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MicroRNAs (miRNAs) are a kind of noncoding RNA, which plays an essential role in gene regulation by binding to messenger
RNAs (mRNAs). Accurate and rapid identification of miRNA target genes is helpful to reveal the mechanism of transcriptome
regulation, which is of great significance for the study of cancer and other diseases. Many bioinformatics methods have been
proposed to solve this problem, but the previous research did not further study the encoding of the nucleotide sequence. In
this paper, we developed a novel method combining word embedding and deep learning for human miRNA targets at the site-
level prediction, which is inspired by the similarity between natural language and biological sequences. First, the word2vec
model was used to mine the distribution representation of miRNAs and mRNAs. Then, the embedding is extracted
automatically via the stacked bidirectional long short-term memory (BiLSTM) network. By testing, our method can effectively
improve the accuracy, sensitivity, specificity, and F-measure of other methods. Through our research, it is proved that the
distributed representation can improve the accuracy of the deep learning model and better solve the miRNA target site
prediction problem.

1. Introduction

MircroRNAs (miRNAs) are small single-stranded RNA
molecules with a length of 22 nucleotides (nts), which are
widely found in eukaryotes [1]. Mature miRNAs combine
with proteins to form RNA-induced silencing complexes
(RISC) that cause mRNA hydrolysis or inhibit translation
by binding to the target sites of mRNA [2]. The miRNAs
regulate more than 60% of protein-coding genes in humans
and other mammals and play crucial roles in many biologi-
cal processes, including cell development, differentiation,
proliferation, and apoptosis [3]. Past evidence has shown
that miRNAs are also closely associated with diseases such
as cancer and metabolic abnormalities [4, 5]. However, up
to now, the functions of a large number of miRNAs are still
unclear. Therefore, finding the target sites of miRNA is of
great significance for understanding its function and regula-
tory mechanism.

For miRNA target gene research, there are currently
three types of methods that can effectively find the target

sites of miRNA, but there are still some problems to be
improved. The method based on the biological experiment
[6] can find target genes accurately, but the artificial experi-
ment is time-consuming and expensive. Although the
method based on database [7] search and matching can get
the result quickly but is inaccurate, it cannot determine the
information not included in the database. A result of the
above method problems prompted the development of
machine learning algorithm tools. With the continuous
development of artificial intelligence technology, most of
the recent methods are based on deep learning models have
a great result. DeepTarget [8] is an end-to-end model at the
two levels of processing site and gene. The feature extraction
of miRNA and mRNA is carried out by autoencoder, respec-
tively, and then uses gate recurrent unit (GRU) to learn the
sequence-to-sequence interactions between miRNA and
their targets. DeepMirTar [9] uses 750 manually extracted
features in 7 categories, using a stack denoising autoencoder
and achieves 93% accuracy at the site level. Xueming et al.
[10] use a multilayer convolutional neural network (CNN)
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stack structure, processing site, and gene levels prediction,
and the model can use full-length mRNAs as input. How-
ever, even though these deep learning methods have
achieved good results, there are still some problems that
need to be improved. In the past, the traditional methods
used the simulation method to generate negative class data
[8, 9], which would increase the probability of false-
positive and the poor generalization ability [11]. In recent
years, some studies add more and more artificial features,
even deep learning-based methods [9], but feature engineer-
ing is time-consuming and laborious and may bring in sub-
jective influence factors. Moreover, most of the past methods
used one-hot coding [8, 11], which treated the nucleotide
sequence as a series of meaningless letters without the bio-
logical significance of the sequence.

To solve the above problems, a novel end-to-end target
gene prediction method at the site level is proposed in this
paper. From a new perspective, based on the similarity
between biological sequences and natural languages, a neural
network is used to learn distribution representation of
miRNA and mRNA sequences [12]. In our method, miRNA
and mRNA were processed as two different languages, and
the nucleotides in the sequence were treated as words, refer-
ring to the word embedding method commonly used in nat-
ural language processing (NLP) tasks. Compared with the
one-hot representation, the distributed representation uses
a dense vector to represent nucleotides, which can describe
the similar relationship between nucleotides to a certain
extent, and thus obtain sequence embedding with more
information. In addition, the positive and negative class
sample data used in this paper are all verified by a variety
of experiments to avoid the problems caused by the mock
data in the past. The original sequence data is processed by
the word embedding model and directly entered into the
neural network for feature extraction and final classification,
omitting the manual feature engineering steps. Finally,
through 5-fold cross-validation, our method outperforms
other commonly used advanced database-based and deep
learning methods on the two data sets.

2. Materials and Methods

2.1. Data Description. The prediction of miRNA target genes
can be divided into site-level and gene-level, and the main
difference lies in the different data. The method proposed
in this paper deals with site-level prediction, the data
included miRNA sequences and candidate target sites
(CTS), and the sample was labeled binding or not. The data-
set used in the experiment are all from public databases, and
the positive and negative pairs have been verified via biolog-
ical experiments. We utilize experimental negative data
instead of mock ones, and the problem of high false positives
in the current prediction model can be solved. The dataset
for this experiment consists of two public databases that
have been used in recent studies [11]. Diana-Tarbase [13]
provided experimentally verified miRNA-mRNA interaction
information, including 121,090 positive and 2940 negative
pairs. Mirtarbase [14] provides 410,000 positive pairs of
miRNA-mRNA interactions. Through screening and delet-

ing data with contradictory results in different experiments
and merging duplicate data, the gene-level matching data
of 151956 positive and 548 negative pairs verified by many
kinds of experiments were finally obtained. According to the
biological characteristics of miRNA-mRNA binding, multiple
miRNAs can bind to one mRNA at the same time, and one
miRNA can also bind to multiple CTS. Therefore, although
there are only 548 negative samples at the gene level, by
screening out CTS at the gene level, we can finally get samples
with relatively equal positive and negative classes.

To make a site-level miRNA and CTS pairing information
dataset, two databases, PAR-CLIP [15] and CLASH [16],
should be utilized to provide the site-level pairing information
of miRNA-mRNA verified by experiments. The positive pairs
that form stable duplexes, namely, those have negative free
energy based on ViennaRNA [17], are remained and comple-
mented by including broadly conserved sites from TargetS-
canHuman database [18]. Similarly, the negative pairs that
have length of up to 30 nts and form stable duplexes are con-
sidered as experimentally verified negative pairs. As the result,
33,142 site-level positive and 32,284 site-level negative pairs
are used to train the proposed approach.

2.2. Distribution Representation of miRNA and mRNA
Sequences. To obtain the distribution and expression of
miRNA and mRNA, we use the mature miRNA and mRNA
sequences of the human genome as corpus, and word2vec
[19, 20] is used for training, respectively. There are two net-
work structures of skip-gram and Bag-of-Words in word2-
vec. Since it has been found in some studies that skip-gram
has better results, this article uses the skip-gram model,
which predicts the words around the input word. We treat
nucleotides as words, and word2vec with the skip-gram
[21] model acquires a distributed representation for each
nucleotide by training the three layers neural network, as
shown in Figure 1. For example, if a sequence consists of T
nucleotides, wt stands for the t-th nucleotide, and the model
predicts the nucleotides appearing near wt . For a given
sequence (w1, w2, …, wt), the goal of training model is to
maximize the mean log probability:

max
1
N
〠
N

n−1
〠

−c≤m≤c,m≠0
log P wn+m wnjð Þ: ð1Þ

c stands for the distance to the central word; the log
probability distribution can be defined as follows:

log P w0 wtjð Þ = log
ev′w0Tvwt

∑W
w=1e

v′wTvwt
, ð2Þ

where the vw and v′w are the input and output vector of
nucleotide w, respectively. W is the size of training miRNA
or mRNA training lexicon. In recent bioinformatics studies,
some methods [22, 23] have been used to train word embed-
ding models for DNA, protein, and lncRNA, and it has been
proved that this method is superior to the traditional pro-
cessing sequence embedding methods such as one-hot and
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K-mers. In this paper, the word2vec tool in the Gensim
package [24] was used for pretraining. The training process
of the skip-gram model was improved, and negative sam-
pling and hierarchical softmax methods were used to
improve the training speed. The training data are derived
from miRBase [25] and Refseq [26] databases, which store
the most authoritative and complete relevant sequence data
at present. The overall sequence embedding process is
shown in Figure 2, where the training process of miRNA
and mRNA is named mi2vec and m2vec.

The embedding dimension is considered to be the most
important hyperparameter parameter [27] in NLP, so
vector size = 2, 4, 10, 20, 30, 50, and 100 different output
dimensions are set to facilitate the comparison and selection
of the optimal parameters in subsequent experiments. The
Gensim package parameters of the model are min count =
1, window = 5, and epoch = 10. Where window stands for c
in the previous article, and the epoch is the count of itera-
tions over the corpus. When the min_count (means mini-
mum word frequency) is set too high, the model only
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Figure 1: The skip-gram model structure. Skip-gram is trained by predicting words surrounding the central word, after training, the weights
matrix W of the hidden layer is obtained, that is, word vectors.
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Figure 2: The procedure for training mi2vec and m2vec. The corpus of miRNA and mRNA sequences obtained from miRBase and Refseq.
Treat each miRNA and mRNA sequence as a special sentence, and treat the nucleotides as the words that make up the sentence. Use the
skip-gram model to train a vocabulary list composed of nucleotides, and get the vectorized representation of the nucleotides.
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counts high-frequency words, which is not conducive to
learning discriminative word vectors from sequence repre-
sentation. Other parameters are default.

2.3. Deep Learning Method. Long short-term memory
(LSTM) is an artificial recurrent neural network (RNN)
architecture used in the field of deep learning and is com-
posed of the forget gate, the input gate, and the output gate.
The cell remembers values over arbitrary time intervals and
the three gates regulate the flow of information into and out
of the cell. Figure 3 shows LSTM cell structure.

The state of forget gate is related to the output of last cell
ht−1:

f t = σ Wf • ht−1, xt½ � + bf
� �

, ð3Þ

where σ is the sigmoid function, and xt represents the cell
input of time t. It is the same for it , and the only difference
is that the weight matrix isWi and bias is bi. And for the cell
state Ctemp, the σ function is replaced by tanh and also with a
Wc and bc.

it = σ Wi• ht−1, xt½ � + bið Þ, ð4Þ

ctemp = tanh Wc• ht−1, xt½ � + bcð Þ: ð5Þ

And the new cell state ct can be calculated in equation:

ct = f t•ct−1 + it•ctemp: ð6Þ

The output ot and hidden state ht for this moment can
be calculated as follows:

ot = σ Wo• ht−1, xt½ � + boð Þ, ð7Þ

ht = ot•tanh ctð Þ: ð8Þ

LSTM networks are well-suited to classifying, process-
ing, and making predictions based on time series data since
there can be lags of unknown duration between important
events in a time series, and it can deal with the vanishing
gradient problem that can be encountered when training tra-
ditional RNNs. Because of its design characteristics, LSTM is
very suitable for processing text and biological data.

However, it is still impossible to encode information
from back to front when using LSTM to model the sequence.
BiLSTM consists of two LSTMs: one taking the input in a
forward direction, and the other in a backward direction.
BiLSTM can obtain the information of the two directions
of the positive sequence and the reverse sequence of the
sequence and then combine the output (e.g., knowing what
nucleotides immediately follow and precede a nucleotide in
a sentence).

As shown in Table 1, through experimental comparison
of basic RNN, GRU, LSTM, and BiLSTM, the accuracy of
LSTM in the model test is higher than that of other struc-
tures, bidirectional and unidirectional tests are conducted
in two-layer stacked LSTM, respectively, and it is finally
proved that BiLSTM can achieve better results. We used ten-
sorboard tool to record model parameters, and weights,
parameters, layers, and other information can be referred
to supplementary file Figure S1 and S2.

Ct – 1, ht – 1 Ct + 1, ht + 1
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Figure 3: The structure of LSTM-cell.

Table 1: The two layers of RNN selected different architectures for
comparison.

First layer Second layer Accuracy (%)

RNN RNN 90.93

GRU GRU 92.96

LSTM LSTM 93.16

LSTM BiLSTM 92.87

BiLSTM LSTM 93.23

BiLSTM BiLSTM 93.45
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2.4. Overall Workflow. Figure 4 shows an overview of the
method proposed in this paper. First, the original sequence
data of miRNA and CTS were processed in a uniform length.
According to the maximum length of human mature
miRNA is 26 nts, the seed region binding to CTS is usually

the 2-8 nucleotide site [1], so the input sequence was all
filled to 30 nts.

Through the vector representation of each base obtained
through the mi2vec and m2vec processes in the previous
chapter, each nucleotide in the input sequence is replaced
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Figure 4: The overall workflow. Fill the input miRNA and CTS original sequence to a uniform length, and then replace each nucleotide in
the sequence with the vector trained by mi2vec and m2vec. The 50-dimension embedding of miRNA and CTS passes through the first
BiLSTM layer, respectively, and then concatenates the outputs feature maps, then passes through the second BiLSTM get to 200-
dimensions, and finally, uses the linear layer to reduce the dimension to 2-dimensions and prediction by softmax.
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with a vector, and our input data is finally converted into a
50-dimensional matrix.

In many NLP studies [28, 29], the method of word
embedding combined with RNN has a breakthrough perfor-
mance. According to the experimental results of different
RNN structures in the last chapter, we adopt the BiLSTM
for feature extraction. Use BiLSTM to extract the sequence
features of miRNA and CTS, respectively. Then, to model
interactions between miRNA and CTS, the feature map out-
put by the first layer of BiLSTM is concatenated into one
tensor. In this way, two layers of stacked BiLSTM have the
advantage of learning both the intrinsic spatial and sequen-
tial features of miRNA and CTS. For details about the vari-
ation of the tensor dimension, see Figure S1.

miRNA target site prediction can treat the target as a
dichotomous problem to determine whether miRNA binds
or not to CTS, and the sample label indicates whether bind-
ing occurs. After the feature extraction via stacked BiLSTM,
the feature dimension is gradually reduced to 2-dimensional
output by using two linear layers. Finally, the combination
relationship was determined by the softmax function.

3. Results and Discussions

In this study, a novel miRNA and CTS interaction predic-
tion model based on sequence distributed representation
and deep learning is proposed. In this chapter, the following
experiments are designed to verify the performance of the
model. First, the effects of one-hot and word2vec coding
on the accuracy of deep learning models were compared,
and the sequence of distributed representation is visualized
and analyzed. Then, a variety of evaluation indexes will be
used to verify the performance of the model and compared
with other target prediction methods. Finally, each result
of this experiment is discussed in depth.

3.1. Impact of Distributed Representation on Model. In this
paper, one-dimensional convolutional neural networks
(CNN1d) and BiLSTM, two models which are good at pro-

cessing sequence data, are selected to test study the influence
of the data embedding method on the accuracy of neural
networks. One-hot coding and different dimensions of
word2vec output were used in the comparison experiment.
For training, we optimized the weighted cross-entropy loss
function using Adam optimizer (batch size: 32, the number
of epochs: 100). The remaining hyperparameters used were
set to be the default PyTorch implementation, and the accu-
racy on the test set was recorded.

It can be seen from Figure 5 that the word2vec method
can effectively improve the accuracy of the two deep learning
models of CNN1d and BiLSTM. The results show that the
method of word embedding is equally effective for biological
sequences of miRNA and mRNA. Additionally, we also
tested the one-hot encoding as the input of the normal
LSTM model, and the result was 92.1% accuracy.

Biological sequences vectorized by representation learn-
ing can be directly used for biological tasks, such as function
and structure prediction. Such as if the vector similarity
between proteins or RNAs is high, it can be inferred that
they possess similar functions and structures. The vector
similarity/distance can be calculated using linear algebra
operations, such as dot product, Euclidian distance, and
cosine similarity.

In order to explore the embedding meaning of miRNA
and mRNA sequences, the 20-dimensional vector with the
best performance on CNN1d was selected as an example
for visualization research, and the similarity between nucle-
otides was analyzed through cosine distance calculation. As
can be seen from the visualization analysis of miRNA and
mRNA, Figures 6(a) and 6(b) are visualized heat maps of
miRNA and mRNA distributed as 20-dimensional vectors,
respectively, and it can be seen from the diagram that the
representation of each nucleotide is different. By calculating
the cosine distance of the vector, it can be seen from
Figures 6(c) and 6(d) that the similarity between the nucleo-
tides in miRNA and mRNA is not the same. The smaller the
distance, the more similar the nucleotides. Particularly, the
successful encoding of words via representation learning
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Figure 5: Different embedding influences the deep-learning model on accuracy. (a) Shown is the use of one-hot and word2vec (2, 4, 10, 20,
30, 50, and 100-dimensions) as the input of the CNN1d model. (b) The same test using the BiLSTM model.
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has been recognized as an essential research area because the
performance of NLP and deep learning depends on the qual-
ity of the representation. Thus, a good representation of a

biological sequence is critical for clustering, function, struc-
ture, and disorder prediction.

3.2. Parameters’ Effect on the Model. The training of the neu-
ral network model is determined by its own structural
parameters and hyperparameters. In order to obtain the
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Figure 6: Visualization analysis of miRNA and mRNA. (a) The nucleotide 20 dimension vector representation of miRNA. (b) The
nucleotide 20 dimension vector representation of mRNA. (c) The cosine distance between miRNA nucleotides was calculated based on
the 20-dimensional vector. (d) The cosine distance between mRNA nucleotides was calculated based on the 20-dimensional vector.

Table 2: Model structure comparison.

First
BiLSTM

Second
BiLSTM

First
linear

Second
linear

Accuracy
(%)

8 32 32 2 92.23

16 32 32 2 92.72

32 32 32 2 93.01

50 32 32 2 93.34

64 32 32 2 92.75

128 32 32 2 92.17

50 8 8 2 92.89

50 16 16 2 92.58

50 64 64 2 92.48

50 128 128 2 92.75

Table 3: Model hyperparameter comparison.

Optim lr Batch size Accuracy (%)

Adam

0.0005 32 92.5

0.001 32 93.34

0.005 32 91.23

0.01 32 50.01

0.001 8 92.11

0.001 16 92.96

0.001 64 93.02

0.001 128 92.53
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model with optimal performance, the following experiments
are designed to determine the model parameters. First, we
will compare each layer output unit of BiLSTM and linear
layers in order to determine the best model structure. Sec-
ond, we adjust for the hyperparameters of the training and
study the influence of hyperparameters on the experimental
results.

3.2.1. Adjusting Structural Parameters. Adjust our model
structure according to previous methods [30]. Input dimen-
sion is represented by a 50-dimension vector of mi2vec and
m2vec according to the experimental results of 3.1, so the
input dimension is 50, and the output dimension is also set
at 50. In order to verify the previous theory and reference
comparison, the first layer BiLSTM set hidden size value
(16, 32, 50, 64, 128) for the experimental test, the hyperpara-
meters are temporarily set: batch size = 32, lr = 0:001, and
the optimizer uses Adam.

The adjustment results of the model structure are shown
in Table 2. After trying 10 model structures, 50-32-32-2 is
finally determined, where the value represents the number
of output units of each layer of the network.

3.2.2. Adjusting Hyperparameter. Hyperparameters play an
important role in the training model. Typical hyperpara-
meters include lr, batch size, and the optimizer. We use the
usual method of adjusting the hyperparameters: fix all the
hyperparameters and then try to modify one of them. Adam
has excellent performance and is the most widely used in
today’s deep learning models. In addition, an attempt to
use a stochastic gradient descent (SGD) optimizer failed to
converge the loss function in this experiment, so Adam is
determined to be used as the optimizer. Then, adjust lr and
batch size, respectively, and the results are shown in Table 3.

It can be seen from the results that the model is sensitive
to hyperparameters, and some wrong settings will make the

Table 4: Performance evaluation metrics on miRNA target sites prediction.

Dataset Method Acc (%) Sens (%) Spec (%) Fmeasure (%) p value b

Mock

TargetScan 58.01 60.23 59.22 59.72 p < 10−6

PITA 49.81 58.72 40.82 48.16 p < 10−6

DeepMirTar 93.48 92.35 94.79 93.55 p < 10−4

Our method a 96.86 96.97 96.75 96.91 —

Experimented

TargetScan 55.77 39.45 72.08 47.12 p < 10−6

PITA 50.53 13.65 87.41 21.62 p < 10−5

CNN1d a 91.05 94.06 87.96 91.40 p < 10−3

Our method a 96.04 95.65 96.44 96.09 —

a: 5-fold cross-validation results mean. b: the p value according to Student t-test (Acc) and indicating comparison between the our model and other methods
in experimented test dataset.
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model unable to converge. By comparison, the model
achieved the highest accuracy when lr = 0:001. Although
the selection of batch size has little effect on the results, the
larger batch size can significantly reduce the training time.
So we made a trade-off and set the batch size = 32.

3.3. Contrast Experiment. We selected the optimal parame-
ters through a series of experiments mentioned above. In
addition, the miRNA and mRNA sequence data were
cleaned, and the unverified sequences were removed and
the pretraining again. Finally, our model is compared with
some site prediction methods.

3.3.1. Evaluation Indicators.We use cross-validation for test-
ing. Record test results using a confusion matrix. As a
dichotomous problem of miRNA target gene site prediction,
accuracy (Acc), sensitivity (Sens), specificity (Spec), and F
-measure are commonly used as evaluation indexes of the
comprehensive performance of the prediction model [11,
31, 32]. The calculation formula is as follows:

Acc = TN + TP
TN + TP + FN + FP

, ð9Þ

Sens =
TP

TN + FN
, ð10Þ

Spec =
TN

TN + FP
, ð11Þ

F −measure =
2TP

2TP + FP + FN
: ð12Þ

According to the definition of confusion matrix of
dichotomy, TP, FP, TN, and FN represent true positive, false
positive, false negative, and true negative, respectively. Also,
when we compare the predictive performance between
methods, perform some statistical tests, calculating p values
(p < 0:0001; Student’s t-test).

3.3.2. Performance Comparison of Two Datasets and
Different Methods. In order to prove the generalization abil-
ity of our model, the 5-fold cross-validation method was
used to randomly divide the original dataset into five folds,
of which four folds were used as training and one fold as a
test. The design experiment was compared with the current
commonly used database prediction tools and deep learning
target site prediction methods. These include two databases,
PITA and TargetScan [33, 34], and two deep learning
methods, CNN1d and DeepMirTar [9, 11]. The DeepMirTar
and the data set used in this paper were, respectively, used
for comparative experiments. DeepMirTar uses 750 features
to train their model, but does not provide 750 features and
does not support input of other data, so we only use the
dataset for comparison and cannot report the performance
of the model on experimented data. The results and compar-
ison methods are shown in Table 4.

From the comparative experimental results, it can be
seen that on the dataset used in the DeepMirTar paper,
our method achieves better results than the DeepMirTar
method. Moreover, in this paper, the neural network is used
to automatically extract features instead of manual feature
engineering, which greatly reduces the complexity, saves a
lot of time, and has higher accuracy. The negative pairs in
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the dataset used in this paper have been verified by a variety
of experiments to replace the mock data used by DeepMir-
Tar. In comparison with database methods, the data verified
by experiments has higher specificity, which can reduce the
probability of false positive in the prediction. Finally, for
the experimental data used in this paper, through word2vec
pretraining data, combined with the BiLSTM model, and
compared with one-hot coding and CNN1d model, our
method has been improved in Acc, Sens, Spec, F-measure,
and p value.

To further evaluate our model, we plotted the prediction
and recall (PR) and ROC curves of prediction on the test
dataset. PR curves and average precision (AP) often quantify
retrieval efficacy in general information retrieval. The PR
curve was plotted based on the prediction results of preci-
sion and recall. The average precision was calculated and
shown in Figure 7. Our model outperforms other methods
with an average accuracy of 97.77%.

Also, we plotted the receiver-operating characteristic
curve (ROC) with the calculated area under the ROC curve
(AUC). With decreasing thresholds on the decision function
used, corresponding false positive rates (FPR) and true pos-
itive rates (TPR) were computed. ROC curve was drawn
based on a series of FPR and TPR. As shown in Figure 8,
the AUC of ROC curve is 97.73%, indicating high perfor-
mance for recognizing the target site of the miRNAs.

3.4. Discussion of the Biological Significance of the Model. In
recent years, studies have shown that miRNAs can be used for
the diagnosis, treatment, and prognosis of cancer patients
[35]. miRNAs that are upregulated in cancer cells and pro-
mote carcinogenesis by suppressing tumor suppressor genes
are considered oncogenic miRNAs, while downregulatedmiR-
NAs that typically prevent cancer development by inhibiting
proto-oncogene expression are known as tumor suppressor
miRNAs. Through miRNA and mRNA binding sites, efficient
miRNA mimics can be designed and synthesized for proto-
oncogenes or tumor suppressor genes.

When conditions permit, RT-qPCR technology [36] is
often used for experimental detection, but for researchers with
limited funds and time, reliable bioinformatics tools are
needed to predict miRNA target sites. On the other hand,
the new method proposed in this paper is an end-to-end
model combining representation learning and deep learning.
Representation learning can automatically learn deeper fea-
ture information from raw data. The model can directly use
the original sequence as input and finally get the prediction
result. It is no longer necessary to rely on human experience
to design features from data, which greatly reduces the diffi-
culty of model design and use. For biological researchers, the
use of this model does not require prior knowledge of machine
learning feature extraction and only relies on bioinformatics
knowledge to assist in target site prediction.

4. Conclusions

miRNA is an indispensable component of complex tran-
scriptome regulation, which affects life processes and related
diseases. To study the function and mechanism of miRNA,

the determination of miRNA binding sites is the primary
goal. In this study, we developed a deep learning method
for predicting miRNA target site by pretraining distribution
representation model, using skip-gram word embedding
model and human genome-wide miRNA and mRNA
sequences. By comparing the performance of different cod-
ing methods and other prediction methods, the results prove
the effectiveness of the proposed method.

Through other recent literature and our research, it is
proved that the NLP method is effective and feasible to deal
with the biological sequence problem. The experiment
proved this feature extraction scheme works well. However,
word2vec has certain limitations. Since there is a one-to-one
correspondence between words and vectors, the polysemy
problem cannot be solved. For example, bases or subse-
quences at different positions in a sequence represent differ-
ent biochemical and biophysical significance. Word2vec is a
static method. Although it is general, it cannot be dynami-
cally optimized for specific tasks. So we can try to experi-
ment with dynamic embedding models in the future.
Although NLP-based biological sequence analysis is in its
early stages and warrants further development, in the light
of novel challenges in biology, such as single-cell analysis,
genome design, and epigenetic regulation research, repre-
sentation learning may contribute to the progression of bio-
informatics studies, thus revealing the grammar of life. With
the continuous development of NLP models, more advanced
NLP models can be tried to deal with biological sequences
and solve biological problems in the future.
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We used TensorBordX to record all parameter changes
that the model went through from input to output, where
RNN represents our deep learning model, LSTM (rnn1)
represents the first layer of BiLSTM, LSTM (rnn2) repre-
sents the second layer of BiLSTM, Linear (fc1) represents
the first linear layer, and Linear(fc2) represents the second
linear layer. Figure S1: where RNN represents our deep
learning model, LSTM (rnn1) represents the first layer of
BiLSTM, LSTM (rnn2) represents the second layer of
BiLSTM, Linear (fc1) represents the first linear layer, and
Linear(fc2) represents the second linear layer. Figure S2:
details of the internal parameters of the BiLSTM structure.
(Supplementary Materials)

References

[1] N. Bushati and S. M. Cohen, “MicroRNA functions,” Annual
Review of Cell and Developmental Biology, vol. 23, no. 1,
pp. 175–205, 2007.

[2] R. I. Gregory, T. P. Chendrimada, N. Cooch, and
R. Shiekhattar, “Human risc couples microrna biogenesis and
posttranscriptional gene silencing,” Cell, vol. 123, no. 4,
pp. 631–640, 2005.

[3] M. Ha and V. N. Kim, “Regulation of microRNA biogenesis,”
Nature Reviews Molecular Cell Biology, vol. 15, no. 8,
pp. 509–524, 2014.

[4] L.-A. MacFarlane and P. R. Murphy, “MicroRNA: biogenesis,
function and role in cancer,” Current Genomics, vol. 11,
no. 7, pp. 537–561, 2010.

[5] V. Rottiers and A. M. Näär, “MicroRNAs in metabolism and
metabolic disorders,” Nature Reviews Molecular Cell Biology,
vol. 13, no. 4, pp. 239–250, 2012.

[6] E. M. Kroh, R. K. Parkin, P. S. Mitchell, and M. Tewari, “Anal-
ysis of circulating microrna biomarkers in plasma and serum
using quantitative reverse transcription-pcr (qRT-PCR),”
Methods, vol. 50, no. 4, pp. 298–301, 2010.

[7] Á. L. Riffo-Campos, I. Riquelme, and P. Brebi-Mieville, “Tools
for sequencebased mirna target prediction: what to choose?,”
International Journal of Molecular Sciences, vol. 17, no. 12,
p. 2016, 1987.

[8] B. Lee, J. Baek, S. Park, and S. Yoon, “Deeptarget: end-to-end
learning framework for microrna target prediction using deep
recurrent neural networks,” in Proceedings of the 7th ACM
international conference on bioinformatics, computational
biology, and health informatics, pp. 434–442, Seattle WA
USA, 2016.

[9] M.Wen, P. Cong, Z. Zhang, L. Hongmei, and T. Li, “DeepMir-
Tar: a deep-learning approach for predicting human mirna
targets,” Bioinformatics, vol. 34, no. 22, pp. 3781–3787, 2018.

[10] X. Zheng, L. Chen, X. Li, Y. Zhang, S. Xu, and X. Huang, “Pre-
diction of mirna targets by learning from interaction
sequences,” PLoS One, vol. 15, no. 5, article e0232578, 2020.

[11] B. Lee, “Deep learning-based microrna target prediction using
experimental negative data,” IEEE Access, vol. 8, pp. 197908–
197916, 2020.

[12] H. Iuchi, T. Matsutani, K. Yamada et al., “Representation
learning applications in biological sequence analysis,” Compu-
tational and Structural Biotechnology Journal, vol. 19,
pp. 3198–3208, 2021.

[13] I. S. Vlachos, M. D. Paraskevopoulou, D. Karagkouni et al.,
“DIANA-TarBase v7.0: indexing more than half a million
experimentally supported miRNA:mRNA interactions,”
Nucleic Acids Research, vol. 43, no. D1, pp. D153–D159,
2015.

[14] H.-Y. Huang, Y.-C.-D. Lin, J. Li et al., “miRTarBase 2020:
updates to the experimentally validated microRNA-target
interaction database,” Nucleic Acids Research, vol. 48, no. D1,
pp. D148–D154, 2020.

[15] S. Grosswendt, A. Filipchyk, M. Manzano et al., “Unambigu-
ous identification of miRNA:target site interactions by differ-
ent types of ligation reactions,” Molecular Cell, vol. 54, no. 6,
pp. 1042–1054, 2014.

[16] A. Helwak, G. Kudla, T. Dudnakova, and D. Tollervey, “Map-
ping the human miRNA interactome by CLASH reveals fre-
quent noncanonical binding,” Cell, vol. 153, no. 3, pp. 654–
665, 2013.

[17] R. Lorenz, S. H. Bernhart, C. Höner zu Siederdissen et al.,
“ViennaRNA package 2.0,” Algorithms for Molecular Biology,
vol. 6, no. 1, pp. 1–14, 2011.

[18] V. Agarwal, J.-W. N. GeorgeWBell, and D. P. Bartel, “Predict-
ing effective microrna target sites in mammalian mrnas,” eLife,
vol. 4, article e05005, 2015.

[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” 2013,
https://arxiv.org/abs/1301.3781.

[20] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” Advances in neural information processing
systems, pp. 3111–3119, 2013.

[21] C. McCormick, Word2vec tutorial-the skipgram model, 2016,
http://mccormickml.com/2016/04/19/word2vectutorial-the-
skip-gram-model.

[22] Q. Zou, P. Xing, L. Wei, and B. Liu, “Gene2vec: gene subse-
quence embedding for prediction of mammalianN6-
methyladenosine sites from mrna,” RNA, vol. 25, no. 2,
pp. 205–218, 2019.

[23] H.-C. Yi, Z.-H. You, L. Cheng et al., “Learning distributed rep-
resentations of RNA and protein sequences and its application
for predicting lncRNA-protein interactions,” Computational
and Structural Biotechnology Journal, vol. 18, pp. 20–26, 2020.

[24] R. Rehurek and P. Sojka, “Software framework for topic
modelling with large corpora,” in LREC 2010 workshop on
new challenges for NLP frameworks, Citeseer, 2010.

[25] S. Griffiths-Jones, “Mirbase: the microrna sequence database,”
in MicroRNA Protocols, pp. 129–138, Springer, 2006.

[26] K. D. Pruitt, T. Tatusova, and D. R. Maglott, “Ncbi reference
sequences (refseq): a curated non-redundant sequence data-
base of genomes, transcripts and proteins,” Nucleic Acids
Research, vol. 35, no. Database, pp. D61–D65, 2007.

[27] S. Lai, K. Liu, S. He, and J. Zhao, “How to generate a good word
embedding,” IEEE Intelligent Systems, vol. 31, no. 6, pp. 5–14,
2016.

[28] B. Jang, M. Kim, G. Harerimana, S.-u. Kang, and J. W. Kim,
“Bi-LSTM model to increase accuracy in text classification:
combining word2vec cnn and attention mechanism,” Applied
Sciences, vol. 10, no. 17, p. 5841, 2020.

[29] P. F. Muhammad, R. Kusumaningrum, and A. Wibowo,
“Sentiment analysis using word2vec and long short-term
memory (lstm) for indonesian hotel reviews,” Procedia Com-
puter Science, vol. 179, pp. 728–735, 2021.

11Computational and Mathematical Methods in Medicine

https://downloads.hindawi.com/journals/cmmm/2022/4490154.f1.zip
https://arxiv.org/abs/1301.3781
http://mccormickml.com/2016/04/19/word2vectutorial-the-skip-gram-model
http://mccormickml.com/2016/04/19/word2vectutorial-the-skip-gram-model


[30] M. Tan, C. dos Santos, B. Xiang, and B. Zhou, “Lstm-based
deep learning models for non-factoid answer selection,”
2015, https://arxiv.org/asb/1511.04108.

[31] S. S. Tng, N. Q. K. Le, H.-Y. Yeh, and M. C. H. Chua,
“Improved prediction model of protein lysine crotonylation
sites using bidirectional recurrent neural networks,” Journal
of Proteome Research, vol. 21, no. 1, pp. 265–273, 2022.

[32] T. N. Hung, N. Q. Le, N. H. Le et al., “An ai-based prediction
model for drug-drug interactions in osteoporosis and paget’s
diseases from smiles,” Molecular Informatics, vol. 41, no. 6,
article 2100264, 2022.

[33] M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul, and E. Segal,
“The role of site accessibility in microRNA target recognition,”
Nature Genetics, vol. 39, no. 10, pp. 1278–1284, 2007.

[34] B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed
pairing, often flanked by adenosines, indicates that thousands
of human genes are microRNA targets,” Cell, vol. 120, no. 1,
pp. 15–20, 2005.

[35] M. Segal and F. J. Slack, “Challenges identifying efficacious
mirna therapeutics for cancer,” Expert Opinion on Drug Dis-
covery, vol. 15, no. 9, pp. 987–991, 2020.

[36] S. Egloff, N. Melnychuk, A. Reisch, S. Martin, and A. S. Klym-
chenko, “Enzyme-free amplified detection of cellular micro-
RNA by light-harvesting fluorescent nanoparticle probes,”
Biosensors and Bioelectronics, vol. 179, article 113084, 2021.

[37] Y. Sun, F. Xiong, Y. Sun, Y. Zhao, and Y. Cao, Eds., A mirna
Target Prediction Model Based on Distributed Representation
Learning and Deep Learning, 2021.

12 Computational and Mathematical Methods in Medicine

https://arxiv.org/asb/1511.04108

	A miRNA Target Prediction Model Based on Distributed Representation Learning and Deep Learning
	1. Introduction
	2. Materials and Methods
	2.1. Data Description
	2.2. Distribution Representation of miRNA and mRNA Sequences
	2.3. Deep Learning Method
	2.4. Overall Workflow

	3. Results and Discussions
	3.1. Impact of Distributed Representation on Model
	3.2. Parameters’ Effect on the Model
	3.2.1. Adjusting Structural Parameters
	3.2.2. Adjusting Hyperparameter

	3.3. Contrast Experiment
	3.3.1. Evaluation Indicators
	3.3.2. Performance Comparison of Two Datasets and Different Methods

	3.4. Discussion of the Biological Significance of the Model

	4. Conclusions
	Data Availability
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

