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Abstract: During embryogenesis, skeletal development is tightly regulated by locally secreted growth
factors that interact with proteoglycans (PGs) in the extracellular matrix (ECM). Bone morphogenetic
proteins (BMPs) are multifunctional growth factors that play critical roles in cartilage maturation and
bone formation. BMP signals are transduced from plasma membrane receptors to the nucleus through
both canonical Smad and noncanonical p38 mitogen-activated protein kinase (MAPK) pathways. BMP
signalling is modulated by a variety of endogenous and exogenous molecular mechanisms at different
spatiotemporal levels and in both positive and negative manners. As an endogenous example, BMPs
undergo extracellular regulation by PGs, which generally regulate the efficiency of ligand-receptor
binding. BMP signalling can also be exogenously perturbed by a group of small molecule antagonists,
such as dorsomorphin and its derivatives, that selectively bind to and inhibit the intracellular kinase
domain of BMP type I receptors. In this review, we present a current understanding of BMPs and PGs
functions in cartilage maturation and osteoblast differentiation, highlighting BMP-PG interactions.
We also discuss the identification of highly selective small-molecule BMP receptor type I inhibitors.
This review aims to shed light on the importance of BMP signalling and PGs in cartilage maturation
and bone formation.
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1. Introduction

Bone morphogenetic proteins (BMPs) are multifunctional growth factors with over
20 family members that play a key role in a variety of biological processes, from embryonic
stage to adulthood. However, they are best known for their ability to induce bone forma-
tion [1-3]. BMPs are the biggest subfamily of the Transforming Growth Factor (TGF-3)
superfamily, with highly conserved amino acid sequences from insects to humans [4].
According to sequence and structural homology, BMP ligands have been divided into
different groups: BMP-2 and 4; BMP-5, 6, 7, 8, and 8B; BMP-9/GDEF-2 (Growth Differentia-
tion Factor-2) and BMP-10; BMP-11/GDF-11 and GDEF-8; BMP-12/GDEF-7, BMP-13/GDE-6,
and BMP-14/GDEF-5; BMP-15/GDF-9 and GDF-9b; GDF-1 and 3; and BMP-3 and BMP-
3b/GDEF-10. BMP family members may form homodimeric or heterodimeric proteins to
signal, except for BMP-3 and BMP-15, which biologically act as monomers. However,
the osteoinduction ability and signalling activity of homodimers, such as BMP-2, BMP-4,
BMP-5, BMP-6, and BMP-7, increase 30- to 50-fold when they are in heteromeric forms, such
as BMP2/5, BMP2/6, BMP2/7, and BMP4/7. Higher binding affinity for BMP receptors
explain the increased signalling activity of BMP heterodimers [5-7].

BMP signalling is mediated through BMP receptors (BMPRs) (Figure 1). A total of four
BMP receptors type I (BMPRI) have been identified for BMPs: activin receptor-like kinase 1
(ACVRLI1 or ALK1), activin receptor IA (ACVR1 or ALK?2), type 1A BMP receptor (BMPRIA
or ALK3), and type 1B BMP receptor (BMPRIB or ALK6). Three BMP receptors type II
(BMPRII) are known to interact with BMPs: type 2 BMP receptor (BMPRII or BMPR?2),
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activin type 2A receptor (ActRIIA or ACVR2A), and activin type 2B receptor (ActRIIB or
ACVR2B). While BMPRIA, BMPRIB, and BMPR2 are specific to BMPs, ALK2, ACVR2A,
and ACVR2B are also shared with activins, a member of the TGF-{3 superfamily [8]. Activin
A has a high affinity for the BMPRs type 2, ACVR2A and ACVR2B, which suppresses
BMP-6 and BMP-9 signalling by competing for binding to ACVR2A and ACVR2B receptors
in conjunction with ALK-2 [9]. BMP dimers bind to BMPRs with varying degrees of
affinity [10]. Although TGF-f and activin do not interact with their type I receptors, BMPs
can bind to either BMPR I or II on their own; however, their interaction with both receptors
increases the ligand’s binding affinity. BMP-9 has the highest affinity for ALK1 and binds
poorly to ALK2 [11]; BMP-10 preferentially binds to ALK1, over ALK3 and ALK6; BMP-5,
BMP-6, and BMP-7 signal through ALK2, but BMP-6 can also bind to ALK3 and ALK®;
and BMP-2 and BMP-4 connect most strongly with ALK3 and ALK®6 [12,13]. Interestingly,
the different binding affinities of BMPs can determine the mechanism of heterotetrameric
signalling complex formation. BMP-6 and BMP-7, for example, bind type II receptors and
recruit type I receptors, whereas BMP-2 and BMP-4 primarily bind type I receptors, then
recruit type Il receptors [14].

BMPs bind to a heterotetrameric complex composed of two BMPRI and two BMPRII
transmembrane serine/threonine kinase receptors, acting through them to elicit the down-
stream transcriptional changes that control cartilage maturation and osteoblast differentia-
tion. BMPs attach to type I and type II receptor complexes, activating the type II receptor,
which cross-phosphorylates specific serine and threonine residues at the juxtamembrane
glycine-serine-rich (GS) domain of the type I receptor. BMP signalling is transduced intra-
cellularly by a canonical Smad pathway and a noncanonical p38 pathway. In the canonical
pathway, activated BMPRs phosphorylate and activate receptor-specific Smad 1, 5, and
8, which bind and recruit Smad 4 (co-Smad) proteins to form heteromeric complexes
that translocate into the nucleus. During chondrocyte maturation, BMP-activated Smad
complexes control the expression of important osteogenic genes and recruit transcription
factors, such as Hoxc-8, FAST-1, OAZ, Runx2, AP-1, and STAT [15,16]. Smadl/Runx2 activ-
ity generated by BMP has been demonstrated to upregulate the expression of GADD45(3
protein, which is present in the nucleus of late hypertrophic chondrocytes and acts as
an activator of matrix metalloproteinase-13 (MMP-13) expression. GADD45p inhibition
slows terminal chondrocyte differentiation [17,18]. In the noncanonical pathway, activated
BMPRs phosphorylate TAK1, which recruits TAB1 and initiates a p38 MAPK signalling
cascade. In this cascade, the phosphorylated form of p38 travels into the nuclei to regulate
gene expression. In pre-osteoblasts, Runx2, DIx5, and Sp7 are phosphorylated by p38 to
increase their transcriptional activity (Figure 1) [19-21].

Diverse interaction of BMPs with molecules in the extracellular matrix (ECM) is a
crucial aspect of their biology. For example, fibrillins, the main structural components of
microfibrils, regulate BMP signalling pathways by sequestering them [22-24]. Furthermore,
Drosophila collagen type IV interacts with BMP receptors through binding to Decapenta-
plegic (Dpp), a functional ortholog of BMP-2 and BMP-4 in vertebrates [25]. Collagen type
II features a chordin-like Von Willebrand factor type C (VWC) domain that binds to BMP-2,
acting as a negative regulator for this essential chondrogenic growth factor. Many ECM
proteins, as well as recognised BMP regulators, have the VWC/chordin domain, which acts
as a negative regulator of BMP activities [26]. Moreover, some data suggest that hyaluronan
(HA) can mediate and modulate BMP-7 responses [27-29]. Another example of the ECM’s
participation in BMP biological activities and cell signalling are proteoglycans (PGs). PGs
can operate as a coordinator for BMP signalling at the cell surface, where ligands bind
to signalling receptors. This review intends to include literature on BMPs, and then PGs,
on their individual roles in regulating bone formation, and ends by discussing how these
two regulating molecules interact together and how their interaction further modulates
skeletal development.
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Figure 1. Overview of BMP signalling cascades. BMP homodimers and heterodimers signal through
a heterotetrameric complex of serine/threonine kinase BMP type I and type II receptors. In the
induced heterotetrameric complex, BMPR type II phosphorylates the GS-domain of BMPR type I
to induce canonical and noncanonical BMP signalling pathways. In the canonical pathway, type I
receptors phosphorylate Smads 1, 5, or 8 (R-Smad), which form a heteromeric complex with Smad 4,
and then translocate to the nucleus. In the nucleus, this complex forms a complex with Runx2 to
regulate osteogenic gene expression. The noncanonical signalling cascade, p38 mitogen-activated
protein kinase (MAPK), is initiated by TAK1 phosphorylation, which recruits TAB1 and induces the
MKK-P38 MAPK signalling pathway. The phosphorylated form of p38 phosphorylates and activates
Runx2, DIx5, and Sp7 transcription factors in the nucleus to initiate the transcription of osteogenic
genes. Furthermore, phosphorylated Runx2 promotes the formation of the Smad-Runx2 complex.
“Created with BioRender.com (Accessed on 31 January 2022)”.

2. Role of BMPs in Skeletal Development

Bone formation, or ossification, begins during the early stages of embryonic life.
Intramembranous ossification and endochondral ossification are the two main ways of bone
formation. Endochondral ossification, ultimately forming what are called chondral bones,
begins when mesenchymal stem cells (MSCs) condense and differentiate into chondrocytes
to produce a cartilage template [30-32]. A sheath of cells that encapsulates the cartilage
differentiates into the perichondrium. Chondrocytes proliferate and produce many matrix
molecules, such as collagen type 2 and aggrecan, the latter of which is the most abundant
PG in cartilage [33-36]. Then, a group of chondrocytes, generally in the center region of
the developing cartilage, passes through a developmental transition termed maturation.
During chondrocyte maturation, cells undergo hypertrophy and express maturation genes,
such as Indian hedgehog (Ihh) and col10al, while changing and mineralizing their ECM.
Cells in the perichondrium surrounding the hypertrophic zone differentiate into osteoblasts
at the same time that hypertrophic differentiation begins. Because it ossifies and produces
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osteoblasts, this area of the perichondrium is called the periosteum [37]. The cartilage ECM
they construct is then degraded by invading blood vessels and gradually replaced mostly
by marrow, but also by some trabecular bone [38,39].

One of the key signalling systems involved in cell commitment to the chondrogenic
lineage and subsequent progression within the growth plate is the BMP pathway (Figure 2).
BMPs control the expression of numerous chondrocyte-specific genes and matrix pro-
duction and have a role in all stages of chondrogenesis, including early patterning and
MSCs condensation, chondrocyte proliferation, and hypertrophic differentiation in the
growth plate [40,41]. Multiple BMPs, including BMPs 2, 4, 5, and 7, as well as GDF5,
are expressed surrounding or within early condensing mesenchyme in limb buds and
developing somites, implying a function for BMP pathways in the early phases of conden-
sation [42—46]. In response to BMP signalling, Sox9, a significant effector of chondrogenesis,
induces the production of chondrocytic genes, such as type II collagen [47-49]. After the
development of a perichondrium, many BMPs, including BMPs 2, 4, and 5, become strongly
expressed there [50-55]. BMPs 2 and 6 are produced by hypertrophic chondrocytes [52,54].
BMP7 is found in proliferating chondrocytes, especially in the vicinity of the perichon-
drium [44,54]. Finally, GDFs 5, 6, and 7 are overexpressed in areas where joints are formed.
As aresult, every area of the growth plate exhibits overlapping expression of several BMP
ligands [56-58].
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Figure 2. Roles of BMPs in skeletal development. BMP ligands are multifunctional growth factors that
are important in a range of biological processes but are best recognised for inducing bone formation.
MSCs give rise to chondrocytes, which go through a series of differentiation processes. BMPs govern
various phases of chondrocyte differentiation by regulating the expression of Sox9 and Runx2. Sox9
promotes the proliferation and differentiation of MSCs into chondrocytes, while Runx2 induces
chondrocyte hypertrophy. Moreover, BMPs promotes osteogenesis by enhancing Runx2 and Sp7
transcription factor activity. “Created with BioRender.com (Accessed on 31 January 2022)".

BMP signalling induces Ihh expression, and both signals cooperate to regulate cartilage
maturation [59,60]. Mice missing the Ihh gene have significant skeletal defects, including
decreased chondrocyte proliferation and maturation, as well as a lack of mature osteoblasts,
both of which are deleterious to bone growth [61]. Moreover, Ihh released by maturing
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chondrocytes induces the perichondrium to ossify [37,59]. During this process, undiffer-
entiated cells in the perichondrium differentiate to the osteoblasts, and cortical bone is
formed around the cartilage template. Mouse Ihh and zebrafish ihha mutants both display
delayed perichondral ossification [62,63]. Direct effects on chondrocytes and upregulation
of Ihh expression are two ways that BMP promotes chondrocytes” proliferation. According
to a study that used a ChIP-based cloning approach, the promoter region of Ihh contains
numerous motifs that bind to Smad 4 and are essential for BMP-dependent activation [64].
Ihh, in turn, keeps BMP levels constant, demonstrating the existence of a positive feed-
back loop [59,65]. This impact may be direct since Gli transcription factors, which are
downstream mediators of Ihh signalling, directly upregulate BMP-4 and BMP-7 promoter
activity [66].

BMPs are strong osteoblast differentiation and bone formation inducers (Figure 2) [67-69].
BMPs maintain bone mass after birth by promoting the differentiation of MSCs into os-
teoblasts and controlling their differentiation potential [70-73]. BMP-2, 4, 5, 6, and 7 are
known as powerful osteogenic factors [74]. Most BMPs can successfully promote the termi-
nal differentiation of committed osteoblast precursors and osteoblasts; however, BMP-2,
6, and 9 may be the most powerful agents for promoting the osteoblast lineage-specific
differentiation of mesenchymal progenitor cells among all of the BMPs investigated [40].
BMP-2 induces or promotes the expression of Runx2 and Sp7 (Osx), which are essential
transcription factors for osteoblast differentiation and bone formation, as well as osteoblast
differentiation markers, such as alkaline phosphatase (ALP), type I collagen, and osteocal-
cin [49,75-80]. BMP-7 increases matrix mineralization and promotes ALP activity [81,82].

3. PGs’ Function in Cell-ECM Crosstalk and Skeletal Development

PGs are structural molecules in ECM that offer novel perspectives in cell-ECM crosstalk
by regulating the availability of signalling molecules. PGs are sugar-coated proteins that
are made up of a core protein, a tetrasaccharide linkage region, and one or more cova-
lently connected repeating disaccharide side chains, which are called glycosaminoglycans
(GAGs) [83]. Chondroitin sulfate (CS), heparan sulfate (HS), keratan sulfate (KS), dermatan
sulfate (DS), and heparin (HP) are different types of GAGs in PGs’ structure [84]. Together
with HA and link proteins, PGs have a tendency to assemble into massive supramolecular
complexes > 200 MDa [85]. PGs were thought to be passive, structural molecules, but recent
studies have drastically changed that perception by revealing nonstructural, biological roles
for PGs through binding and release of numerous signalling molecules and modulating the
activity and bioavailability of growth factors and morphogens [86,87].

Although chondrocytes create several minor PGs, aggrecan is the most abundant
PG expressed during endochondral bone development [88]. Versican, a large CSPG, is
expressed in the early limb bud’s undifferentiated mesenchymal cells and during the
beginning of prechondrogenic condensation, before disappearing with chondrocyte dif-
ferentiation [89]. Concurrently with versican downregulation, a substantial aggrecan
expression occurs during the development and maturation of the chondrocyte [90]. The
large CSPG aggrecan is the most common PG found in cartilage. Aggrecan includes 100 CS
and 25-30 KS chains in adult articular cartilage [91]. The expression pattern of aggrecan
mRNA across the growth plate of normal limbs shows that various phases of chondro-
cyte differentiation need differing amounts of aggrecan in the ECM. The findings that
pre-hypertrophic chondrocytes in the wild-type growth plate produce the greatest amounts
of aggrecan is consistent with the evidence that the loss of aggrecan across the growth plate
impacts chondrocytes during the transition from the pre-hypertrophic to the hypertrophic
state [92].

Aggrecan plays a vital role for endochondral bone development and the function
of permanent cartilage structures in both human and animal species. Human patients
with Kashin-Beck disease, an endemic osteochondropathy found in regions of China,
are characterised by low levels of aggrecan, short stature and abnormalities of the limbs
and fingers, deformed growth plates, and chondrocyte apoptosis [93,94]. In addition,
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mutations in the aggrecan coding genes, such as ACAN or AGCI, are responsible for
Spondyloepimetaphyseal dysplasia (SEMD), osteochondritis dissecans with early and
severe onset of osteoarthritis in humans, and a variety of short-stature syndromes with
rapid bone maturation. AGCI mutations induce human aggrecanopathies by causing
haploinsufficiency or cartilage structural disturbance [95,96]. Studies on mice have shown
that a single 7-bp deletion in exon 5 of the Agcl gene results in a premature stop codon
in exon 6 and formation of shortened aggrecan molecules which causes cartilage matrix
deficit (cmd). Homozygous cmd mice (cmd /cmd) exhibited phenotypes including dwarf-like
characteristics, chondrodysplasia, aberrant collagen fibrillogenesis, and a cleft palate, which
demonstrate aggrecan’s critical role in cartilage maturation. Furthermore, homozygous cmd
mouse’s articular cartilage was found to have tightly packed chondrocytes surrounded by
a little matrix, while the growth plate cartilage had chondrocytes arranged in disorganised
columns of diminished length in severely diminished proliferative, pre-hypertrophic zones,
consistent with the mouse’s lower proportions [97-100]. In other studies, in chicks, due to a
premature stop codon, chondrocytes produce a truncated aggrecan core protein precursor
that is not translocated to the Golgi apparatus for processing, resulting in the absence of
aggrecan in cartilage, chondrodysplasia, disrupted organisation of the hyaline and growth
plate cartilages, and severe skeletal stature reduction [26,92,101-104].

During endochondral ossification, aggrecan interacts with growth factors and mor-
phogens to control chondrocyte proliferation and differentiation. It was shown that an
aggrecan-rich matrix and the correct sulfation of aggrecan’s CS chains are required for the
proper interaction with growth factors to establish a morphogen gradient, which mod-
ulates the coordination of numerous different signalling pathways during growth plate
morphogenesis. Aggrecan is required for creating an appropriate Ihh gradient; these results
are supported by the findings that Ihh binds CS chains in vitro and that the Ihh gradient
is reduced in the undersulfated CSPG matrix of the brachymorphic mouse growth plate.
Furthermore, wingless-related proteins (Wnts) and fibroblast growth factors (FGFs) are
among the cell signalling pathways that can be influenced by CS [86,105-107]. In another
study, a severe chondrodysplasia characterized by the substantial upregulation of TGF-3
signalling was revealed in a gene trap mutation in the chondroitin-4-sulfotransferase 1
(C4st1) gene, which causes downregulation of 4-O-sulfated chondroitin production [108].
The lack of aggrecan is accompanied by the deregulation of multiple genes previously
implicated in hypertrophic chondrocyte development and osteoblast differentiation. The
absence of aggrecan in the matrix may also interfere with growth factor availability, which
is required for communication between the perichondrium and growing chondrocytes [92].
The early and enhanced invasion of the growth plate hypertrophic zone by blood vessels
and osteoblasts may result from an aggrecan-induced matrix deficit; indeed, an anti-
angiogenic role for the aggrecan matrix has been suggested [109]. Angiogenic factors, basic
fibroblast growth factor (bFGF) and Vascular endothelial growth factor (VEGF), produced
by growth plate chondrocytes, induce endothelial cells to move towards hypertrophic
cells [39,110]. However, in the lack of aggrecan, a recognised diffusion barrier to several
factors in cartilage, this mechanism may be changed (Figure 3) [111].

Perlecan, also known as HSPG-2 (heparan sulfate proteoglycan 2), is a multifunctional,
modular PG that promotes chondrocyte proliferation, differentiation, and matrix synthesis
by interacting with a wide range of ligands, such as growth factors, morphogens, and
ECM-stabilizing glycoproteins. HS, one of the GAGs found in perlecan, is an essential
extracellular component. The release of HS-bound cytokines, growth factors, morphogens,
proteases, and inhibitory proteins induces matrix remodelling, which regulates numerous
cellular pathological and physiological processes. Perlecan possesses chondrogenic capabil-
ities and can influence cell signalling, matrix assembly, and new tissue development via its
HS chains. Perlecan’s HS side chains can bind and store growth factors, including FGF-1, 2,
4, and 9, and operate as low-affinity co-receptors, emphasizing the protein’s relevance in
growth and development. FGF-7 has also been found to attach to domain III of the perlecan
core protein, which appears to control the growth factor’s activity [112]. Perlecan binds,
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stores, and sequesters FGF-1 in the cartilage matrix, preventing proper Fgfr3 signalling
activity and influencing normal cartilage and bone growth. Perlecan’s presence in the
pericellular area may help this process. Other HS-containing cell surface receptors may
be involved in Fgfr3 signalling, collaborating with perlecan in proper cartilage formation.
Moreover, FGF-2 can bind to perlecan and act as a mechanotransducer in chondrocytes.
In human articular chondrocytes, FGF-2 can also upregulate the transcription of matrix
metallopeptidases 1 and 13 (MMP1 and MMP13), two enzymes that play significant roles in
cartilage degradation. These findings suggest that perlecan plays various roles through-
out embryonic development, emphasising the relevance of matrix structure in cellular
activities [113-115].

In addition to regulating cartilage maturation, PGs have been identified as modula-
tors of osteoblast differentiation [116]. It was shown that CS chains enhance osteoblast
differentiation by binding to both cadherin-1 and N-cadherin, decreasing extracellular
signal-regulated kinase 1/2 (ERK1/2) phosphorylation, activating Smad 3 and Smad 1/5/8
signalling pathways, and increasing the expression of osteoblastic differentiation markers,
such as ALP [117]. Another regulator of osteoblast differentiation are syndecans, which are
cell-surface HSPGs that can act as low-affinity co-receptors to help ligands dock and con-
centrate. Syndecans also influence intracellular signalling by interacting with high-affinity
receptors and integrins [118,119]. Out of the four syndecans, Syndecan-2, was found to be
particularly associated with osteoblast differentiation during mouse development and in
adult bone. Syndecan-2 is also expressed in the periosteum at the start of endochondral
ossification, and its expression rises as osteoblast differentiation progresses [120]. BMP-2
and Runx?2 are osteogenic mediators that tightly upregulate Syndecan-2 in osteoblast. As a
result, the amount of syndecan-2 in osteoblasts appears to be strictly regulated [121,122].
Syndecan-2 overexpression enriches the bone surface with HS and results in an increased
bone mass due to a potent inhibition of resorption. Furthermore, it leads to increased bone
marrow cell death and lower populations of osteoblast and osteoclast precursors. Multiple
pathways, including phosphoinositide 3-kinase (PI3K), MAPK, nuclear factor kappa-B
(NF-«B), and protein kinase C, as well as canonical and noncanonical Wnt pathways, are
altered by the overexpression of syndecan-2 in osteosarcoma cells. Moreover, it alters the
osteoblast environment by downregulating the Wnt/ 3-catenin/T-cell factor (TCF) path-
way [123-125]. This family’s syndecan-3 is expressed during limb cartilage development.
Syndecan-3 is expressed transiently during the pre-cartilage condensation of the skeletal
components of the limb and afterwards in differentiating periosteum osteoblasts. Anti-
syndecan-3 antibodies have been demonstrated to decrease limb cartilage development
in vitro [126].

Small leucine-rich PGs (SLRPs) are involved in all phases of bone formation, including
osteogenesis, mineral deposition, and bone remodeling, by interacting with cell surface
receptors and growth factors. Skeletal growth, craniofacial structure, dentin production,
and collagen fibrillogenesis are all affected by SLRPs. Biglycan and decorin are both
class I subtypes of the SLRPs with CS/DS side chains [127]. Biglycan can regulate the
activity of multifunctional growth factors, such as TGF-3, BMP4, and Wnt, which all play
a role in the osteogenic program [128-130]. Biglycan has been shown to activate the Wnt
pathway by binding to Wnt3a, the canonical Wnt ligand, and Wnt receptor low-density
lipoprotein receptor-related protein 6 (LRP6). Both glycosylated and non-glycosylated
forms of biglycan stimulate this signalling pathway. Biglycan is also implicated in ERK
phosphorylation and signal transmission via the transcription factor Runx2. The activation
of ERK is mediated by the GAG chains, as phosphorylation of ERK is not identified when
only the core protein of biglycan is given [128]. Bone marrow stroma cells (BMSCs) from
biglycan/decorin-deficient mice had increased TGF-f3 signalling due to the inability of
biglycan and decorin to sequester TGE-f3 in the ECM, resulting in a switch in fate from
growth to apoptosis. In biglycan/decorin-deficient animals, the early death of osteogenic
stem cells and osteoblast precursors resulted in a reduction in the number of mature
osteoblasts, contributing to reduced osteogenesis and an osteoporosis-like phenotype.
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These investigations show that these two SLRPs function in controlling bone mass by
modulating the proliferation and survival of osteogenic stem cells via regulating TGF-
f activity. Due to a reduction in bone production, mice with a targeted disruption of
biglycan develop age-dependent osteoporosis, with smaller trabecular volume and thinner
cortices than their wild-type counterparts. Compared to wild-type littermates, biglycan
knock-out mice have a considerably reduced capacity to form bone marrow stromal cells
(Figure 3) [131].

Resting and prolifrative
chondrocytes
(Immature cartilage)

Prehypertrophic and
hypertrophic
chondrocytes

(Mature cartilage)

Perichondral and
endochondral
osteoblasts
(Bone)

Figure 3. Interactions between PGs and growth factors in the growth plate during endochondral
and perichondral ossifications. Chondrocytes are imbedded in a PG-rich ECM so that growth factors
can travel in it to regulate cartilage maturation and send a signal to the perichondrium layer to
differentiate undifferentiated cells to the osteoblast. Aggrecan is the most abundant CSPG expressed
in cartilage, which is required for creating an appropriate Ihh gradient. Furthermore, Wnts, FGFs,
BMPs, and TGF-$3 are among the cell signalling pathways that can be influenced by CSPGs and
HSPGs to regulate cartilage maturation and osteoblast differentiation. “Created with BioRender.com
(Accessed on 31 January 2022)”.

The relevance of the biological role of PGs in skeletal development has been further
demonstrated by using N-Ethyl-N-nitrosourea (ENU) mutagenesis screen that yielded
zebrafish mutants that were deficient in cartilage and bone formation. Mutations in two
genes, xylt]l and fam20b, were discovered using restriction site associated DNA (RAD)
mapping, followed by meiotic mapping and sequencing in a class of mutants with reduced
alcian blue staining of PGs in their cartilage matrix [36,132,133]. Xyltl induces GAG side
chain modifications to PG core proteins [134]. Fam20b is a kinase, phosphorylating xylose
in the GAG side chain [135]. FAM20B is one of three fam20 family members with sequence
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similarity 20, also containing FAM20A and FAM20C in mammals. Fam20C is a kinase in
this family that phosphorylates hundreds of secreted proteins with a highly conserved
Ser-X-Glu/pSer motif. The pseudokinase FAM20A lacks a critical residue for catalysis and
forms an evolutionarily conserved homodimer or heterodimer functional complex with
FAM20C and activates it. Raine syndrome is caused by FAM20C mutations, which induce
bone and craniofacial /dental anomalies, whereas Amelogenesis Imperfecta (Al) is caused
by FAM20A mutations. Xylose kinases with a unique active site for binding Gall-4Xyl1,
the initiator disaccharide inside the tetrasaccharide linker region of PGs, are encoded by
FAM?20B. In HelLa cells, the overexpression of fam20b increases the quantity of HS and CS,
whereas fam20b RNA interference diminishes their amount. This essential gene increases
the number of GAG chains in PGs by phosphorylating the initiator xylose residue inside
the tetrasaccharide linkage region. This phosphorylation is necessary for the elongation of
the tetrasaccharide bridge and the assembly of GAG [136].

The discovery of zebrafish xylt1 and fam20b mutants with PG synthesis defects, fol-
lowed by less cartilage matrix and early perichondral bone formation in developing em-
bryos, led to the theory that cartilage PGs impede endochondral ossification. The fact that
perichondral bone development begins sooner than wild-type siblings in these mutants
indicates a physiologic function for cartilage PGs. Zebrafish with a fam20b gene muta-
tion did not create wild-type amounts of CS and HS, typically prevalent in the cartilage
matrix [35,36]. Moreover, in xylt]1 and fam20b mutant chondrocytes, sox9a expression
was reduced, whereas Runx2 transcripts increased. Ihh, which is expressed in mature
chondrocytes but not in the perichondrium, mediates the inductive event for perichondral
bone development. Ihh transcripts were upregulated early in xylt1 and fam20b mutant
chondrocytes, and genetic epistasis tests revealed that Ihh function was required for these
PG mutants’ early bone development [36].

4. PGs Modulate BMP Signal Transduction

In several in vivo and in vitro settings, BMPs have been discovered to interact with cell-
surface and matrix-bound PGs, such perlecan, syndecan, glypican, and betaglycan [137,138].
For example, Xenopus syndecan-1 controls ectoderm dorsoventral patterning by modu-
lating BMP signalling [139]. Glypican-3 has been linked to the modulation of the BMP-4
effects on renal branching morphogenesis [140]. In embryonic kidney explants, glypican-3
loss prevents BMP-2- and BMP-7-dependent ureteric bud formation [141]. In addition,
betaglycan, a TGE-§3 type III receptor, is a membrane HS/CS sulfate PG discovered by its
capacity to bind multiple TGF-f family members. Betaglycan can bind a broad spectrum
of BMP ligands, including BMP-2, BMP-4, BMP-7, and GDE-5 [142].

PGs may have a key role in skeletal development by regulating BMP signalling
(Figure 4). Perlecan works with BMP-2 to increase hypertrophic chondrocyte markers’
expression and osteogenesis [143,144]. Syndecan-3 has been shown to control BMPs ac-
tivity during chondrogenesis by reducing the effective concentration of BMPs accessible
for signalling [126]. Glypican-3 has been linked to the modulation of the BMP-4 effects
on vertebrate limb patterning and skeletal development [140]. In vitro, a lack of biglycan
inhibits BMP-4-induced osteoblast differentiation due to diminished BMP-4 binding to the
receptors, which is totally restored by viral transfection of biglycan [129]. Biglycan has
also been discovered to bind directly to BMP-2 and influence BMP-2-induced osteoblast
differentiation [145]. In addition, BMP-2 biological activity is modulated by biglycan and
decorin, which sequester it in the ECM. In BMSCs from mice with inactivated biglycan
and decorin, the expression of BMP-2 signalling components, Smad 1, and phosphory-
lated Smad 1 were greater than in wild-type cells [131]. In articular chondrocytes, HS
deficiency leads to chondrocyte hypertrophy, and enhanced BMP/Smad signalling plays
a role in this phenotype [146]. Furthermore, it has been shown that heterozygous loss-of-
function mutations in HS synthesis genes, EXT1 or EXT2, which cause multiple hereditary
exostoses, a genetic bone condition, results in the upregulation of BMP signalling in the
perichondrium. In vitro, BMP signalling is upregulated in Ext1-deficient perichondrium-
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derived mesenchymal progenitor cells (PDPCs), which leads to increased BMP-induced
chondrogenic differentiation [147].

PGs have been discovered to have opposing effects on BMP activity, boosting it in
some and decreasing it in others. For instance, HSPGs may either affect BMP activity by
functioning as co-receptors, allowing BMPs and their receptors to interact more easily,
or serve as a sink for BMPs, preventing them from interacting with BMP receptors, and
consequently decrease rather than promote BMP signalling [126,148,149]. Division abnor-
mally delayed (dally), a Drosophila homolog of the glypican family of GPI-linked cell-surface
HSPGs, controls cell sensitivity to Dpp signalling by acting as a co-receptor for Dpp [150].
On the other hand, Dally can modulate Dpp distribution by sequestering it, assisting in
the morphogen gradient in developing the wing disc [151]. In addition, BMP-4 biological
activity is restricted in the Xenopus embryo when it binds to HS chains [152]. In vertebrate,
polydactyly and other skeletal anomalies are associated with a lack of cellular response to
BMP4 due to a loss-of-function mutation in glypican-3, which leads to Simpson-Golabi-
Behmel dysmorphia syndrome in humans and mice [140]. Betaglycan functions as a BMP
co-receptor, enhancing BMPs binding to the BMP signalling receptors, ALK3 and ALK®,
and hence BMP signalling [142]. In vitro studies on a rat osteoblast cell line, ROS 17/2.8,
shows that BMP-7 attaches to HS chains based on their sulfate structures, and the digestion
of cell-surface HS hinders BMP-7 binding to the cells, which leads to inhibition of BMP-7-
mediated Smad 1/5/8 phosphorylation [153]. In addition, natural BMP antagonists, such
as Noggin and Chordin, bind to HS, which enhances their activity. HSPGs that bind to
Noggin result in reduced BMP-4 activity [154,155]. Grem1, a member of the Dan family of
BMP antagonists that directly binds BMPs to impede signal transduction, can also attach to
HSPGs [156].

PG and BMP interactions are predominantly mediated by PG modifications and the
domain’s amino acid sequence of BMP ligands. PG modifications affect cell signalling by
changing the affinity of ligands and receptors. Sulfl, a secreted sulfatase enzyme, can alter
the HSPG structure by removing a sulfate group from the 6-O position of glucosamine
in HS chains at the cell surface [157-159]. In zebrafish, Sulfl is an important regulator
of BMP signalling that is necessary for appropriate somite development. In knock-down
Sulfl zebrafish embryos, the pharmacological suppression of BMP signalling rescues
the development of the horizontal myoseptum and restores the normal migration of the
posterior lateral line (PLL) primordium and pigment cells [160]. While HSPGs have well-
established functional roles in BMP cell signalling, CSPGs’ participation in this process has
often been overlooked. Nevertheless, an analysis of a gene trap mutation in the chondroitin-
4-sulfotransferase 1 (C4st1) gene that causes the downregulation of 4-O-sulfated chondroitin
synthesis leads to a severe chondrodysplasia associated with the downregulation of BMP
signalling [108]. On the other hand, domains rich in basic amino acids govern BMP ligands’
distribution and function. One such domain has been found in the N-terminal region
of BMP-2 and BMP-4. Changing the basic residues in the N-terminal domains of BMP-2
and BMP-4 inhibits HS binding and changes the mutant proteins’ bioactivity [138,152,161].
Furthermore, a domain with significant HS-binding capacity is in the C-terminal sections
of mature BMP-5, BMP-6, and BMP-7. This domain’s amino acid sequence is nearly similar
in all three BMPs and has been extremely conserved throughout evolution [162].

5. Exogenous Mechanisms to Modulate BMP Signalling Pathway

A variety of experimental techniques to modify the BMP signalling pathway have
been developed in recent years. According to these findings, BMP signalling can be
perturbed by powerful tools and at various molecular levels including: (1) ligand traps
and natural soluble antagonists to limit ligand availability to receptors, (2) BMP receptors’
expression or kinase activity suppressors, and (3) intracellular inhibitors [163-167]. In
this review, we will concentrate on a group of highly selective small-molecule inhibitors,
including dorsomorphin and its analogs, which specifically antagonize the intracellular
kinase domain of BMP type I receptors (Figure 4).
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Figure 4. Endogenous and exogenous modulation of BMP signalling transduction by PGs and dor-
somorphin analogs. PGs have been shown to regulate the activity or availability of BMPs, either
sequestering them from or presenting them to target cell receptors. Dorsomorphin (DM) and its
analogs, LDN-193189 (LDN), DMH1, DMH?2, and DMHS3, specifically antagonize the intracellular ki-
nase domain of BMP type I receptors. “Created with BioRender.com (Accessed on 31 January 2022)”.

Dorsomorphin, also known as Compound C, was the first effective small-molecule
BMP type I receptor inhibitor, which was found in a 7500-compound zebrafish library
screen based on its ability to disrupt dorsoventral patterning in early zebrafish [168].
Dorsomorphin treatment phenocopies the effect of BMP antagonists, such as Noggin,
Chordin, and Follistatin, which induce embryonic dorsalization endogenously. Dorsomor-
phin’s heterocyclic core structure interacts with the ATP binding site in the kinase domain of
BMP type I receptors (Alk2, Alk3, and Alk6) with varying affinities, inhibiting their kinase
activity [169-171]. The heterocyclic core of dorsomorphin, pyrazolo[1,5-a]pyrimidine core,
has been used to synthesize multiple generations of dorsomorphin derivatives, including
LDN-193189, DMH1, DMH2, JL5, DMH3, and DMH4. The changes made at the R-positions,
R1 and R2, of the pyrazole[1,5-a]pyrimidine core varied amongst analogs of dorsomorphin,
resulting in different affinities to the kinase domain of the BMP type I and type II receptors
(Table 1) [172].
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Table 1. Small-molecule BMP inhibitors: Chemical Names and Structures.

Compound Chemical Name Structure
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Based primarily on its effects on zebrafish embryos, LDN-193189 was found as a
new compound with enhanced pharmacokinetic characteristics in a structure—activity
relationship (SAR) test of dorsomorphin analogs. LDN-193189 has a significantly better
selectivity for BMP receptors than dorsomorphin and can be utilised at lower dosages. The
signalling activity of the BMP type I receptors ALK2 and ALK3 was effectively suppressed
by LDN-193189 [173]. BMP-4 induction of ALP activity is inhibited by LDN-193189 in
the C2C12 cell line, which expresses BMP receptors and can be induced to become os-
teoblasts by BMPs. This indicates that LDN-193189 may influence BMP-induced osteoblast
differentiation [174,175]. In another study, LDN-193189 was utilised to demonstrate that
overactive BMP receptor signalling contributes to the development of Fibrodysplasia os-
sificans progressiva (FOP) [176]. FOP is a rare, severe developmental musculoskeletal
disease that is caused by activating mutations of the ALK2 gene and marked by heterotopic
ossification (HO), endochondral bone development in non-skeletal sites, and a congenital
deformity of the great toe [177-179]. Intraperitoneal administration of LDN-193189 could
partially prevent heterotopic ossification without inducing osteopenia or bone fractures
in a mouse model of FOP characterised by a constitutively active version of ALK2 [176].
Furthermore, in Col2al-Ext1CKO and Fsp1-Ext1CKO, the two multiple hereditary exos-
toses models, the pharmacological suppression of BMP signalling by LDN-193189 reduces
osteochondromagenesis [147]. Both dorsomorphin and LDN-193189 are known to have a
variety of “off-target” effects. In addition to inhibiting BMP type I receptor kinase activity,
dorsomorphin and LDN-193189 inhibit other cellular kinases, including the TGF-§3 path-
way, AMP-activated kinase (AMPK), receptor tyrosine kinases for platelet-derived growth
factor (PDGFR), VEGF, and many other kinases. These off-target effects restrict these drugs’
therapeutic potential and value [180]. The disadvantageous “off-target” effects of dorso-
morphin and LDN-193189 were overcome by the identification of dorsomorphin homolog
1 (DMH1), a highly selective small-molecule BMP inhibitor, in a second in vivo zebrafish
dorsalization assay with 21 dorsomorphin analogs to generate specific BMP receptor kinase
inhibitors. DMHI1 inhibits BMP receptors, but not the VEGF pathway, so DMH1 dorsalizes
the embryonic axis without disrupting angiogenic processes. Furthermore, DMH1 had no
inhibitory effects on TGF-, activin-induced Smad 2/3 activation, KDR (VEGFR2), ALKS5,
AMPK, or PDGFR. DMH1 blocks signalling through the ALK2 and ALK3 receptors, with
no impact on the ALK6 receptor and no additional side effects [172,181].

DMH?2 and DMHS3 also belong to this family and are expected to be pan-type I BMP
receptor inhibitors with fewer side effects than dorsomorphin and LDN-193189. DMH2
has been reported as the most effective dorsalizing chemical; however, it was less selective
than DMH1 and DHMS3, since greater doses produced nonspecific developmental effects.
JL5 is a DMH?2 analog that has better pharmacokinetic features than DMH2. Although all
of these BMP inhibitors block BMP type I receptors, JL5 and DMH?2 also inhibit BMPR?2,
while DMH1 and LDN-193189 have no effect on BMPR2 [182,183]. The anti-angiogenic
effect of this family’s DMH4 member was elevated, whereas dorsomorphin’s dorsalization
activity was decreased [172]. Dorsomorphin derivatives are inhibitors of BMP signalling
pathways and Id family members. Studies have shown that dorsomorphin and DMH1
inhibit BMP-induced Smad 1/5/8 pathway phosphorylation in a dose-dependent manner,
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while they have no impact on BMP-induced p38 activation [170,172]. However, other
studies have shown that all known BMP-induced signallings, canonical and noncanonical
pathways, are affected by dorsomorphin and, more effectively, LDN-193189 inhibition of
BMP receptors [184]. Moreover, dorsomorphin, DMH1, and DMH2 dramatically reduced
Id1, Id2, and 1d3 expression, which are the direct mediators of BMP signalling [185]. Other
studies have shown reduced BMP-2 and BMP-4 mRNA expression by DMH1, but not
ALK2 or ALK3 mRNA expression [186].

6. Conclusions and Perspectives

The highly spaciotemporal regulations of skeletal development imply that the mech-
anisms controlling cell behavior during chondrogenesis and bone formation must be
regulated precisely. In this review, we concluded that BMPs and PGs act in concert to
orchestrate proper skeletogenesis. Changes in BMP ligands’ availability, as well as PGs’
quantity or structure, can have devastating effects on cartilage maturation and osteoblast
differentiation in the embryo. Understanding the BMP signalling system and PGs’ inter-
action is essential to understanding skeletogenesis mechanisms and for the development
of future treatments for osteochondrodysplasias. The data summarized in this review
indicate that more research is needed to determine the mechanism of BMPs’ and PGs’
interaction during cartilage maturation, osteoblast differentiation, and its effectiveness
for proper skeletal development. Furthermore, while HSPGs have well-established func-
tional roles in BMP cell signalling, CSPGs participation in this process has often been
overlooked. In future studies, a greater focus should be given to determine the impact
of mutation in PG synthesis genes on the diffusion of BMPs in ECM and their effects in
skeletal development. In addition, further research is needed to determine the extent to
which BMPs use canonical pathways, noncanonical pathways, or both in different phases
of chondrogenesis and bone formation. It will also be intriguing to fathom the situations in
which these pathways function synergistically or antagonistically. It is also a paucity of
information about the effects of highly selective BMP signalling inhibitors, such as DMH]1,
on skeletal development. The discovery of BMP signalling inhibitors can pave the way for
a deeper understanding of skeletogenesis mechanisms and the development of effective
new treatments for skeletal diseases.
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