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A highly selective copper-catalyzed trifluoromethylation of indoles is reported with

the assistance of a removable directing group. This protocol provides an easy and

rapid method to various 2-position-selective trifluoromethylated heteroarenes including

indoles, pyrroles, benzofuran, and acetanilide. What is more, the reaction takes place at

ambient conditions without any external ligand or additive.
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INTRODUCTION

The introduction of trifluoromethyl (CF3) groups into heteroarenes enjoys a privileged role in
medicinal chemistry, since it can substantially alter their properties, such as metabolic stability,
lipophilicity and ability to penetrate the blood-brain barrier (Shimizu and Hiyama, 2005; Schlosser,
2006; Hagmann, 2008; Boechat and Bastos, 2010; Nie et al., 2011; Wang et al., 2014; Gouverneur
and Seppelt, 2015). It has a great potential in the development of new pharmaceutical chemicals
(Scheme 1). Thus, the trifluoromethylation of heteroarenes has received tremendous attentions
(Sato et al., 2010; Furuya et al., 2011; Tomashenko and Grushin, 2011; Liu et al., 2013; Le et al.,
2018). On the other hand, indoles represent ubiquitous structural motifs found in biologically active
natural products and pharmaceutical compounds (Lee et al., 2015; Chripkova et al., 2016; Sravanthi
and Manju, 2016; Goyal et al., 2018; Kaur et al., 2019). In this regard, direct trifluoromethylation
of indoles offers an attractive alternative to the workers in the field of medicinal chemistry
and biochemistry.

However, direct trifluoromethylation at the C2-position of indoles under radical
trifluoromethylation conditions is quite difficult because of the lack of reaction selectivity at
the C2/C3-position and the high reactivity of the CF3 radical (Scheme 2A; Nagib and MacMillan,
2011). Recently, directing group (DG) has emerged as a powerful tool to achieve regioselective C2-
H functionalization of indoles (Nishino et al., 2012; Zhou et al., 2013; Yu et al., 2014). For example,
Shi group and Punji group, respectively, achieved trifluoroethylation and difluoroalkylation of
indoles at C2 position by introducing a directing group at the N-center of indoles (Scheme 2B;
Yan et al., 2017; Soni et al., 2018). Also, Sodeoka group, Cho group, and Shi group accomplished
trifluoromethylation of indoles at the C2 position with Togni’s reagent, CF3I and CF3SO2Na
respectively. However, a substituent at C3 was identified as a crucial factor for the selective
trifluoromethylation at C2 (Scheme 2C; Shimizu et al., 2010; Iqbal et al., 2012; Shi et al., 2018).
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SCHEME 1 | Several examples of pharmaceuticals with a trifluoromethylation group.

In this context, we envisioned that with the aid of a
readily removable N-protecting group, trifluoromethyl group
can be introduced to C2 position, which is complementary
to the previous work. Herein, we report a copper-catalyzed
C2-H trifluoromethylation of N-Boc (t-butyloxy) indoles with
CF3SO2Na under ambient conditions in the absence of any
external ligand or additive (Scheme 2D). Notably, the key to our
success is the installation of a suitable Boc director on the indole
nitrogen atom.

RESULTS AND DISCUSSION

To begin, we chose N-Boc indole (1a) as model substrate. To
our delight, when the reaction mixture of N-Boc indole (1a,
0.50 mmol), 2 (1.5 mmol), TBHP (t-butyl hydroperoxide, 70%
solution in H2O, 2.5 mmol) and CuSO4 (10 mol%) in DMA
(dimethylacetamide, 3mL) was stirred at 85◦C in air for 1 h,
22% yield of C2-trifluoromethylation product 3a was obtained
(Table 1, entry 1). Trace amount of product could be detected
with other solvents, such as DCM (dichloromethane), toluene
and THF (tetrahydrofuran) (entries 2-4). The yield could be
increased to 46% when acetone was used, and it was elevated
to 54% by using MeCN (acetonitrile) (entries 5-6). Subsequently,
various metal catalysts were selected. To our delighted, the yield
was increased to 65% by employing CuSO4•5H2O as catalyst
(entry 7). Meanwhile, other catalysts such as FeCl3, FeCl2,
Cu(OTf)2, and CuCl were screened. Unfortunately, no positive
results were obtained (entries 8-11). In addition, the reaction was
completely shut down in the absence of metal catalysts (entry 12).
Finally, the desired product 3awas obtained in 86% isolated yield
when the solvent was reduced to 1mL (entry 13). The reaction
showed low reactivity at room temperature (entry 14). Afterward,
the efficiency of different directing groups was investigated. And
no desired product was achieved when Ac, Ts and 2-pym were
tried (entries 15-17). In addition, the use of the methyl group
resulted in a marked decreased in selectivity and yield (entry 18).

With an optimized protocol in hand, the scope and limitation
of the title reaction was explored (Scheme 3). With respect to the
various indole derivatives, the reaction was found quite general
and tolerated by various functional groups. A wide range of
2-trifluoromethylated products with substituent groups such as
methyl (3b, 3i), methoxy (3c), acetyl (3d), esters (3e, 3j, 3k), and
halogen (3f-3h, 3l-3o) at 4-, 5- and 6-position of indole were

produced in moderate to good yields. In particular, halides, such
as F, Cl, and Br, were well tolerated, affording the desired 2-
trifluoromethylated products (3f-3h and 3l-3o) in good yields of
67–89%. However, C7-substituted indoles are not reactive under
the optimized reaction conditions, which is presumed due to
the steric hindrance. In addition, owing to the strong electron-
withdrawing property, the indoles containing cyanide and nitro
are not reactive.

To extend the substrate scope of the above reaction,
we proceeded to study the trifluoromethylation of other
aromatics under the optimized reaction conditions. As
shown in Scheme 4, pyrroles reacted smoothly to afford
the corresponding 2-trifluoromethylated pyrroles (4a-4d) in
good yields. Conventionally, direct deprotonation of benzofuran
takes place at the most acidic C2 position (Larbi et al., 2017;
Wang et al., 2018). Following C2 deprotonation, we obtained
2-trifluoromethylated benzofuran 4e in 88% through a radical
addition mechanism. Notably, benzothiophene was also
examined, but only a trace amount of product 4f was detected.
Acetanilide, a drug to relieve pain or reduce fever, was also used
for the synthesis of 4g. Additionally, we tried other “indole-like”
compounds, but the products (4h-4k) were not gained.

MECHANISM

The radical scavenger experiments were conducted to gain
some insights into the mechanism of this reaction (Scheme 5).
When radical inhibitors such as TEMPO (2,2,6,6-tetramethyl-
1-piperidinyloxy) and BHT (butylated hydroxytoluene) were
added, the reaction was suppressed to a great extent. Also,
19F NMR analysis showed that radical trapping product
TEMPO/BHT-CF3 was formed dominantly. Therefore, we
speculated that the high C2 selective is due to the formation of
a five membered metallacycle at the C2 position through N-Boc-
directed C-H activation (Sandtorv, 2015; Yang et al., 2016).

Based on the analysis of the aforementioned results and
previous reports, a plausible mechanism was proposed in
Scheme 6 (Langlois et al., 1991; Ji et al., 2011; Zhang et al.,
2018; Khan et al., 2019). Initially, the t-butoxy radical, generated
from copper metal, reacts with CF3SO

−

2 to provide •CF3SO2.
This transient intermediate disproportionates, releasing SO2 and
•CF3 B. Meanwhile, the copper catalyst was introduced to
ensure the formation of a five membered metallacycle A at the

Frontiers in Chemistry | www.frontiersin.org 2 September 2019 | Volume 7 | Article 613

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Shi et al. Trifluoromethylation of Heteroarenes

SCHEME 2 | Different approaches to C2 functionalized indole derivatives (A–D).

C2 position. Subsequently, chelation-assisted C-H metalation of
1a A reacts with B to form C as a key intermediate. After
reductive elimination the product 3a was formed and copper(II)
catalyst regenerated.

CONCLUSION

In conclusion, we have developed a direct C2-H
trifluoromethylation of indoles with the assistance of a removable
directing group under ambient conditions. This transformation
exhibits high regioselectivity, functional group tolerance and
provide a practical method to various trifluoromethylated
heteroarenes including indoles, pyrroles, benzofuran, and
acetanilide. What is more, control experiments testified that a
radical mechanism may be involved in the reaction.

MATERIALS AND METHODS

General
1H NMR spectra were recorded on Bruker 500 MHz
spectrometer and the chemical shifts were reported in parts
per million (δ) relative to internal standard TMS (0 ppm) for
CDCl3. The peak patterns are indicated as follows: s, singlet; d,
doublet; dd, doublet of doublet; t, triplet; m, multiplet; q, quartet.
The coupling constants, J, are reported in Hertz (Hz). 13C NMR
spectra were obtained at Bruker 126 MHz and referenced to the
internal solvent signals (central peak is 77.0 ppm in CDCl3).
The NMR yield was determined by 1H NMR using CH2Br2

as an internal standard. APEX II (Bruker Inc.) was used for
ESI-HRMS. Flash column chromatography was performed over
silica gel 200–300. All reagents were weighed and handled in
air at room temperature. All chemical reagents were purchased
from Alfa, Acros, Aldrich, and TCI, J&K and used without
further purification.

General Procedure and Characterization
Data for Product 3, 4
To a mixture of N-Boc indole 1 (0.5 mmol), CF3SO2Na 2 (1.5
mmol) and CuSO4•5H2O (10 mol%), MeCN (1.0mL) was added
in air at room temperature. tert-Butyl hydroperoxide (TBHP,
70% solution in H2O, 2.5 mmol) was dropped into the mixture
in air at room temperature. The resulting mixture was stirred
at 85◦C in air for 1 h. Once the mixture was cooled to room
temperature, the solvent was removed under reduced pressure.
The crude product was purified by flash column chromatography
on silica gel (petroleum ether/CH2Cl2) to give product 3 or 4
as colorless oil. The NMR spectra of synthesized compounds are
depicted in Supplementary Material.

Tert-Butyl 2-(Trifluoromethyl)-1H-Indole-1-

Carboxylate (3a) (Xu et al., 2011; Arimori and Shibata,

2015) (123mg, 86%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3)
δ 8.28 (d, J = 8.5Hz, 1H), 7.62 (d, J = 7.9Hz, 1H), 7.45 (t, J =
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TABLE 1 | Optimization of reaction conditionsa.

Entry 1 Cat. Solvent Yieldb

3a 3a’

1 1a CuSO4 DMA 22 n.d.

2 1a CuSO4 DCM trace n.d.

3 1a CuSO4 toluene trace n.d.

4 1a CuSO4 THF trace n.d.

5 1a CuSO4 MeCN 54 6

6 1a CuSO4 acetone 46 8

7 1a CuSO4•5H2O MeCN 65 <5

8 1a FeCl3 MeCN 21 n.d.

9 1a FeCl2 MeCN 23 n.d.

10 1a Cu(OTf)2 MeCN trace n.d.

11 1a CuCl MeCN 12 n.d.

12 1a - MeCN trace n.d.

13 1a CuSO4•5H2O MeCNc 89(86) <5

14 1a CuSO4•5H2O MeCNc,d 58 7

15 1b CuSO4•5H2O MeCN n.d. n.d.

16 1c CuSO4•5H2O MeCN n.d. n.d.

17 1d CuSO4•5H2O MeCN n.d. n.d.

18 1e CuSO4•5H2O MeCN 12 9

a Conditions: 1a (0.5 mmol), 2 (1.5 mmol), catalyst (10mol %), solvent (3.0mL), 85◦C, 1 h, in air.
b Reported yields were based on 3a and determined by 1H NMR using CH2Br2 as an internal standard.
c MeCN (1 ml).
d room temperature, 12 h.

7.9Hz, 1H), 7.30 (t, J = 7.5Hz, 1H), 7.14 (s, 1H), 1.68 (s, 9H).
13C NMR (126 MHz, CDCl3) δ 148.57, 137.70, 126.98, 126.93 (q,
J = 38.9Hz), 126.46, 123.51, 122.77 (q, J = 266.6Hz), 121.99,
116.04, 113.43 (q, J = 5.0Hz), 85.43, 27.86. 19F NMR (470
MHz, CDCl3) δ−58.15. HRMS (ESI) caculated for C9H5NF3
[M-Boc]−, 184.0374; found: 184.0380.

Tert-Butyl 5-Methyl-2-(Trifluoromethyl)-1H-Indole-1-

Carboxylate (3b) (115mg, 77%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ

8.14 (d, J = 8.7Hz, 1H), 7.39 (s, 1H), 7.27 (d, J = 7.5Hz, 1H),
7.06 (s, 1H), 2.45 (s, 3H), 1.67 (s, 9H). 13C NMR (126 MHz,
CDCl3) δ 148.61, 135.95, 133.07, 128.52, 126.83 (q, J = 40.4Hz),

126.65, 121.63, 120.78 (q, J = 266.1Hz), 115.67, 113.19 (q, J
= 5.1Hz), 85.20, 27.86, 21.17. 19F NMR (470 MHz, CDCl3)
δ−58.15. HRMS (ESI) caculated for C10H7NF3 [M-Boc]−,
198.0531; found: 198.0536.

Tert-Butyl 5-Methoxy-2-(Trifluoromethyl)-1H-Indole-

1-Carboxylate (3c) (99mg, 63%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ

8.17 (d, J = 9.2Hz, 1H), 7.08 – 7.05 (m, 2H), 7.03 (d, J = 2.4Hz,
1H), 3.86 (s, 3H), 1.66 (s, 9H). 13C NMR (126 MHz, CDCl3) δ

156.25, 148.52, 132.44, 127.24 (q, J = 38.6Hz), 127.17, 120.68
(q, J = 266.4Hz), 116.98, 116.53, 113.14 (q, J = 5.1Hz), 103.45,
85.26, 55.63, 27.86. 19F NMR (470 MHz, CDCl3) δ−58.24.
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SCHEME 3 | Scope of indoles. Conditions: 1 (0.5 mmol), 2 (1.5 mmol), CuSO4•5H2O (10mol %), MeCN (1.0mL), 85◦C, 1 h, in air. Isolated yield. a 12 h. b 5 h.

HRMS (ESI) caculated for C10H7ONF3 [M-Boc]−, 214.0480;
found: 214.0485.

Tert-Butyl 5-Acetyl-2-(Trifluoromethyl)-1H-Indole-1-

Carboxylate (3d) (105mg, 64%)
Isolated by flash column chromatography (petroleum ether/ ethyl
acetate = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ 8.34
(d, J = 8.9Hz, 1H), 8.25 (d, J = 1.2Hz, 1H), 8.06 (dd, J = 9.0,
1.7Hz, 1H), 7.22 (s, 1H), 2.67 (s, 3H), 1.68 (s, 9H). 13C NMR
(126 MHz, CDCl3) δ 197.39, 148.14, 140.21, 132.93, 128.42 (q,
J = 38.9Hz), 126.85, 126.23, 123.23, 122.52 (q, J = 266.9Hz),
116.06, 113.85 (q, J = 5.0Hz), 86.31, 27.78, 26.68. 19F NMR (470
MHz, CDCl3) δ−58.38. HRMS (ESI) caculated for C11H7ONF3
[M-Boc]−, 226.0480; found: 226.0485.

1-(Tert-Butyl) 5-Ethyl 2-(Trifluoromethyl)-1H-Indole-

1,5-Dicarboxylate (3e) (111mg, 62%)
Isolated by flash column chromatography (petroleum ether/ ethyl
acetate = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ 8.36

(d, J = 0.9Hz, 1H), 8.32 (d, J = 8.9Hz, 1H), 8.13 (dd, J = 8.9,
1.5Hz, 1H), 7.20 (s, 1H), 4.41 (q, J = 7.1Hz, 2H), 1.68 (s, 9H),
1.43 (t, J = 7.1Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 166.43,
148.21, 140.16, 128.23 (q, J = 39.3Hz), 127.97, 126.15, 125.99,
124.32, 120.45 (q, J = 266.5Hz), 115.83, 113.70 (q, J = 5.0Hz),
86.18, 61.08, 27.79, 14.36. 19F NMR (470 MHz, CDCl3) δ−58.35.
HRMS (ESI) caculated for C12H9F3NO2 [M-Boc]−, 256.0585;
found: 256.0591.

Tert-Butyl 5-Fluoro-2-(Trifluoromethyl)-1H-Indole-1-

Carboxylate (3f) (102mg, 67%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3)
δ 8.26 (dd, J = 9.2, 4.5Hz, 1H), 7.28 – 7.25 (m, 1H), 7.18 (td,
J = 9.2, 2.5Hz, 1H), 7.09 (s, 1H), 1.67 (s, 9H). 13C NMR (126
MHz, CDCl3) δ 160.30, 158.38, 148.34, 134.09, 128.30 (q, J =

39.1Hz), 120.47 (q, J = 266.5Hz), 117.41 (d, J = 8.9Hz), 115.22
(d, J = 25.0Hz), 112.84 (q, J = 4.9Hz), 107.07 (d, J = 23.8Hz),
85.80, 27.81. 19F NMR (470 MHz, CDCl3) δ−58.42,−119.41 (td,
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SCHEME 4 | Scope of other heteroarenes. Conditions: 1 (0.5 mmol), 2 (1.5 mmol), CuSO4•5H2O (10mol %), MeCN (1.0mL), 85◦C, 1 h, in air. Isolated yield. a NMR

yield. b Using 6 equiv of 2 and 10 equiv of TBHP, 12h.

SCHEME 5 | Mechanistic study.

J = 8.5, 4.7Hz). HRMS (ESI) caculated for C9H4NF4 [M-Boc]−,
202.0280; found: 202.0285.

Tert-Butyl 5-Chloro-2-(Trifluoromethyl)-1H-Indole-1-

Carboxylate (3g) (109mg, 68%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ

8.22 (d, J = 9.0Hz, 1H), 7.58 (d, J = 2.0Hz, 1H), 7.39 (dd, J =
9.0, 2.0Hz, 1H), 7.06 (s, 1H), 1.67 (s, 9H). 13C NMR (126 MHz,
CDCl3) δ 148.22, 136.05, 129.18, 128.10 (q, J = 39.3Hz), 127.49,

127.28, 121.36, 120.43 (q, J = 266.5Hz), 117.28, 112.45 (q, J =
5.1Hz), 85.98, 27.80. 19F NMR (470 MHz, CDCl3) δ−58.39.
HRMS (ESI) caculated for C9H4NClF3 [M-Boc]−, 217.9984;
found: 217.9990.

Tert-Butyl 5-Bromo-2-(Trifluoromethyl)-1H-Indole-1-

Carboxylate (3h) (142mg, 78%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ

8.17 (d, J = 9.0Hz, 1H), 7.75 (d, J = 1.7Hz, 1H), 7.53 (dd, J =
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SCHEME 6 | Proposed reaction mechanism. L = H2O, O2, or solvent.

9.0, 1.9Hz, 1H), 7.06 (s, 1H), 1.67 (s, 9H). 13C NMR (126 MHz,
CDCl3) δ 148.20, 136.41, 129.92, 128.03, 127.95 (q, J = 39.2Hz),
124.48, 120.39 (q, J = 266.5Hz), 117.62, 116.75, 112.32 (q, J =
5.0Hz), 86.01, 27.80. 19F NMR (470 MHz, CDCl3) δ−58.37.
HRMS (ESI) caculated for C9H4NBrF3 [M-Boc]−, 261.9479;
found: 261.9485.

Tert-Butyl 4-Methyl-2-(Trifluoromethyl)-1H-Indole-1-

Carboxylate (3i) (135mg, 90%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3)
δ 8.10 (d, J = 8.5Hz, 1H), 7.34 (t, J = 7.9Hz, 1H), 7.18 (s, 1H),
7.09 (d, J = 7.2Hz, 1H), 2.54 (s, 3H), 1.67 (s, 9H). 13C NMR (126
MHz, CDCl3) δ 148.63, 137.60, 131.57, 127.10, 126.31 (q, J =

38.9Hz), 126.22, 123.81, 120.85 (q, J = 266.3Hz), 113.51, 111.86
(q, J = 5.1Hz), 85.33, 27.85, 18.23. 19F NMR (470 MHz, CDCl3)
δ−57.97. HRMS (ESI) caculated for C10H7NF3 [M-Boc]−,
198.0531; found: 198.0536.

Tert-Butyl 4-Acetoxy-2-(Trifluoromethyl)-1H-Indole-1-

Carboxylate (3j) (127mg, 74%)
Isolated by flash column chromatography (petroleum ether/ ethyl
acetate= 100:1, Rf = 0.3). 1HNMR (500 MHz, CDCl3) δ 8.16 (d,
J = 8.6Hz, 1H), 7.43 (t, J = 8.2Hz, 1H), 7.07 (dd, J = 7.9, 0.6Hz,

1H), 7.05 (s, 1H), 2.40 (s, 3H), 1.67 (s, 9H). 13C NMR (126 MHz,
CDCl3) δ 168.91, 148.30, 144.04, 138.98, 127.46, 127.17 (q, J =
39.0Hz), 120.46 (q, J = 266.4Hz), 120.07, 115.80, 113.96, 109.74
(q, J = 5.3Hz), 85.88, 27.80, 20.96. 19F NMR (470 MHz, CDCl3)
δ−58.27. HRMS (ESI) caculated for C11H7O2NF3 [M-Boc]−,
242.0429; found: 242.0434.

1-(Tert-Butyl) 4-Methyl

2-(Trifluoromethyl)-1H-Indole-1,4-Dicarboxylate (3k)

(100mg, 58%)
Isolated by flash column chromatography (petroleum ether/ ethyl
acetate= 50:1, Rf = 0.3). 1HNMR (500 MHz, CDCl3) δ 8.54 (d, J
= 8.5Hz, 1H), 8.04 (dd, J = 7.6, 0.8Hz, 1H), 7.85 (s, 1H), 7.50 (t,
J = 8.2Hz, 1H), 4.00 (s, 3H), 1.67 (s, 9H). 13C NMR (126 MHz,
CDCl3) δ 166.68, 148.35, 138.28, 128.38 (q, J = 38.9Hz), 126.41,
126.34, 126.14, 123.10, 120.72, 120.59 (q, J = 266.8Hz), 113.77
(q, J = 5.4Hz), 86.04, 52.13, 27.79. 19F NMR (470 MHz, CDCl3)
δ−58.20. HRMS (ESI) caculated for C11H7O2NF3 [M-Boc]−,
242.0429; found: 242.0434.

Tert-Butyl 4-Fluoro-2-(Trifluoromethyl)-1H-Indole-1-

Carboxylate (3l) (111mg, 73%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3)
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δ 8.06 (d, J = 8.6Hz, 1H), 7.38 (td, J = 8.3, 5.6Hz, 1H), 7.24
(s, 1H), 6.97 (t, J = 9.0, 1H), 1.67 (s, 9H). 13C NMR (126 MHz,
CDCl3) δ 157.23, 155.23, 148.34, 139.54, 127.84 (d, J = 7.5Hz),
127.01 (q, J = 39.1Hz), 120.42 (q, J = 266.5Hz), 112.11 (d,
J = 4.0Hz), 108.91 (q, J = 5.4Hz), 108.51 (d, J = 17.9Hz),
86.02, 27.80. 19F NMR (470 MHz, CDCl3) δ−58.31,−120.93 (q,
J = 9.4Hz). HRMS (ESI) caculated for C9H4NF4 [M-Boc]−,
202.0280; found: 202.0285.

Tert-Butyl 4-Chloro-2-(Trifluoromethyl)-1H-Indole-1-

Carboxylate (3m) (142mg, 89%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ

8.19 (d, J = 8.5Hz, 1H), 7.36 (t, J = 8.1Hz, 1H), 7.29 (dd, J =
7.8, 0.6Hz, 1H), 7.27 (s, 1H), 1.67 (s, 9H). 13C NMR (126 MHz,
CDCl3) δ 148.23, 138.29, 127.62, 127.46 (q, J = 35.8Hz), 127.28,
125.45, 123.27, 120.46 (q, J = 266.3Hz), 114.66, 111.37 (q, J =
5.3Hz), 86.10, 27.80. 19F NMR (470 MHz, CDCl3) δ−58.30.
HRMS (ESI) caculated for C9H4NClF3 [M-Boc]−, 217.9984;
found: 217.9990.

Tert-Butyl 6-Fluoro-2-(Trifluoromethyl)-1H-Indole-1-

Carboxylate (3n) (121mg, 80%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ

8.02 (dd, J = 10.6, 1.8Hz, 1H), 7.55 (dd, J = 8.5, 5.5Hz, 1H), 7.10
(s, 1H), 7.06 (td, J = 8.7, 1.7Hz, 1H), 1.67 (s, 9H). 13C NMR (126
MHz, CDCl3) δ 163.29, 161.36, 148.33, 122.93 (d, J = 10.1Hz),
122.74, 120.51 (q, J = 266.1Hz), 113.15 (q, J = 4.9Hz), 112.38
(d, J = 24.6Hz), 103.36 (d, J = 29.1Hz), 102.90 (q, J = 28.5Hz),
85.92, 27.81. 19F NMR (470 MHz, CDCl3) δ−58.26,−112.94 (td,
J = 9.6, 5.6Hz). HRMS (ESI) caculated for C9H4NF4 [M-Boc]−,
202.0280; found: 202.0285.

Tert-Butyl 6-Chloro-2-(Trifluoromethyl)-1H-
Indole-1-Carboxylate (3o) (113mg, 71%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ

8.35 (s, 1H), 7.53 (d, J = 8.4Hz, 1H), 7.30 – 7.26 (m, 1H), 7.10 (s,
1H), 1.67 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 148.22, 138.03,
133.12, 127.48 (q, J = 39.1Hz), 124.87, 124.37, 122.72, 120.48 (q,
J = 266.5Hz), 116.37, 113.03 (q, J = 5.0Hz), 86.07, 27.80. 19F
NMR (470 MHz, CDCl3) δ−58.30. HRMS (ESI) caculated for
C9H4NClF3 [M-Boc]−, 217.9984; found: 217.9990.

Tert-Butyl 2-(Trifluoromethyl)-1H-Pyrrole-1-

Carboxylate (4a) (Nagib and MacMillan, 2011; Du

et al., 2017) (96mg, 82%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3)
δ 7.44 (d, J = 1.9Hz, 1H), 6.73 (s, 1H), 6.19 (t, J = 3.2Hz, 1H),
1.61 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 125.78, 120.53 (q,
J = 264.9Hz), 117.76 (q, J = 4.6Hz), 109.59, 85.62, 27.71. 19F
NMR (470 MHz, CDCl3) δ−58.33. HRMS (ESI) caculated for
C5H3NF3 [M-Boc]−, 134.0218; found: 134.0223.

Tert-Butyl 2-Methyl-5-(Trifluoromethyl)-1H-Pyrrole-1-

Carboxylate (4b)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ

6.59 (d, J = 3.5Hz, 1H), 5.92 (d, J = 3.2Hz, 1H), 2.44 (s, 3H),
1.60 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 148.43, 137.08,
121.58 (q, J = 39.3Hz), 120.77 (q, J = 264.5Hz), 116.00 (q, J =
4.8Hz), 109.96, 85.39, 31.60, 27.63. 19F NMR (470 MHz, CDCl3)
δ−57.19. HRMS (ESI) caculated for C6H5NF3 [M-Boc]−,
148.0374; found: 148.0380.

Tert-Butyl 3-Formyl-2-(Trifluoromethyl)-1H-Pyrrole-1-

Carboxylate (4c)
Isolated by flash column chromatography (petroleum ether/ ethyl
acetate = 50:1, Rf = 0.3). 1H NMR (500 MHz, cdcl3) δ 10.18
(s, 1H), 7.43 (d, J = 3.3Hz, 1H), 6.72 (d, J = 3.4Hz, 1H),
1.63 (s, 9H). 13C NMR (126 MHz, CDCl3) δ 185.88 (q, J =

5.6Hz), 171.10, 146.75, 125.86, 123.69 (q, J = 41.4Hz), 120.46
(q, J = 267.8Hz), 109.08, 87.39, 27.57. 19F NMR (470 MHz,
CDCl3) δ−54.31. HRMS (ESI) caculated for C6H3ONF3 [M-
Boc]−, 162.0167; found: 162.0172.

Tert-Butyl 4-Methyl-2-(Trifluoromethyl)-1H-Pyrrole-1-

Carboxylate (4d) (83mg, 67%)
Isolated by flash column chromatography (petroleum
ether/CH2Cl2 = 50:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ

7.32 (s, 1H), 6.01 (s, 1H), 2.21 (s, 3H), 1.59 (s, 9H). 13CNMR (126
MHz, CDCl3) δ 147.67, 128.96 (q, J = 2.6Hz), 124.61, 121.68 (q,
J = 266.0Hz), 119.54 (q, J = 4.4Hz), 117.06 (q, J = 38.3Hz),
113.52, 85.09, 27.69. 19F NMR (376 MHz, CDCl3) δ−54.63.
HRMS (ESI) caculated for C6H5NF3 [M-Boc]−, 148.0374;
found: 148.0380.

2-(Trifluoromethyl)Benzofuran (4e) (Liu and Shen,

2011) (82mg, 88%)
Isolated by flash column chromatography (petroleum ether, Rf =

0.3). 1HNMR (500 MHz, CDCl3) δ 7.67 (d, J = 7.8Hz, 1H), 7.58
(d, J = 8.0Hz, 1H), 7.45 (t, J = 7.4Hz, 1H), 7.34 (t, J = 7.2Hz,
1H), 7.18 (s, 1H). 13C NMR (126 MHz, CDCl3) δ 155.13, 143.48
(q, J = 41.9Hz), 126.90, 125.99, 123.95, 122.46, 119.31 (q, J =
266.5Hz), 112.09, 108.09 (q, J = 3.1Hz). 19F NMR (470 MHz,
CDCl3) δ -64.87.

N-(4-Methyl-2-(Trifluoromethyl)Phenyl)Acetamide (4g)

(Zou et al., 2019) (28mg, 26%)
Isolated by flash column chromatography (petroleum ether/ ethyl
acetate = 5:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ 7.95 (d,
J = 8.1Hz, 1H), 7.40 (s, 1H), 7.34 (d, J = 7.8Hz, 2H), 2.36 (s,
3H), 2.19 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 168.48, 134.75,
133.28, 132.45, 126.33 (q, J = 4.9Hz), 125.20, 124.00 (q, J =

271.5Hz), 120.65 (q, J = 29.4Hz), 24.43, 20.79. 19F NMR (470
MHz, CDCl3) δ−60.67. HRMS (ESI) caculated for C10H11ONF3
[M+H]+, 218.0793; found: 218.0787.
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N-(4-Methyl-3-(Trifluoromethyl)Phenyl)Acetamide (4g)

(41mg, 38%)
Isolated by flash column chromatography (petroleum ether/ ethyl
acetate = 5:1, Rf = 0.3). 1H NMR (500 MHz, CDCl3) δ 7.64 (d,
J = 10.7Hz, 2H), 7.57 (s, 1H), 7.21 (d, J = 8.1Hz, 1H), 2.42 (s,
3H), 2.17 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 168.60, 135.70,
132.48, 132.26, 129.18 (q, J = 29.9Hz), 124.13 (q, J = 272.4Hz),
123.00, 117.40 (q, J = 5.9Hz), 24.41, 18.70. 19F NMR (470
MHz, CDCl3) δ−61.97. HRMS (ESI) caculated for C10H11ONF3
[M+H]+, 218.0793; found: 218.0787.
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	Tert-Butyl 2-Methyl-5-(Trifluoromethyl)-1H-Pyrrole-1-Carboxylate (4b)
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