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Brain areas within the motor system interact directly or indirectly during motor-imagery and motor-execution
tasks. These interactions and their functionality can change following stroke and recovery. How brain network
interactions reorganize and recover their functionality during recovery and treatment following stroke are not
well understood. To contribute to answering these questions, we recorded blood oxygenation-level dependent
(BOLD) functionalmagnetic resonance imaging (fMRI) signals from10 stroke survivors and evaluated dynamical
causal modeling (DCM)-based effective connectivity among three motor areas: primarymotor cortex (M1), pre-
motor cortex (PMC) and supplementary motor area (SMA), during motor-imagery and motor-execution tasks.
We compared the connectivity between affected and unaffected hemispheres before and after mental practice
and combined mental practice and physical therapy as treatments. The treatment (intervention) period varied
in length between 14 to 51 days but all patients received the same dose of 60 h of treatment. Using Bayesian
model selection (BMS) approach in theDCMapproach,we found that, after intervention, the same network dom-
inated duringmotor-imagery andmotor-execution tasks butmodulatory parameters suggested a suppressive in-
fluence of SM A on M1 during the motor-imagery task whereas the influence of SM A on M1 was unrestricted
during themotor-execution task. We found that the intervention caused a reorganization of the network during
both tasks for unaffected as well as for the affected hemisphere. Using Bayesian model averaging (BMA) ap-
proach, we found that the intervention improved the regional connectivity among the motor areas during
both the tasks. The connectivity between PMC andM1was stronger inmotor-imagery taskswhereas the connec-
tivity from PMC to M1, SM A to M1 dominated in motor-execution tasks. There was significant behavioral im-
provement (p = 0.001) in sensation and motor movements because of the intervention as reflected by
behavioral Fugl-Meyer (FMA)measures, whichwere significantly correlated (p= 0.05) with a subset of connec-
tivity. These findings suggest that PMC andM1play a crucial role duringmotor-imagery aswell as duringmotor-
execution task. In addition, M1 causes more exchange of causal information amongmotor areas during a motor-
execution task than during amotor-imagery task due to its interactionwith SMA. This study expands our under-
standing of motor network involved during two different tasks, which are commonly used during rehabilitation
following stroke. A clear understanding of the effective connectivity networks leads to a better treatment in help-
ing stroke survivors regain motor ability.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
MS, Bayesian model selection;
IA, imagine affected; PU, pinch
otor-execution..
nd Astronomy, Georgia State
, USA. Tel.: +1 404 413 6073;

. This is an open access article under
1. Introduction

Numerous studies have investigated the characteristics of motor
networks following stroke and it has been confirmed that stroke may
cause a significant disturbance within the motor system due to direct
tissue loss or damage of white matter fibers connecting different
motor areas (Inman et al., 2012; James et al., 2009; Silasi and Murphy,
2014; Turken et al., 2008). This may result in temporary or permanent
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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physical disability among stroke survivors. Statistics published by The
American Stroke Association and National Stroke Association con-
firms the importance of investigations related to stroke and inter-
ventions to promote recovery following stroke. Therefore, it is
essential that we understand the detailed mechanism of reorganization
of motor networks following stroke. It is also crucial to understand the
effect of intervention on disturbed motor network as motor function
is regained.

Motor-imagery and motor-execution tasks have been used to study
motor recovery in people following stroke (Butler and Page, 2006;
Lehéricy et al., 2004; Mintzopoulos et al., 2009; Sharma et al., 2006).
Previous studies have investigated the effects of stroke on motor net-
works (Confalonieri et al., 2012; James et al., 2009; Jiang et al., 2013;
Sharma et al., 2009) but there are little data on the effects of interven-
tions on motor behavior and motor network interactions. Here, by
using a dynamical causal modeling (DCM) approach (Friston et al.,
2013; Friston et al., 2003; Valdes-Sosa et al., 2011), we investigated
effective connectivity among threemotor areas: the primarymotor cor-
tex (M1), the pre-motor cortex (PMC) and the supplementary motor
area (SMA), which are known to interact during motor-execution and
imagery tasks.

Mental practice (MP) and physical therapy (PT) are used frequently
to improve motor function for people recovering from stroke. The pri-
mary goal of such treatments is to help patients regain motor strength
or function that was completely or partially lost due to stroke. In the
current study, we used either MP or combination of MP and PT. MP is
defined as use of internal simulation that originates by creating an expe-
rience, which can be auditory, visual, tactile or kinesthetic but without
any overt movements (Butler and Page, 2006; Dickstein and Deutsch,
2007). PT involves actual physical exercise, which has been demonstrat-
ed to improve learning and restoration of lost skills in stroke survivors.

Several studies have reported that cortical activation during MP are
identical to PT (Hale, 1982; Livesay and Samaras, 1998). In a study by
Altschuler et al. (1999), a comparison was done between movements
of the impaired and the healthy arm; they found that several patients
regained function of their affected arm when they watched the reflec-
tion of their healthy arm moving in a mirror, which may be regarded
as an MP task. Recently, a combination of MP and PT has emerged as
an effective tool to improve and characterize brain functionality at var-
ious stages following stroke (Bajaj et al., 2015; Butler and Page, 2006). It
has been mentioned that following intervention PMC develops func-
tional interactions with ipsilesional M1 (Grefkes and Fink, 2014; Silasi
andMurphy, 2014). Although the source of the neuronal change associ-
ated with these interventions remains unclear. There is debate as to
whether an intervention promotes the promulgation of same neuronal
population during the recovery period or the intervention recruits
other neuronal populations to compensate for the role played by affect-
ed neurons. A few studies (Schaechter et al., 2002; Wittenberg et al.,
2003) have shown that repetitive task performance may lead to an in-
crease in motor-map size in the affected hemisphere and this might
be associated with a shift in laterality of motor cortical activation from
damaged to undamaged hemisphere.

Brain activation and effective connectivity have been extensively
studied in healthy people using motor-imagery and motor-execution
tasks.Motor-imagery tasks (mental rehearsal) can involve a representa-
tion of movements in the brain (Jeannerod, 1995; Solodkin et al., 2004).
The extent and distribution of activations may differ in motor-imagery
and motor-execution, but both motor imagery and motor execution
tasks activate the network that involves the core motor areas: M1, SM
A and PMC (Bajaj et al., 2014; Cordes et al., 2000; Gerardin et al.,
2000; Grefkes et al., 2008; Kasess et al., 2008). These areas are known
to be involved in planning, initiation and execution ofmotor commands.
The roles of SM A and PMC have been reported repeatedly during
motor-imagery aswell as duringmotor-execution tasks. They send neu-
ronal impulses to M1. Several studies on effective connectivity and di-
rected functional connectivity have reported the interactions of these
areaswithin themselves as well as with areas such as: the basal ganglia,
putamen, cerebellum, inferior and superior parietal lobule and other so-
matosensory areas (Gao et al., 2011; Grefkes et al., 2008; Rehme et al.,
2013; Walsh et al., 2008). SM A, M1 and PMC are known to be anatom-
ically connected (Pool et al., 2013; Walsh et al., 2008).

In the present study, our analysis of brain effective connectivity
withinmotor network of stroke patients is based on dynamical network
modeling (DCM) (Friston et al., 2003). We hypothesized that either MP
or MP + PT would (i) strengthen the effective connectivity on the af-
fected side of themotor cortical network as patients regainmotor ability
and (ii) reorganize the connectivity pattern in the contralesional hemi-
sphere. We tested these hypotheses by formulating several models
using DCM using ordinary differential equations and compared the ex-
ceedance probability of each model. Exceedance probability represents
the degree of belief about a model having higher posterior probability
than the remaining models (Wasserman, 2000). We also explored and
compared the role ofM1 in affected and unaffected hemispheres during
motor-imagery and motor-execution tasks.

2. Materials and methods

2.1. Participants and pre-scan measures

We recorded fMRI data from 13 adult stroke survivors. Three sub-
jects hadmore than 2mmof translation or more than 1.5° of rotation
about the three axes or their data following intervention was not re-
corded properly and were excluded from the analysis. Four (2 fe-
males, 2 males) of the remaining 10 participants (4 females, 6
males) had left hemiparesis resulting from infarct or hemorrhage lo-
cated in the thalamus, basal ganglia, caudate and pontomedullary.
The remaining six volunteers had right hemiparesis due to infarc-
tions of the middle cerebral, pontine or internal carotid arteries
(Supplementary Table 1) (Inman et al., 2012). The mean age of the
participants was 60.10 ± 10.52 years. All the participants were inde-
pendent in standing, toilet transfer, could maintain balance for at
least 2 min with arm support and met the criterion of being at-
least 18 years old. Upper extremity movement criteria included the
ability to actively extend the affected wrist ≥20° and extend 2 fingers
and thumb at least 10° with a motor activity log (MAL) score of less
than 2.5 (Uswatte et al., 2006). Either MR imaging or computed tomog-
raphy (CT) was used to confirm the stroke location (Supplementary
Table 1). Average stroke latency was 11 months and ranged from 1 to
54 months. The Mini-Mental State Exam (MMSE) (Folstein et al.,
1975), Fugl-Meyer Motor Assessments (FMA) (Fugl-Meyer et al.,
1975) and MIQ-RS (movement imagery questionnaire-revised for
stroke) (Gregg et al., 2010) were used to assess cognitive aspects of
mental function, sensation and motor function, and motor-imagery
(kinesthetic and visual) ability respectively (Supplementary Table 1).
The MMSE consisted of two sets of questions; the first tested orienta-
tion, memory and attention whereas the second set tested the
participant3s ability to name, follow verbal and written commands,
write a sentence spontaneously and copy a complex polygon. A maxi-
mum score of 30 is indicative of normal cognitive function. The FMA in-
cluded a total of 33 items including: reflexes, volitional movement
assessment, flexor synergy, extension synergy, movement combining
synergies, movement out of synergy, normal reflex assessment, wrist
movement, hand movement, co-ordination and speed, each with a
scale from 0 to 2 (0 for no performance, 1 for partial performance and
2 for complete performance). The total possible score was 66 where a
score of nearly 33 represents moderate impairment of the affected
upper limb. The MIQ-RS assesses how well people are able to mentally
perform movements and consisted of everyday movements e.g. bend-
ing, pushing, pulling and reaching for and grasping (Butler et al.,
2012; Gregg et al., 2010). Participants rated the level of ease/difficulty
on a 7-point scale from 1 = very hard to see/feel to 7 = very easy to
see/feel (Confalonieri et al., 2012).
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2.2. Tasks

All participants were instructed to lay supine in the scanner with
both arms outstretched close to their body. A block-design paradigm
was used to run the task, which consisted of four runs (Confalonieri
et al., 2012). Each run consisted of three stimulation blocks with an
alternate 30 s period of passive rest. During the motor-imagery task,
participants were instructed: 1) To track a sinusoidal wave while imag-
ining the movement of the fingers of unaffected hand, called ‘imagine
unaffected (IU)’ task and 2) to repeat the same task but now imagining
the movement of fingers of affected hand, called ‘imagine affected (IA)’
task. During the motor-execution task, participants were instructed:
1) To track the same sinusoidal wave by continuously pinching a force
transducer between thumb and index finger of the unaffected hand,
called ‘pinch unaffected (PU)’ task and 2) to repeat the task with affect-
ed hand, called ‘pinch affected (PA)’ task. By providing visual feedback
to the participants, we made sure that the participants performed the
task as accurately as possible. Stroke patients practiced the tasks outside
the scanner aswell. As reported previously by Confalonieri et al. (2012),
the relative root mean squared error (RRMSE) was very close to zero,
which suggested a good control of grip force modulation. Also, time
spent within target range (TWR) close to 30 s suggested a normal
level of accuracy on matching the target force and the coefficient of
co-ordination (Kc) close to 1 reflected normal coordination of grip force.

Four stroke-survivors had an affected left hemisphere and 6 had an
affected right hemisphere. We separated data for the left and the right
hemisphere, resulting in 8 sets of data for each participant:

(a) Motor-imagery — imagine unaffected (IU): (1) Four participants
have right hemisphere unaffected and (2) six have left hemi-
sphere unaffected.

(b) Motor-imagery — imagine affected (IA): (3) Six participants have
right hemisphere affected and (4) four have left hemisphere
affected.

(c) Motor-execution — pinch unaffected (PU): (5) Four participants
have right hemisphere unaffected and (6) six have left hemi-
sphere unaffected.

(d) Motor-execution — pinch affected (PA): (7) Six participants have
right hemisphere affected and (8) four have left hemisphere
affected.
2.3. Imaging

MR imagingwas done using a Siemens 3.0 TMagnetom Trio scanner
(Siemens Medical Solutions, Malvern, PA, USA) with a standard
quadrature head coil and with TR/TE/FA=2350 ms/28 ms/90°, 130
time points (~5 min each), resolution = 3 × 3 × 3 mm3 and 35
axial slices. An anatomical image of each participant was acquired
using a 3D magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence which consisted of 176 sagittal slices of 1 mm-
thickness (resolution = 1 × 1 mm, in-plane matrix = 256 × 256)
with TR/TE/FA/inversion time of 2300 ms/3.02 ms/8°/1100 ms. All
stroke survivors underwent two tasks based scanning sessions. The
delay between the scanning sessions ranged from 14 to 51 days. The
second session was executed following an intervention where all the
stroke survivors underwent either mental practice (MP) therapy or
combined mental practice and physical therapy (MP + PT).

2.4. Intervention details

Six participants were randomized to “mentally practice” a series of
upper limb functional motor tasks for 4 h per day (8–30 min sessions),
with the guidance of an audio tape, for a total of 60 h over 3weeks.MP is
the creation of an experience by themind,which can be auditory, visual,
tactile or kinesthetic representing movement without undertaking
physical effort. Seven participants were randomized to undergo com-
bined mental practice and physical therapy (MP + PT). The MP + PT
group underwent 15 days (4 h per day) of intensive one-on-one thera-
py, consisting of listening to the same MP tape for 60 min per day plus
3 h of physical therapy per day. Identical tapes were given to all partic-
ipants and the sixmental practice tasks did not change, but small details
of themental practice scenarios such as the type of drink or color/type of
telephone one reached forwere altered to enhancemotivation and less-
en boredom.

TheMP consisted of imagining four basic MI tasks using the affected
or unaffected hand. For instance, participants were asked: (1) to imagine
brushing or combing their hair, (2) to imagine picking up and bringing
different types of fruit to their mouth, (3) to imagine extending their
arm to pick up a cup froma cabinet and place it on the counter and gently
release it, and (4) to imagine cleaning the kitchen counter using a cloth.

The PT consisted of repetitive, task-oriented training of the more-
impaired upper extremity for several hours a day (depending on the
severity of the initial deficit). Task oriented training involved func-
tionally based activities performed continuously for a period of
15–20 min (e.g. writing in a journal). In successive periods of task
training, the spatial requirement of the activity, or other parameters
(such as duration), were changed to require more demanding con-
trol of limb segments for task completion. Feedback about overall
performance was provided at the end of the 15–20 min period. A
large bank of tasks was created for use among participants. Frequent
rest intervals were provided through the training session.

All sessions had identical contact durations andweremonitored by a
licensed rehabilitation specialist. The investigators were blind to group
assignment. Following the three-week “training” period all participants
underwent a second testing session recording both clinical and physio-
logic measures.

2.5. Data analysis

2.5.1. FMRI preprocessing
FMRI datawere preprocessed by using SPM8 (Wellcome Trust Centre

for Neuroimaging, London; http://www.fil.ion.ucl.ac.uk/spm/software/
spm8/). The preprocessing steps involved slice time correction, realign-
ment, normalization and smoothing. Motion correction to the first func-
tional scan was performed within participant using a six-parameter
rigid-body transformation. Six motion parameters (three translational
and three rotational) were stored and used as nuisance covariates. The
mean of the motion-corrected images was then coregistered to the
individual structural image using a 12-parameter affine transformation.
The images were then spatially normalized to the Montreal Neurologi-
cal Institute (MNI) template (Mazziotta et al., 1995) by applying a 12-
parameter affine transformation, followed by a nonlinear warping
using basis functions (Ashburner and Friston, 1999). Images were sub-
sequently smoothed with an 8-mm isotropic Gaussian kernel and the
low-frequency drifts in signal were removed using a standard band-
pass-filter with a 128 s cutoff.

2.5.2. Volumes of interest (VOIs)
We defined volumes of interest for three basic motor areas — the

primarymotor cortex (M1), the premotor cortex (PMC) and the supple-
mentary motor area (SMA) in SPM8 using the first eigen-variate of acti-
vationswithin a sphere of 8mm radius centered at (−33,−19, 52), (36,
−18, 52), (−34,−1, 56), (35, 0, 55) and (0,−4, 65) in MNI coordinate
system for left M1, right M1, left PMC, right PMC and bilateral SM A re-
spectively. In accordancewith literature (Parker Jones et al., 2013), VOIs
were defined by extracting mean time-series from the same set of
voxels across the participants for each VOI corresponding to each of
the four conditions. For that, we avoided any statistical threshold on ac-
tivity within areas of interest so that extracted and adjusted time-series
data remain spatially identical across all the participants (Parker Jones
et al., 2013). Alongwith some disadvantages e.g. condition independent
noise, there are several advantages supporting the use of this technique.
No participant was excluded from the DCM analysis even if

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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activation in the areas of interest did not reach a pre-defined thresh-
old (p b 0.01). A requirement for DCM is that all three VOIs were de-
fined subject-wise according to next local maximum for affected and
unaffected hemispheres. The participant specific maxima were
constrained to lie within twice the width of Gaussian smoothing kernel
(Bajaj et al., 2013; Li et al., 2010).

2.5.3. Dynamical causal modeling (DCM)
DCM is a hypothesis-based technique, which aims to describe how

observed fMRI responses are generated using a set of differential equa-
tions. DCM incorporates known effects of interest and assesses task-
dependent as well as tasking independent interactions among a group
of regions through a set of matrices, known as an endogenous connec-
tivity matrix, A and a modulatory matrix, B respectively (Friston et al.,
2003; Pool et al., 2013). DCM estimates three sets of parameters:
(a) task independent endogenous connectivity (matrix A) among the
regions representing influence without any external perturbation,
(b) task dependentmodulation affects (matrix B) representing changes
in endogenous connection strength due to external perturbations and
(c) direct influence of an external input to a region (matrix C). The un-
derlying principle behind DCM is that it considers the brain as a non-
linear dynamical system where inputs are known along with experi-
mental perturbations (Friston et al., 2003). This principle makes DCM
different and potentially more effective than other traditional computa-
tional approaches like Granger causality and structural equationmodel-
ing which assume interactions are linear without considering external
inputs and/or perturbations (Büchel and Friston, 1997).

Basically, DCM infers two types of hypothesis based on a specific
question of interest. Those two inference types will be described below.

(a) Bayesian model selection (BMS) approach: BMS infers on a model
structure as a whole, which is done by defining and constructing
amodel space.Model space is usually a set ofmodels,where each
model defines specific endogenous connections that are modulat-
ed by experimental perturbations. The BMS procedure identifies
themodel that best explains how the data are generated by calcu-
lating the exceedance probability of each model (Penny et al.,
2004; Stephan et al., 2009). Best model is chosen with the highest
model exceedance probability. Recently, the group-level BMS ap-
proach has been revised by Rigoux et al. (2014). They extended
the BMS approach by introducing the ‘Bayesian omnibus risk
(BOR)’ factor,whichmeasures the statistical riskwhile performing
group-level BMS analysis. This approach compares the likelihood
of apparent differences in model frequencies by comparing
Fig. 1. Model space specification: Eight models (model 1–model 8) are specified constituting
(2) imagine affected (IA), (3) pinch unaffected (PU) and (4) pinch affected (PA) condition for
‘protected exceedance probabilities’ of proposed models i.e. it
quantifies the frequency of a model, above and beyond chance
(Rigoux et al., 2014).

(b) Bayesianmodel averaging (BMA) approach: For computational effi-
ciency, BMA employs Occam3s window and discards all the
models with probability ratio b0.05 compared to the optimal
model (Penny et al., 2010; Stephan et al., 2010). It infers on each
connection of the optimal model found from BMS by averaging
over all the optimal models from all the participants. Various sta-
tistical tests like t-test and ANOVA are used to find significant con-
nection strength.

For group level inferences, BMS and BMA can be employed by either
using fixed-effects (FFX) analysis or random-effects analysis (RFX)
depending upon whether the effect of interest (model structure or pa-
rameters) is a fixed or a random variable due to inter-subject variability
(e.g. in case of patients) across the population (Kasess et al., 2010).

In the current DCM study, we proposed a basicmotor networkmodel
(model 1, Fig. 1) consisting of threemotor areas:M1, PMC and SMAwith
bidirectional endogenous connections among them all. This corresponds
to endogenous connectivity matrix, A, which is based on previous
anatomical references for these three areas (Boussaoud et al., 2005;
Luppino et al., 1993; Pool et al., 2013; Rouiller et al., 1994; Sharma
et al., 2009). This basic model was elaborated into 7 more different
models depending upon which endogenous connections from SM A
and PMC were modulated by the external experimental input (repre-
sented by the term ‘TASK’ in Fig. 1), which can be either of IU, IA, PU
and PA. Thus, for each condition, we proposed 8 models for each hemi-
sphere (affected and unaffected), which sum to 64models (32 before in-
tervention and 32 after intervention) for each participant and each
hemisphere. All the models were defined and estimated using a bilinear
approach (Friston et al., 2003).We attempted to keep themodel space as
simple as possible and avoided including any complex model in order to
maintain the balance between accuracy and complexity (Dima et al.,
2011; Stephan et al., 2010).

3. Results

3.1. Effective connectivity

3.1.1. Optimal model selection
Considering areas from both unaffected (left and right) and affected

(left and right) hemispheres, we calculated exceedance probabilities of
all eight pre-defined models (model 1–model 8) (Fig. 1) of bilinear
bilinear family for each condition. Here ‘TASK’ represents (1) imagine unaffected (IU),
left (unaffected and affected) and right hemispheres (unaffected and affected).



Table 1
(a) Optimalmodel selection: The bestmodel is selectedby comparingmodel exceedance probabilities of top twomodels before and after intervention for each task condition.We found the
samemodel (model 1) winning in case of imagery and execution task for unaffected hemisphere and samemodel (model 3) winning in case of imagery (IU) and execution task (PU and
PA). We reported model 3 as winning model for imagery task, IA (after intervention). (b) Model 1 vs. model 3 model comparison and modulatory parameters frommodel 3. After inter-
vention, comparing exceedance probabilities of model 1 and model 3, we found model 3 dominating over model 1 in case of IA-right and PU-left task conditions whereas model 1 was
dominating over model 3 in case of PU-right task condition. The modulatory parameter for connection from SM A to M1was negative for IA-right and positive for PU-left task condition.
Here dominating models and their modulatory parameters (M.P.) are emphasized in bold.

(a) Optimal model selection

Condition Hemisphere Before intervention After intervention

Optimal models Optimal models

Model E.P. Optimal model (E.P.) Model E.P. Optimal model (E.P.) Optimal model (P.E.P.)

IU Left Model 1 0.45 Model 1 (0.45) Model 1 0.44 Model 1 (0.44) Model 1 (0.55)
Model 3 0.19Model 4 0.17

Right Model 1 0.18 Model 1 0.26
Model 2 0.42 Model 6 0.32

IA Left Model 4 0.18 Model 7 (0.43) Model 3 0.35 Model 3 (0.35) Model 3 (0.31)
Model 4 0.18Model 7 0.43

Right Model 1 0.26 Model 2 0.27
Model 4 0.36 Model 7 0.19

PU Left Model 3 0.26 Model 3 (0.39) Model 3 0.22 Model 1 (0.31) Model 1 (0.24)
Model 5 (0.24)Model 5 0.27Model 6 0.28

Right Model 2 0.11 Model 1 0.31
Model 3 0.39 Model 4 0.29

PA Left Model 1 0.17 Model 1 (0.31) Model 1 0.23 Model 1 (0.37) Model 1 (0.32)
Model 7 0.28 Model 2 0.26

Right Model 1 0.31 Model 1 0.37
Model 8 0.23 Model 3 0.28

(b) Model 1 vs. model 3 comparison and modulatory parameters (M.P.) (in Hz) from model 3

Condition Hemisphere After intervention

Model E.P. Optimal model (E.P.) M.P. (mean ± S.D.) for SMA to M1 Optimal model (P.E.P.)

IU Left Model 1 0.51 None N.A. None
Model 3 0.49

Right Model 1 0.49
Model 3 0.51

IA Left Model 1 0.51 None N.A. Model 3 (0.57)
Model 3 0.49

Right Model 1 0.22 Model 3 (0.78) −0.0111 ± 0.0045
Model 3 0.78

PU Left Model 1 0.07 Model 3 (0.93) 0.0254 ± 0.0048 Model 3 (0.57)
Model 3 0.93

Right Model 1 0.82 Model 1 (0.82) N.A.
Model 3 0.18

PA Left Model 1 0.50 None N.A. None
Model 3 0.50

Right Model 1 0.50
Model 3 0.50

IU: Imagine unaffected; IA: imagine affected; PU: pinch unaffected; PA: pinch affected; E.P.: exceedance probability; P.E.P.: protected exceedance probability;M.P.:modulatory parameter;
S.D.: standard deviation; N.A.: not applicable.
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family using BMSRFX criterion. Exceedance probabilities of first two op-
timalmodels for each condition before and after intervention are shown
in Table 1(a).

(a) Motor-imagery: before and after intervention
Unaffected hemisphere: For the left hemisphere, we found the
samemodel 1 as the optimalmodel before and after intervention
(Supplementary Fig. 1A–B). For the right hemisphere, model 2
was the optimal model before intervention (Supplementary
Fig. 1C) and model 6 was the optimal model after intervention
(Supplementary Fig. 1D). Hence for IU condition, overall we
found model 1 was the optimal model before as well as after
the intervention (Table 1(a)).
Affected hemisphere: For the left hemisphere, we foundmodel 7
was the optimal model before intervention (Supplementary
Fig. 2A) and model 3 was the optimal model after intervention
(Supplementary Fig. 2B). For the right hemisphere, model 4
was the optimal model before intervention (Supplementary
Fig. 2C) and model 2 was the optimal model after intervention
(Supplementary Fig. 2D). Hence for IA condition, overall we
found model 7 was the optimal model before intervention and
model 3 was the optimal model after intervention (Table 1(a)).

(b) Motor-execution: before and after intervention
Unaffectedhemisphere: For the left hemisphere,we foundmodel
6 was the optimal model before intervention (Supplementary
Fig. 3A) and model 5 was the optimal model after intervention
(Supplementary Fig. 3B). For the right hemisphere, model 3 was
the optimal model before intervention (Supplementary Fig. 3C)
and model 1 was the optimal model after intervention (Supple-
mentary Fig. 3D). Hence for PU condition, overall we found
model 3 was the optimal model before intervention and model
1 was the optimal model after intervention (Table 1(a)).
Affected hemisphere: For the left hemisphere, we found model 7
was the optimal model before intervention (Supplementary
Fig. 4A) and model 2 was the optimal model after intervention
(Supplementary Fig. 4B). For the right hemisphere, model 1 was
the optimal model before as well as after intervention (Supple-
mentary Fig. 4C–D). Hence for PA condition, overall we found
model 1 was the optimal before and after intervention in the
affected hemisphere (Table 1(a)).



Table 2
Effective connectivitymeasures: Endogenous andmodulatory connectivity parameters for
imagine unaffected (IU) and imagine affected (IA) tasks before and after the intervention.

Connection type Mean (IU, IA) SD (IU, IA) p-Value (IU, IA)

Left hemisphere
Before intervention

Endogenous parameters
PMC → M1 0.144, 0.128 0.021, 0.013 0.051, 0.006*

SMA → M1 0.036, 0.101 0.020, 0.010 0.507, 0.153
M1 → PMC 0.158, 0.140 0.021, 0.011 0.037*, 0.008*

SMA → PMC 0.108, 0.190 0.017, 0.010 0.337, 0.033*

M1 → SMA 0.074, 0.179 0.022, 0.013 0.315, 0.089
PMC → SMA 0.185, 0.258 0.019, 0.014 0.089, 0.026*

Modulatory parameters
PMC → M1 −0.005, 0.015 0.018, 0.004 0.721, 0.259
SMA → M1 −0.009, 0.000 0.024, 0.000 0.480, N.A.
SMA → PMC 0.006, 0.038 0.005, 0.004 0.523, 0.145

After intervention
Endogenous parameters
PMC → M1 0.166, 0.183 0.013, 0.013 0.012*, 0.009*

SMA → M1 0.109, 0.137 0.011, 0.010 0.016*, 0.026*

M1 → PMC 0.190, 0.185 0.014, 0.012 0.030*, 0.004*

SMA → PMC 0.060, 0.165 0.011, 0.010 0.327, 0.036*

M1 → SMA 0.174, 0.186 0.014, 0.013 0.023*, 0.066
PMC → SMA 0.084, 0.197 0.014, 0.014 0.278, 0.018*

Modulatory parameters
PMC → M1 0.021, 0.043 0.006, 0.004 0.227, 0.391
SMA → M1 0.007, −0.006 0.006, 0.005 0.177, 0.334
SMA → PMC −0.011, 0.002 0.004, 0.001 0.247, 0.391

Right hemisphere
Before intervention

Endogenous parameters
PMC → M1 0.110, 0.101 0.014, 0.019 0.009*, 0.190
SMA → M1 0.150, 0.099 0.012, 0.018 0.012*, 0.055
M1 → PMC 0.122, 0.105 0.010, 0.019 0.030*, 0.156
SMA → PMC 0.234, 0.189 0.011, 0.017 0.004*, 0.003*

M1 → SMA 0.180, 0.113 0.011, 0.018 0.024*, 0.080
PMC → SMA 0.270, 0.248 0.013, 0.017 0.001*, 0.000*

Modulatory parameters
PMC → M1 0.009, −0.000 0.005, 0.001 0.564, 0.363
SMA → M1 0.000, −0.004 0.000, 0.004 N.A., 0.518
SMA → PMC 0.016, 0.011 0.002, 0.005 0.391, 0.053

After intervention
Endogenous parameters
PMC → M1 0.148, 0.115 0.010, 0.016 0.042*, 0.019*

SMA → M1 0.128, 0.080 0.009, 0.015 0.014*, 0.178
M1 → PMC 0.152, 0.115 0.010, 0.011 0.017*, 0.020*

SMA → PMC 0.177, 0.173 0.010, 0.012 0.031*, 0.017*
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Further, we made sure that the optimal model after intervention
for each of the above conditions was consistent with the optimal
model found from protected exceedance probabilities calculated
by combining left and right hemispheres for corresponding condi-
tions (Table 1(a)).

(c) Motor-imagery vs. motor-execution: after intervention
Comparing exceedance probabilities of optimal models
(Table 1(a)) after intervention for motor-imagery and motor-
execution, we found the same optimal model (model 1) for IU,
PU and PA conditions and model 3 for IA condition. Since none
of the models were clearly winning with an appreciable proba-
bility value, we compared models 1 and 3 for each condition
after intervention (Table 1(b)). We found that model 3 was the
dominant model over model 1 in case of IA-right and PU-left
task conditions but model 1 was the dominant model over
model 3 for PU-right task condition. Again, we made sure that
the optimalmodel after intervention for each conditionwas con-
sistentwith the optimalmodel found fromprotected exceedance
probabilities calculated by combining left and right hemispheres
for corresponding conditions (Table 1(b)).
Themodulatory parameter for connections fromSMA toM1was
negative for IA-right and positive for PU-left task condition
(Fig. 2). For other task conditions where we did not find any
model clearly winning over the other, we found either highly
negative or veryweak positivemodulation fromSMA toM1dur-
ing the imagination task but strong positivemodulation from SM
A to M1 during the execution task.

3.1.2. Bayesian parameters and significance tests
Using the BMA approach, we calculated the endogenous and

modulatory connection strength parameters (in Hz) by averaging
over the optimal models of each participant and for each condition,
followed by significance tests. For each connection, the mean of
these effective connectivity measures along with standard deviation
(SD) and p-value (using one sample t-test) for the left and right
hemispheres, before and after intervention for unaffected and af-
fected hemisphere are shown in Table 2 for the motor-imagery
task and in Table 3 for the motor-execution tasks. Significant connec-
tions are marked with an asterisk in Figs. 3 and 4. For each condition,
Fig. 2. Modulatory parameters from optimal model selection: SM A to M1 connection is
positively modulated duringmotor-execution (ME) whereas the same connection is neg-
atively modulated duringmotor-imagery (MI). Here optimal model for ME has model ex-
ceedance probability of 0.93 whereas optimal model for MI has model exceedance
probability of 0.78.

M1 → SMA 0.178, 0.067 0.010, 0.011 0.002*, 0.453
PMC → SMA 0.226, 0.183 0.010, 0.013 0.003*, 0.032*

Modulatory parameters
PMC → M1 −0.000, 0.039 0.010, 0.064 0.391, 0.319
SMA → M1 0.003, 0.017 0.013, 0.065 0.827, 0.355
SMA → PMC 0.030, 0.003 0.011, 0.005 0.184, 0.795

S.D.: Standard deviation; N.A.: not applicable.
* p b 0.05.
we did not consider non-significant connections of both left and right
hemispheres.

(a) Motor-imagery: before and after intervention
Before intervention: We found that the connection from M1 to
PMC was the only significant connection (p b 0.05) for IU
(Fig. 3A) and the connection between SM A and PMC was the
only significant connection (p b 0.05) for IA (Fig. 3B).
After intervention: We found significant bidirectional connec-
tions between PMC and M1, and between SM A and M1
(p b 0.05) for IU (Fig. 3C) and significant bidirectional connec-
tion between SM A and PMC, along with connection between
PMC and M1 (p b 0.05) for IA (Fig. 3D).

(b) Motor-execution: before and after intervention
Before intervention: We found that the only significant con-
nection was between M1 and PMC (p b 0.05) for PU (Fig. 4A)



Table 3
Effective connectivitymeasures: Endogenous andmodulatory connectivity parameters for
pinch unaffected (PU) and pinch affected (PA) tasks before and after the intervention.

Connection type Mean (PU, PA) SD (PU, PA) p-Value (PU, PA)

Left hemisphere
Before intervention

Endogenous parameters
PMC → M1 0.215, 0.173 0.012, 0.027 0.000*, 0.028*

SMA → M1 0.002, 0.105 0.011, 0.027 0.978, 0.198
M1 → PMC 0.238, 0.142 0.013, 0.028 0.001*, 0.013*

SMA → PMC 0.117, 0.222 0.011, 0.027 0.222, 0.010*

M1 → SMA 0.005, 0.143 0.011, 0.026 0.948, 0.037*

PMC → SMA 0.180, 0.239 0.011, 0.028 0.091, 0.002*

Modulatory parameters
PMC → M1 0.004, 0.005 0.027, 0.121 0.336, 0.345
SMA → M1 −0.008, −0.002 0.021, 0.121 0.313, 0.078
SMA → PMC 0.000, 0.010 0.006, 0.020 0.948, 0.357

After intervention
Endogenous parameters
PMC → M1 0.216, 0.192 0.013, 0.027 0.001*, 0.009*

SMA → M1 0.037, 0.173 0.012, 0.026 0.037*, 0.015*

M1 → PMC 0.265, 0.217 0.012, 0.027 0.265, 0.018*

SMA → PMC 0.132, 0.111 0.010, 0.026 0.132, 0.227
M1 → SMA 0.075, 0.235 0.012, 0.026 0.075, 0.003*

PMC → SMA 0.184, 0.108 0.013, 0.025 0.184, 0.354
Modulatory parameters

PMC → M1 0.013, 0.005 0.017, 0.039 0.059, 0.170
SMA → M1 0.013, 0.003 0.020, 0.029 0.258, 0.245
SMA → PMC 0.006, 0.000 0.005, 0.004 0.434, 0.423

Right hemisphere
Before intervention

Endogenous parameters
PMC → M1 0.171, 0.180 0.020, 0.023 0.003*, 0.000*

SMA → M1 0.090, 0.153 0.017, 0.018 0.005*, 0.000*

M1 → PMC 0.185, 0.176 0.016, 0.020 0.011*, 0.001*

SMA → PMC 0.236, 0.162 0.015, 0.016 0.002*, 0.001*

M1 → SMA 0.116, 0.179 0.020, 0.021 0.006*, 0.000*

PMC → SMA 0.259, 0.196 0.020, 0.022 0.001*, 0.000*

Modulatory parameters
PMC → M1 0.020, 0.008 0.067, 0.092 0.205, 0.240
SMA → M1 −0.012, 0.012 0.073, 0.077 0.466, 0.127
SMA → PMC 0.004, 0.001 0.005, 0.006 0.391, 0.924

After intervention
Endogenous parameters
PMC → M1 0.158, 0.184 0.012, 0.022 0.003*, 0.000*

SMA → M1 0.171, 0.130 0.010, 0.018 0.038*, 0.003*

M1 → PMC 0.144, 0.165 0.011, 0.017 0.003*, 0.000*

SMA → PMC 0.161, 0.173 0.010, 0.016 0.110, 0.000*

M1 → SMA 0.204, 0.174 0.012, 0.018 0.060, 0.002*

PMC → SMA 0.211, 0.258 0.013, 0.021 0.112, 0.000*

Modulatory parameters
PMC → M1 0.017, 0.011 0.016, 0.043 0.391, 0.223
SMA → M1 0.006, 0.002 0.012, 0.043 0.391, 0.326

SMA → PMC −0.006, 0.011 0.003, 0.005 0.449, 0.222

S.D.: Standard deviation.
* p b 0.05.
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and all the connections except from SM A to M1 were signifi-
cant (p b 0.05) for PA (Fig. 4B).
After intervention:We found two significant connections: one
from PMC andM1, and other from SMA toM1 (p b 0.05) for PU
(Fig. 4C) and all the connections were significant except be-
tween SM A and PMC (p b 0.05) for PA (Fig. 4D).

(c) Motor-imagery vs. motor-execution: after intervention
We eliminated the connections that were not common be-
tween the unaffected and affected hemisphere after interven-
tion.We found that the strongest connection during themotor
imagery taskwas a bidirectional connection between PMC and
M1 (Fig. 3C–D). Similarly, there were two connections, one
from PMC to M1 and other from SM A to M1 that were the
strongest for the motor-execution task (Fig. 4C–D). These
connections are indicated with blue colored arrows in Figs. 3
and 4.
3.2. Brain and behavior correlation

We recorded FMA scores for all the stroke-survivors before and after
intervention. Using paired t-test; we found that FMA scoreswere signif-
icantly higher (sample size = 10; p = 0.001) when the participants
underwent a session of intervention (Fig. 5). We also calculated the dif-
ference between FMA scores and endogenous connectivity measures
before and after intervention. We found a significant linear correlation
between the two for the connection from PMC to SM A (correlation co-
efficient, r = 0.94, p = 0.05) for the left affected hemisphere during
motor-imagery task whereas the correlation for the connection from
SM A to PMC under the same condition tended towards significant
value (correlation coefficient, r=0.88). Also, the correlation for connec-
tion from SMA to PMC for left unaffected hemisphere (correlation coef-
ficient, r = 0.69) and from PMC to M1 for left affected hemisphere
(correlation coefficient, r = 0.87) during the motor-execution task
tended towards significance.

4. Discussion

In this study, we used a dynamical causal modeling approach on
task-based fMRI data to describe the effect of stroke and intervention
on the brain. We examined the effective connectivity among numerous
cortical areas and found that, after intervention, the optimal models
were identical between motor imagery and motor execution tasks for
the unaffected hemisphere. Modulatory parameters showed a suppres-
sive (negative) influence of SM A onM1 during themotor-imagery task
and an unrestricted (positive) influence of SM A on M1 during the
motor-execution task. We also found that for both the hemispheres, in-
tervention caused a reorganization of connectivity patterns among
these areas. Inter-regional effective connectivity measures showed
that although PMC and M1 were both involved during motor imagery
and execution tasks, M1 had amore crucial role alongwith SM A during
themotor-execution task compared to themotor-imagery task.We also
report that FMA scores were significantly higher following intervention
and there was a significant linear correlation or a correlation which
tended towards a significant value between difference in FMA scores
and difference in endogenous connectivity measures following stroke
and when the stroke-survivors underwent intervention. In this
study, we used dynamical causal modeling approach to look at the
effective connectivity from task-related fMRI data, but there are
other approaches to study network interactions (Friston, 2011)
including parametric Granger causality (Ding et al., 2006, 1975;
Geweke, 1982; Granger, 1969) and nonparametric Granger causality
(Dhamala, 2014; Dhamala et al., 2008a, 2008b; Hu and Liang, 2014;
Hu and Liang, 2012).

4.1. Effective connectivity during motor-imagery and motor-execution

Our findings are consistent with several previous neuroimaging
studies. Using the BMS approach we found that following an interven-
tion the winning model showed substantial influence of SM A on M1
during motor-imagery as well as during a motor-execution task. Com-
paringmodulatory parameters of both the tasks showed suppressive in-
fluence of SM A on M1 during the motor-imagination task and the
influence appeared to strengthen the connection from SM A to M1 dur-
ing the motor-execution task. This suggests that although there were
common areas, whichwere shared between the two tasks, the activated
networks differed. Similar findings have been reported that motor-
imagination had negative and motor-execution had positive (opposite)
effect on the connection from SM A to M1 (Gao et al., 2011; Grefkes
et al., 2008; Kasess et al., 2008; Pool et al., 2013; Raffin et al., 2012;
Westlake and Nagarajan, 2011; Xu et al., 2013). Absence of modulation
from PMC to M1 by both tasks reflects weak effective connectivity



Fig. 3. Effective connectivity network for motor-imagery task: Endogenous connectivity for motor-imagery task before (A–B) and after (C–D) intervention is shown. Here significant con-
nections represented by * (p b 0.05) are found using one sample t-test. Connections shown in blue color are common between IU (after intervention) and IA (after intervention).
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between PMC and M1. This is consistent with a study by Solodkin and
colleagues in 2004 (Solodkin et al., 2004). They reported that a
decreased influence of PMC on M1 was accompanied by a stronger
influence of SM A on M1 during mental simulation of movement. The
inter-regional effective connectivity measures between SM A and M1
during motor-execution also suggest bidirectional influence between
the two which is consistent with a study by Kasess et al. (2008), who
used DCM, to demonstrate a suppressive influence exerted by SM A
Fig. 4. Effective connectivity network for motor-execution task: Endogenous connectivity for m
connections represented by * (p b 0.05) are found using one sample t-test. Connections shown
onM1with a subsequent feedback influence fromM1 to SM A. They re-
ported that SM A may inhibit activity of M1 and may be capable of sus-
taining activity for several seconds throughout the readiness prior to
movement.

Using structural equation modeling, Solodkin and colleagues found
motor-imagery and motor-execution tasks activate a basic motor net-
work, yet volumes of activation differ for these two dissimilar tasks
(Hanakawa et al., 2008; Solodkin et al., 2004). Using a conditional
otor-execution task before (A–B) and after (C–D) intervention is shown. Here significant
in blue color are common between PU (after intervention) and PA (after intervention).



Fig. 5. FMA scores: The FMA scores for stroke-survivors following stroke (blue bars) and
following intervention (red bars) are plotted.
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Granger causality technique (Gao et al., 2011), it was shown that more
causal informationwas exchanged duringmotor-execution than during
motor-imagery. This may be due to some additional neuronal processes
occurring because of direct execution of physical movements (Munzert
et al., 2009). By calculating in-out causal flow, these investigators also
found that in addition to inferior parietal lobule (IPL) and superior pari-
etal lobule (SPL), dorsal PMC (dPMC) also acted as a causal source in
motor-imagery and motor-execution tasks. This is consistent with our
findings from the BMA parameters. We find that connectivity between
PMC and M1 and from PMC to M1 is stronger during the motor-
imagery and motor-execution tasks respectively, whereas there is
additional significant connection from SM A to M1 during the
motor-execution task. This is consistent with the canonical role of
PMC in movement planning which is common between motor-
imagery and motor-execution. From inter-regional connectivity
measures, we found that PMC is more dominant during the motor-
imagery task in comparison to the motor-execution task. This might
be because kinesthetic motor-imagery has the capability to boost
motor-evoked potentials at the level of premotor areas (Hanakawa
et al., 2008; Li et al., 2004; Sharma et al., 2009). These findings con-
firmed that although there were overlapping motor areas during
motor-imagery and motor-execution, the interaction between SM A
and M1 caused more exchange of causal information within motor
network during the motor-execution task.

4.2. Effect of intervention on effective connectivity

In the present study, BMS results reflect the reorganization of
connectivity patterns following intervention. Although the degree of
regaining motor skills varies from patient-to-patient depending on the
location and extent of lesion (Silasi and Murphy, 2014), stroke patients
manage to recover their motor ability. The degree to which motor
ability is regained depends on the size of neuronal populations that
are thought to reorganize during the intervention period, which may
further depend on the intensity of post-stroke therapy. We reported
that the intervention significantly improved FMA scores as well as the
connectivity between specific cortical areas. We found that difference
in FMA scores and connectivity measures before and after intervention
follow a linear trend, especially for the connection from PMC to SM A.
Previously, an increase in neural activity of M1, SM A, PMC and the su-
perior parietal cortex in humans has been linked to greater improve-
ment of hand motor function (Grefkes and Fink, 2014). It has also
been shown that after injury, lateral PMC may play a significant role in
mediating the recovery process (McNeal et al., 2010). Using structural
equation modeling, Sharma and colleagues (2009) found that coupling
between PMC and SM A diminished in stroke patients and as motor
function improved, the coupling between these areas along with
ipsilesional PMC to M1 increased during motor-imagery task which
could be due to enhancement of cortical–cortical interactions following
intervention (Sharma et al., 2009). Our findings are consistent with the
findings reported by Page et al. (2007). They reported that the mental
practice improved scores on the Action Research Arm (ARA) test and
Upper Extremity Fugl-Meyer Assessment (FMA) by an average of 7.81
and 6.72 after stroke. Although the mechanism behind recovery of
motor skills is not well understood but a well-known notion behind
this is that after an effective intervention, the unaffected brain areas un-
dergo structural and functional remodeling and take over the function
of affected brain areas by remapping the post functions (Brown et al.,
2009; Mostany et al., 2010; Silasi and Murphy, 2014). In a study on
adult squirrel monkeys by Nudo et al. (1996), it was reported that
monkeys suffering from lesions to motor cortex, could use alterna-
tive brain areas to compensate for motor impairments. Arya et al.
(2011) also suggested that motor recovery following rehabilitation
could either be: (1) true motor recovery, which comes into play
when alternative connections that are undamaged send commands
to the same affected muscles to execute the motor commands or
(2) compensatory motor recovery which involves sending neuronal
commands to alternative but unaffected muscles (Krakauer, 2006).
In our case, several other factors like task specification e.g. goal-
oriented repetitive task practice and a proper environment during
rehabilitation might have played significant roles to functionally reor-
ganize the motor networks in order to regain motor ability (Arya
et al., 2011; Davis, 2006). Task specification may also help engage
brain areas that are adjacent to the affected areas (Nudo et al., 2000).
Repetition of task-oriented training has been reported to bemore effec-
tive (Page et al., 2007).

Limitations: The sample included stroke survivorswithwide range of
stroke latency. Individual behavioral and brain deficit differences fol-
lowing stroke may have added further variability to the endogenous
and modulatory measures. Despite the variability and small sample
size, our data showed a robust correlation between endogenous con-
nectivity measures and behavioral measures.

In a larger pool of stroke patients, it may be possible to separate
enough stroke patients by a narrow range of stroke intervals and similar
stroke locations and examine these motor networks, which may pro-
vide results with even stronger brain–behavior correlation. We did
not directly test the functional relevance of unaffected hemisphere for
the changes in regions of the affected hemisphere. However, we found
that the connectivity discovered in unaffected hemispheres helps to
find the robust connectivity common across affected and unaffected
hemispheres after the intervention.

5. Conclusions

In conclusion, the results of the current DCM study describe the dis-
turbances caused in motor network following stroke. Findings reported
in this study describe how different motor areas are reorganized after
treatment. The roles of PMC and M1 have been specifically emphasized
during motor-imagery and motor-execution tasks. The inter-regional
and network level effective connectivity approaches show the impor-
tance of treatments like mental practice and physical therapy during
motor recovery and in order to better understand the mechanism be-
hind the recovery process.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2015.06.006.
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