 69.50|16.38

Bold figures represent the best measure of performance (AUROC/AUPRC) in each 
column.
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Limitations
Our analysis was based on self-reported and in-patient data available in 
the UK Biobank. The findings should be viewed under this limitation.

The predictors of CVDs are numerous and many of them are avail
able in the UK Biobank. We have only analysed a relatively small subset 
of these predictors. Genetic, physical activity, sleep quality, electrocar
diogram measurements, dietary data, and medications, to name a few, 
are all important determinants that we did not analyse in our study. 
Given the importance of CVD risk prediction in targeting risk-mitigating 
interventions, we hope similar studies can be conducted in the future to 
shed light on the predictive value of other categories in comparison 
with established risk factors, such as the ones used in QRISK3, and 
EHR-derived predictors that have become an active area of research 
in recent years. The authors believe more research in this area could 
facilitate rapid improvements of existing risk models.

In the absence of other data sources with the same diversity of predic
tors as the UK Biobank, we could not externally validate the models. The 
generalizability of the findings should be viewed under this limitation.

Ascertaining the exact time of CVD incidence based on incomplete 
EHR is not possible. We cannot rule out that some of the recorded 
conditions such as pericarditis may have been complications of a previ
ously diagnosed CVD that was not recorded in hospital in-patient EHR 
until after the index time. Therefore, clinical context and caution should 
be used in the interpretation of results.
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