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A number of important human infections are caused by

positive-strand RNA viruses, yet almost none can be treated

with small molecule antiviral therapeutics. One exception is the

chronic infection caused by hepatitis C virus (HCV), against

which new generations of potent inhibitors are being

developed. One of the main molecular targets for anti-HCV

drugs is the viral RNA-dependent RNA polymerase, NS5B. This

review summarizes the search for nucleoside and nucleotide

analogs that inhibit HCV NS5B, which led to the FDA approval

of sofosbuvir in 2013. Advances in anti-HCV therapeutics have

also stimulated efforts to develop nucleoside analogs against

other positive-strand RNA viruses. Although it remains to be

validated in the clinic, the prospect of using nucleoside analogs

to treat acute infections caused by RNA viruses represents an

important paradigm shift and a new frontier for future antiviral

therapies.
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Introduction: the RNA polymerase of HCV as
the target for nucleoside analogs
Hepatitis C virus (HCV) is a member of the Flaviviridae
family. Viruses from this family all contain a single-strand,

positive-sense RNA genome of about 9.5 kb. The viral

genome encodes only one open-reading frame translated

into a polyprotein of approximately 3000 amino acids.

HCV is estimated to have infected approximately 175

million individuals worldwide, with 2–4 million new infec-

tions occurring each year [1]. Until recently, treatment

options for chronic HCV infections were largely subopti-

mal due to limited efficacy and substantial toxicity. The
www.sciencedirect.com 
standard of care (SOC) was a 24-week or 48-week course of

pegylated interferon alpha (PEG-IFN-a) in combination

with ribavirin. Effective clearance or sustained virologic

response (SVR) rate of the virus was achieved in less than

50% cases of genotype-1 infection, the most prevalent

strain of HCV in the United States and Europe. Since

2011, two inhibitors of the viral serine protease, NS3/4A,

boceprevir and telaprevir, were approved for use in com-

bination with PEG-IFN-a and ribavirin. These molecules

are called direct-acting antivirals (DAA) because they

specifically bind to, and inhibit, a viral protein required

for virus replication. Although the toxicity burden of these

newer treatment options remains high, the SVR rate in the

presence of protease inhibitors has improved to 70–80% in

difficult-to-treat genotype-1 infections [2,3]. Other DAAs

that specifically block HCV enzymatic functions have been

intensely studied over the last decade, and the polymerase

function of NS5B has emerged as one of the most attractive

targets for the next generation of anti-HCV therapy.

The HCV NS5B protein is an RNA-dependent RNA

polymerase (RdRp). NS5B is required both for replication

of the viral genome by synthesis of the minus-strand

intermediate and at the transcription level for synthesis

of viral mRNA. The RdRp enzymatic activity of NS5B is

unique to viruses and not found in human cells, which

makes NS5B an attractive target for antiviral drug de-

velopment (see [4] for a more detailed review on the

structure and functions of NS5B). The NS5B protein is

composed of 591 amino acids. Similar to other known

RdRps, the HCV NS5B contains six conserved motifs

designated A–F. The amino acids involved in the cata-

lytic activity of NS5B are located within motif A (aspar-

tate at position 220) and the catalytic triad GDD at

position 318–320 in motif C [5��]. The orientation of

these residues in the active site of NS5B and their

contribution to the catalytic activity are supported by

the crystal structure of the protein [5��,6,7��]. Using

the polymerase right-hand analogy model, the HCV

NS5B protein features the fingers, palm, and thumb

subdomains (Figure 1a). Unlike the traditional open-hand

conformation shared by many DNA polymerases, the

HCV NS5B features an encircled active site due to

extensive interactions between the fingers and thumb

subdomains. These contacts restrict the flexibility of the

subdomains and favor the first steps — or initiation — of

RNA synthesis leading to the formation of the primer

strand. Therefore, important structural changes involving

an opening of the thumb and the fingers are required for
Current Opinion in Virology 2014, 9:1–7

http://crossmark.crossref.org/dialog/?doi=10.1016/j.coviro.2014.08.004&domain=pdf
jdeval@aliosbiopharma.com
lbeigelman@aliosbiopharma.com
http://www.sciencedirect.com/science/journal/18796257/9
http://dx.doi.org/10.1016/j.coviro.2014.10.002
http://dx.doi.org/10.1016/j.coviro.2014.08.004
http://www.sciencedirect.com/science/journal/18796257


2 Virus replication in animals and plants

Figure 1

Thumb

E-RNA + NTP E-RNAn+1 + PPi
catalysisbinding

Palm

4A5′
NTR

3′
NTR

(a)

(b)

Chain  termi nator  

Natu ral NTP

GDD

2 3 4B 5A 5Bp
7C E1 E2

Structural Non-structural

RdRp

β-hairpin

Fingers

E-RNA-NTP

Current Opinion in Virology

Structure and function of HCV RNA polymerase. (a) Organization of the

structural and non-structural proteins encoded within the HCV genome.

The RNA-dependent RNA polymerase function is carried by NS5B, the

last gene at the 30-end of the open reading frame. The crystal structure

of the NS5B protein shows a closed right-hand conformation, with the

fingers (blue), palm (magenta), and thumb (green) subdomains

(PDB = 1YVF, genotype 1b). The active site for nucleotide incorporation

is located nearby the GDD catalytic motif (yellow) protein [5��,6,7��]. (b)

During the elongation phase, RNA polymerases function by interactive

steps of nucleoside 50-triphoshpate (NTP) incorporation. The first step

requires ground-state binding of the NTP, followed by catalysis of the

new phosphodiester bond. The incorporation of a chain terminator at the

30-end of the growing primer prevents the next step of NTP binding and/

or catalysis. E-RNA, enzyme-RNA; NTR, non-translated region; PPi,

pyrophosphate.
primer extension during the elongation steps [8,9�,10].

Another unique feature of NS5B is its b-hairpin loop that

protrudes into the active site located at the base of the

palm subdomain (Figure 1a). This 12 amino acid loop

located within the thumb (residues 443–453) was

suggested to interfere with binding to double-stranded

RNA due to steric hindrance. Its deletion allows the

enzyme to favor primer-dependent RNA synthesis

[11,12�,13], and the resulting truncated protein was co-

crystallized in the elongation mode with double-stranded

RNA [14]. Primer extension also requires the C-terminal

part of NS5B to move away from the catalytic site, a

structural feature shared with other RNA polymerases

[15]. Once these important conformational changes take

place, the enzyme becomes processive and the efficiency

of RNA synthesis increases considerably [16�,17]. It is

precisely during the elongation phase of RNA synthesis

that HCV NS5B is inhibited by nucleotide analogs acting

as chain terminators (Figure 1b).
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The evolution of HCV RNA polymerase
inhibitors leading to the discovery of
sofosbuvir
The initial major class of nucleoside analogs of thera-

peutic potential to demonstrate potent inhibition of HCV

RNA polymerase activity were 20C-methyl-ribonucleo-

sides, The first 20C-methyl ribonucleosides were origin-

ally synthesized in the 1960s [18]. Later, 20C-methyl-

uridine triphosphate was found to act as a chain termin-

ator of Escherichia coli RNA polymerase [19,20]. In anti-

viral assays, 20C-methyl-cytidine was originally described

as an inhibitor of bovine diarrhea virus (BVDV), a virus

closely related to HCV and used as a surrogate [21–24].

Although the compound was highly potent and selective

in tissue culture, its low bioavailability made it unsuitable

for oral dosing. This limitation was overcome by adding

an L-valine ester group at the 30-OH position on the sugar

(Figure 2a). The resulting drug, valopicitabine (NM283),

was efficacious when dosed orally in HCV-infected chim-

panzees [25]. Although this nucleoside significantly

reduced HCV viral load in patients, its development

was discontinued in phase II clinical trials due to dose-

limiting gastrointestinal (GI) toxicity [26]. Other 20C-

methyl nucleosides such as 20C-methyl-adenosine or

20C-methyl-7-deaza-adenosine have been reported to

inhibit HCV replication [27��,28], but none were evalu-

ated in clinical trials presumably due to tissue retention

issues in preclinical species [29]. In vitro, prolonged

culture of HCV replicon-containing hepatocytes with

20C-methyl-nucleosides results in the selection of a single

S282T mutation within NS5B, and the resulting poly-

merase is resistant to this class of nucleosides [30–32].

The second class of anti-HCV nucleosides is the 40-
azido-nucleoside scaffold. Molecules in this class

resemble 30-azido-thymidine (AZT) and were originally

synthesized for testing against human immunodefi-

ciency virus [33�]. During compound library screening

in the sub-genomic replicon assay, 40azido-cytidine

was later identified as a potent inhibitor of HCV

[34]. In its 50-triphosphate form, the inhibitor was

recognized as a substrate for HCV NS5B, and its

incorporation to the growing RNA strand resulted in

immediate chain termination. One advantage of 40-
azido-cytidine over the 20C-methyl-nucleosides was

the lack of cross-resistance associated with the presence

of the S282T mutation [34,35]. The uridine analog

counterpart was inactive in the replicon assay due to

lack of intracellular phosphorylation. However, the 50-
triphosphate forms of both cytidine and uridine analogs

were equally potent as chain terminators against HCV

NS5B. The pharmacokinetic properties of 40-azido-cyti-

dine were further improved with the triester prodrug

balapiravir (Figure 2a), which achieved a 3.7 log10

reduction in viral RNA at the highest dose in a 14-

day phase 1b monotherapy clinical trial [36]. Four

weeks of treatment with balapiravir in combination
www.sciencedirect.com
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Figure 2
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Nucleoside and nucleotide analogs as inhibitors of HCV. (a) Representative molecules of the three main scaffolds of nucleoside analogs, with

valopicitabine for the 20C-methyl scaffold, balapiravir for the 40azido scaffold, and sofosbuvir for the 20-fluoro-20C-methyl scaffold. The nucleoside

backbones are shown in black, the sugar modification in red, and the prodrug moieties are in blue. (b) Efficiency of chain termination of 20-fluoro and

20-fluoro-20C-methyl UMP. Principle of the reaction: elongation by HCV polymerase of RNA containing at the 30-end a modified UMP (U*MP), in the

presence of GTP as the next correct nucleotide. In the case of 20-fluoro-UMP (left), the RNA is further extended with GTP from the 10-mer to the 11-

mer and 12-mer positions. In contrast, the addition of the 20C-methyl moiety to 20-fluoro-UMP (right) completely blocks the ability of the enzyme to

further extend the RNA with GTP [49]. GTP, guanosine triphosphate; UMP, uridine monophosphate.
with SOC resulted in a further decrease in viral load,

but also in hematologic adverse events such as lym-

phopenia, which led to the discontinuation of devel-

opment of balapiravir for HCV infection [37]. Analogs

of balapiravir with similar 40-modification scaffolds have

also been reported, but none have progressed into

further development [38–41]. Recently it was shown

that 40-azido-CTP is a good substrate for human mito-

chondrial RNA polymerase, one of the proteins con-

sidered to be responsible for the mitochondrial toxicity

of several other ribonucleosides [42��].
www.sciencedirect.com 
The third major class of nucleoside analogs is the 20-fluoro-

20C-methyl modification, which includes sofosbuvir. The

double substitution at the 20-position on the ribose evolved

from the earlier 20C-methyl scaffold, combined with

further change resulting from the observation that 20-
deoxy-20-fluoro-cytidine was weakly active in the HCV

replicon [43]. Compared with its 20-fluoro mono-substi-

tuted counterpart, 20-fluoro-20C-methyl-cytidine (PSI-

6130) was significantly more potent in the HCV replicon

assay and less toxic to the Huh-7 hepatocarcinoma cells in
vitro [44]. The parent 20-fluoro-20C-methyl-cytidine
Current Opinion in Virology 2014, 9:1–7
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nucleoside was also developed as the orally bioavailable di-

isobutyrate ester prodrug, mericitabine, which is currently

under phase II clinical development. In an important series

of experiments, it was found that 20-fluoro-20C-methyl-

cytidine is metabolized also to its uridine 50-triphosphate

form as a result of intracellular deamination [45�,46]. As the

parent uridine analog was not readily converted to its

monophosphate form by intracellular kinases, a series of

monophosphate formsof 20-fluoro-20C-methyl-uridine were

designed to bypass the first and most limiting kinase step

[47]. Phosphoramidate prodrugs were made to mask the

charges of the alpha-phosphate with an amino acid ester and

an aryl group, both protecting groups being removed in the

cytoplasm of hepatocytes after cell penetration [47]. Opti-

mization of the leaving groups of the prodrug and separation

of stereoisomers led to the selection of sofosbuvir (PSI-

7977), as one of the most potent and selective inhibitors in

this series (Figure 2a) [48]. In addition to forming high

levels of the nucleoside 50-triphosphate (NTP), the exqui-

site potency of sofosbuvir can be explained in vitro by the

fact that its active form 20-fluoro-20C-methyl-uridine 50-
triphosphate is a very efficient substrate and chain termin-

ator for HCV NS5B (Figure 2b) [49]. This study also

showed that the 20-fluoro substitution contributes less to

chain termination than the 20-C-methyl moiety. The NTP

derivative of sofosbuvir is a very poor substrate for human

mitochondrial RNA polymerase, one of the proteins con-

sidered to be responsible for the mitochondrial toxicity of

several other ribonucleosides [42��]. Similar to the two

former classes of inhibitors, many other 20-fluoro-20C-

methyl-nucleosides have been evaluated, including the

very potent monophosphate guanosine analog, PSI-

353661, that progressed to phase II clinical trials, before

being discontinued due to elevated alanine aminotransfer-

ase levels (see complete reviews of recent HCV nucleoside

and nucleotide development in [4,50,51]).

The quest for structurally novel nucleoside inhibitors of

HCV NS5B continues to be an active area of pharma-

ceutical research, and other chemical scaffolds have been

recently discovered (e.g. [52,53]). To this date, none of

the other classes of nucleoside analogs have advanced

beyond phase II clinical trials.
Table 1

Inhibition of positive-strand RNA viruses by nucleoside analogs

Inhibitor Virus 

20C-Methyl-cytidine Yellow fever 

Kyasanur Forest disease

Norwalk 

Foot-and-mouth disease

7-Deaza-20C-methyl-adenosine Dengue, yellow fever, W

Rhinovirus types 2, 3, 14

7-Deaza-20-ethynyl-adenosine Dengue, yellow fever, W

Balipiravir/40-azido-cytidine Dengue 

Current Opinion in Virology 2014, 9:1–7 
Repurposing anti-HCV nucleosides against
other positive-strand RNA viruses
Several important and sometimes severe human diseases

are caused by RNA viruses in the Flaviviridae, Picorna-
viridae, Caliciviridae, and Coronaviridae families. All these

viruses contain a positive-strand RNA genome, and their

RNA-dependent RNA polymerases share significant

amino acid similarities based on sequence alignment

and phylogenetic analysis [54,55]. Since HCV belongs

to the Flaviviridae family, some of the nucleoside analogs

originally developed against HCV would also be expected

to inhibit related pathogens within the same family or

even viruses in other positive-strand RNA families. This

prediction was confirmed by counter-screening anti-HCV

molecules against representative panels of viruses from

other families and sub-families (Table 1). In particular,

20C-modified nucleosides are known to inhibit multiple

positive-strand RNA virus families. In one of the first

reported examples, 20C-methyl-cytidine was found to be

potent in cell-based in vitro assays against flaviviruses

such as West Nile, yellow fever, and dengue virus [56].

This result is not entirely surprising since the same

molecule was already known to inhibit BVDV, which

also belongs to the Flaviviridae family, and was used as

a surrogate for HCV antiviral screening. In an in vivo
efficacy model, 20C-methyl-cytidine protected hamsters

challenged with a lethal dose of yellow fever virus even

when administered up to 3 days post-infection [57]. The

cytidine analog also inhibits the in vitro replication of tick-

borne, hemorrhagic fever-associated flaviviruses [58]. In

addition, 20C-methyl-cytidine inhibits the replication of

the Norwalk virus [59,60] and foot-and-mouth disease

virus [61] from the Caliciviridae and Picornaviridae family,

respectively. Although it has not been as extensively

profiled, the purine analog 7-deaza-20C-methyl-adeno-

sine similarly displays broad antiviral activity against

positive-strand RNA viruses, while being inactive against

single-strand negative-sense RNA viruses [27��,28]. This

broad spectrum activity was further profiled with the

chemically related 7-deaza-20C-ethynyl-adenosine.

Although it was found to also inhibit HCV, the molecule

was potent enough to be developed specifically against

dengue virus infection [62,63�]. To date, it is the only
Family References

Flaviviridae [56]

 Flaviviridae [58]

Caliciviridae [59,60]

 Picornaviridae [61]

est Nile Flaviviridae [27��,28]

 Picornaviridae [27��,28]

est Nile Flaviviridae [62,63�]

Flaviviridae [64]
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nucleoside analog known to inhibit dengue virus replica-

tion in a mouse efficacy model [63�]. However, its safety

profile was insufficient to enable further drug develop-

ment toward human clinical trials. On the basis of the

finding that 40-azido cytidine was potent against dengue

virus replication in vitro, the ester prodrug, balipiravir, was

also repurposed toward treatment of dengue virus in-

fection [64]. For reasons that remain to be clarified, the

drug did not reduce either viral load or symptoms when

administered to hospitalized dengue-infected patients.

Challenges for discovering novel nucleoside
analogs targeting positive-strand RNA viruses
other than HCV
Although many anti-HCV nucleoside analogs may poten-

tially inhibit other positive-strand RNA viruses in vitro,

there are currently no obvious drug candidates for direct

repurposing from HCV infection to other disease indica-

tions. In particular, sofosbuvir, the only FDA-approved

anti-HCV nucleotide analog, is a phosphoramidate pro-

drug that has been optimized to specifically deliver high

levels of the nucleoside 50-triphosphate as the active

species through release of the prodrug moiety by first-

pass effect, the process by which drugs get metabolized

into the liver before reaching systemic circulation [65].

Therefore, the active metabolite of sofosbuvir is likely

not significantly distributed to organs and tissues other

than the liver and targeted by most positive-strand RNA

viruses. In comparison, 20C-methyl-cytidine and 7-deaza-

20C-ethynyl-adenosine are among the only known broad-

spectrum nucleoside analogs with potential for systemic

organ exposure of the 50-monophosphate and 50-tripho-

sphate forms in levels sufficient to achieve in vivo ef-

ficacy. However, their relatively poor safety profiles and

narrow dose margins make them poor candidates for

further clinical development.

What are the main challenges to designing and optimizing

new inhibitors of non-HCV positive-strand RNA viruses?

The search for such molecules has been hampered by

several factors, the first one being the need to achieve in
vivo pharmacokinetic properties compatible with delivery

of the NTP to the site of infection, which differs by virus

and includes, for example, the GI tract (Norwalk virus),

the lungs (rhinovirus, Middle East respiratory syndrome

virus), the brain (West Nile virus), and lymphoid organs

(dengue virus). As mentioned before, the only organ-

specific prodrugs that have been successfully developed

to date for nucleosides target the liver, and will likely not

be useful for non-liver infections. The second important

limitation to finding new nucleoside analogs is also

related to 50-triphosphate formation and the choice of

the immortalized cell lines used for in vitro infection

experiments. The metabolic kinase activation pathways

of many common laboratory strains and species of cell

lines differ from natural human tissues or human primary

cells. Although this is not generally a problem for small
www.sciencedirect.com 
molecule drug testing, the metabolic activation of nucleo-

side analogs to NTPs entirely relies on the presence of

specific nucleoside and nucleotide kinases that are some-

times deficient in common lab-adapted cell lines. Finally,

it will be important to thoroughly assess the selectivity

and toxicity of new nucleoside analogs to ensure that they

do not interfere with cellular mechanisms at efficacious

doses. In the case of acute infections, the safety require-

ments for short-term treatments may differ from those of

anti-HCV nucleotides. Despite these challenges, the

prospect of using nucleoside analogs to treat acute infec-

tions caused by RNA viruses represents an important

paradigm shift and a new frontier for future antiviral

therapies.
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