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Abstract

DNA methylation loss occurs frequently in cancer genomes, primarily within lamina-associated, 

late-replicating regions termed Partially Methylated Domains (PMDs). We profiled 39 diverse 

primary tumors and 8 matched adjacent tissues using Whole-Genome Bisulfite Sequencing 

(WGBS), and analyzed them alongside 343 additional human and 206 mouse WGBS datasets. We 

identified a local CpG sequence context associated with preferential hypomethylation in PMDs. 

Analysis of CpGs in this context (“Solo-WCGWs”) revealed previously undetected PMD 

hypomethylation in almost all healthy tissue types. PMD hypomethylation increased with age, 

beginning during fetal development, and appeared to track the accumulation of cell divisions. In 

cancer, PMD hypomethylation depth correlated with somatic mutation density and cell-cycle gene 

expression, consistent with its reflection of mitotic history, and suggesting its application as a 

mitotic clock. We propose that late replication leads to lifelong progressive methylation loss, 

which acts as a biomarker for cellular aging and which may contribute to oncogenesis.

Loss of 5-methylcytosine in both benign and malignant neoplasms was discovered more 

than thirty years ago1–4, yet the mechanisms that lead to this hypomethylation and its role in 

disease remain poorly understood. Genomic studies5–9 established that hypomethylation 

occurs in only about half the genome, coinciding with megabase-scale domains of repressive 

chromatin characterized by low gene density, low GC-density, late replication timing, 

localization at the nuclear lamina, and Hi-C “B” domains10,11. These regions were termed 
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“Partially Methylated Domains” (PMDs), and were contrasted with “Highly Methylated 

Domains” (HMDs) that make up the remainder of the genome12. PMDs have been 

confirmed as a common feature of most epithelial cancers13, and other cancer types such as 

pediatric medulloblastoma14.

Conflicting evidence suggests that PMD hypomethylation could provide tumors with a 

growth advantage or alternatively may represent only a side effect of cancer15,16. An 

understanding of the earliest origins of this process could help elucidate a potential role of 

PMD hypomethylation in cancer initiation, yet results in pre-cancer cell types have been 

conflicting. Since the 1980s, long-term cell culture has been known to result in significant 

DNA hypomethylation17, which was later discovered to occur primarily in PMD 

domains8,12,18,19 and to accumulate stochastically in culture20,21. In primary uncultured 

tissues, one study showed the existence of PMDs in a few highly proliferative tissues such as 

peripheral white blood cells and placenta, but not in slowly dividing tissues like kidney, 

lung, or brain9. Other studies have shown the presence of global hypomethylation in 

placenta22 and more differentiated B cells23 and T cells24, but not in early stage B cells or T 

cells nor in myelocytes23,24. The largest whole-genome bisulfite sequencing (WGBS) study 

of normal tissues concluded that PMDs were undetectable in 17 of 19 human tissue types 

studied (34 of 37 total samples), with the only exceptions being placenta and pancreas25. 

This reinforced the prevailing view that PMD hypomethylation may be restricted to a very 

limited set of normal cell types, or only initiated upon exposure to environmental factors 

such as carcinogens26. Our group and one other group detected a small degree of PMD 

hypomethylation in normal mucosa adjacent to colon tumors5,6, but could not rule out a pre-

cancer “field effect” in these adjacent tissues.

Here, we have analyzed the largest and most diverse set of WGBS experiments to date, 

including new tumor and adjacent normal data from 8 common cancer types. By identifying 

a local sequence signature that defined the most strongly hypomethylated CpGs within 

PMDs, we were able to determine that most PMDs are shared by cancers and nearly all 

healthy human and mouse tissue types starting from fetal development. This allowed us for 

the first time to investigate the dynamics of hypomethylation across a large number of 

normal and malignant tissues, and define the relationship between PMDs, other chromatin 

features, and genomic mutational processes.

RESULTS

Solo-WCGW CpGs are prone to hypomethylation

We sequenced TCGA tumors and adjacent normal samples using paired-end WGBS at ~15× 

sequence depth, to compile a set of 40 core tumor samples and 9 core normal samples 

(Online Methods and Supplementary Table 1). We first defined a set of shared PMDs and 

HMDs across the majority of our 49 core sample set using an existing HMM-based method, 

MethPipe27 (Supplementary Fig. 1a and Online Methods). Previous studies have suggested 

that DNA methylation is associated with local sequence context, including local CpG 

density28,29 and nucleotides directly flanking the CpG29. We used the shared MethPipe 

PMD set (excluding CpG islands) to determine local CpG density and tetranucleotide 

sequence contexts most predictive of DNA hypomethylation.
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Low CpG density within windows of +/−35 bp was optimal for predicting PMD-specific 

hypomethylation (Supplementary Fig. 1b). Additionally, CpGs flanked by an A:T (“W”) on 

both sides (WCGW tetranucleotides) were consistently more prone to DNA 

hypomethylation than those flanked by a C:G (“S”) on either (SCGW) or both (SCGS) sides 

(Fig. 1a, Supplementary Fig. 1c). In colon tumors and adjacent normal tissues, low CpG 

density and the WCGW context contributed additively to hypomethylation (Fig. 1b, upper). 

The most hypomethylation-prone sequence context was at CpGs with the combination of 

zero neighboring CpGs (“solo”) and the WCGW motif. In two “adjacent normal” colon 

samples, only these solo-WCGW CpGs showed significant hypomethylation (Fig. 1b, 

upper). These same sequence dependencies were apparent in a colorectal tumor and normal 

colon tissue from mice (Fig. 1b, lower). They were consistent within all other tumor and 

adjacent normal samples in the core set, using either the WGBS data (Supplementary Fig. 

2a) or matched Illumina Infinium HumanMethylation450 (HM450) microarray data 

(Supplementary Fig. 2b). An additional 390 human and 206 mouse WGBS samples 

examined later exhibited the same pattern (Supplementary Fig. 3a–b), with the exception of 

three germ cell samples (Supplementary Fig. 3c).

We focused all subsequent analyses on solo-WCGWs, representing 13% of all CpGs in the 

human genome. While they represent only the extreme of a hypomethylation process that 

affects other CpGs, focusing on solo-WCGWs alone enhanced the signal of PMD/HMD 

structure, especially in normal adjacent tissues and weakly hypomethylated tumors such as 

COAD-3518 (Fig. 1c). The relatively shallow hypomethylation in COAD-3518 could not be 

attributed to a greater fraction of non-cancer cells in this sample, as the cancer cell fraction 

in this sample was estimated (by ABSOLUTE30) to be 80%, compared to 51% for the more 

strongly hypomethylated COAD-A00R; this suggested that PMD depth was quantitative and 

driven by an independent property of the cancer cells.

In addition to enhancing the PMD/HMD signal in high coverage WGBS data, solo-WCGW 

CpGs allowed accurate PMD structure to be determined with average genomic read 

coverage as low as 0.05× in down-sampled bulk WGBS data (Supplementary Fig. 4a), and 

in low-coverage single-cell WGBS data31 (Supplementary Fig. 4b), suggesting a possible 

application for low coverage or single-cell WGBS studies.

Most PMDs are shared across cancer and normal tissues

Genomic plots of solo-WCGW CpG mean methylation revealed strong concordance 

between PMD locations in all samples in the core set (Fig. 2a). Comparing the average solo-

WCGW methylation of the core tumors vs the core normals in multi-scale plots (Fig. 2b) 

confirmed that PMDs ranging from 100 kb to 5 mb32 were mostly overlapping between 

tumors and normals, but less hypomethylated in the normals.

Given the high variability of solo-WCGW PMD hypomethylation across samples (Fig 2a), 

we compared the standard deviation (SD) of 100-kb bins across our core normal tissues and 

across core tumors, finding that PMDs had higher SD than HMDs within each group (Fig. 

2c). Genome-wide, SD was bimodally distributed within 100-kb bins in both normal and 

tumor core groups (Fig. 2d), unlike mean methylation (Supplementary Fig. 5) and all other 

features examined (not shown). While the highly variable nature of hypomethylation in 
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PMDs has been noted previously5,7, it has not been used as a method for identifying PMDs. 

Using the bimodal SD peaks as a classifier resulted in a segmentation of the genome into 

HMDs and PMDs, with PMDs covering 63% of the genome in the core tumors (SD>0.125), 

and 66% of the genome in the core normals (SD>0.07). Strikingly, this simple method 

resulted in 100-kb bin classifications that were 83% concordant between the normal and 

tumor groups (Fig. 2d). These PMDs covered 95% of the base pairs in PMDs previously 

reported in colorectal cancer6, and 93% of PMDs in the IMR90 fibroblast cell line12 

(Supplementary Fig. 6). This SD-based classification of PMDs allowed us to rescale 

methylation values for individual samples based on their sample-specific degree of PMD 

hypomethylation (Fig. 2e–f), further illustrating the high degree of concordance in 

PMD/HMD structure across tumor and normal samples.

Most PMDs are shared across developmental lineages

We investigated solo-WCGW PMD structure by combining our TCGA dataset with 343 

previously published human and 206 mouse WGBS samples (Supplementary Table 1), 

examining solo-WCGW methylation averages with human samples arranged into 6 groups 

(Fig. 3) and mouse samples into 4 groups (Fig. 4). As in the core set, the overall degree of 

hypomethylation varied widely, but PMD structure was largely shared for 5 of the 6 

categories. Common PMDs overlapped lamina-associated regions (LADs)33 and late 

replicating domains, as expected (Fig. 3a and Fig. 4, bottom). The germline and embryo 

(GE) category was the only exception, with only some samples sharing PMDs (Fig. 3a, 

Group GE, Fig. 4, Group GE). Immortalized cell lines (cancer and non-cancer), with the 

exception of pluripotent embryonic cells, generally showed strongly hypomethylated PMDs 

that were shared with other groups (Fig. 3a, Group CL, Fig. 4, Group ESC). More discussion 

on methylation maintenance in embryonic and induced pluripotent stem cells is given in the 

Supplementary Note and Supplementary Fig. 7a.

In agreement with the TCGA tumor-adjacent “normals”, most disease-free post-natal tissues 

showed PMD structure shared with tumors and other groups (Fig. 3a, Group PN and Fig. 4, 

Group PN). The normal human samples from Schultz et al.25 made up the majority of non-

brain samples in our PN group and clearly had shared PMDs in our solo-WCGW analysis, 

while the original analysis of Schultz et al. identified PMDs in only 3 of these 37 samples. 

Most brain samples in the PN group were from a different study34, and these stood out as the 

one post-natal tissue type without clearly detectable PMDs in our analysis, possibly 

attributable to de novo DNA methylation in post-mitotic brain cells34. Tissue types with high 

stem cell turnover35 including liver, colon, skin, and pancreas displayed the strongest PMD 

hypomethylation.

All nucleated blood cell types showed shared PMD structure, in contrast to an earlier 

analysis of many of the same WGBS datasets41 that found PMD hypomethylation to be 

limited to the lymphoid lineage (Fig. 3a, Group PB). Both B cells and T cells could 

generally be divided into subgroups of strong vs. weak hypomethylation. Those subtypes 

having undergone antigen presentation and activation (e.g., memory B/T cells, regulatory T 

cells, germinal center B cells, and plasma cells) fell into the strongly hypomethylated class, 

while naïve B and T cells fell into the weakly hypomethylated class, consistent with earlier 
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reports showing that B and T cell hypomethylation increased during maturation23,24. 

However, unlike these earlier reports, our solo-WCGW analysis showed that PMD 

hypomethylation was already clearly evident by the naïve stage (Figure 3a and 

Supplementary Fig. 7b). Lymphocyte activation involves clonal expansion (proliferation of 

individual B/T cells to produce large numbers of daughter cells with the same antigen 

specificity)36, and the dramatic hypomethylation that occurs after activation strengthens the 

notion that methylation loss accumulates during successive rounds of cell division (as shown 

explicitly in long term cultures21). Our solo-WCGW analysis provided the first 

demonstration that PMDs occur across all cell types of the myeloid lineage and are largely 

shared with other cell types (Figure 3a and Supplementary Fig. 7c).

The tumor group (TM) consisted of 50 solid tumors (largely made up of the 40 core tumors 

shown previously), plus 50 hematopoietic malignancies (Fig. 3a, Group TM). Interestingly, 

while hematopoietic tumors had more strongly hypomethylated PMDs than normal 

hematopoietic samples, they generally followed the trend established by their developmental 

origin: those derived from myeloid cells (AML) had shallower PMDs than those derived 

from lymphoid cells (CLL, MCL, TPLL, MM) (one-way Wilcoxon test, p=9.69e-7). The 

notable exception among lymphoid-derived tumors was ALL, which had hypomethylation 

levels similar to normal lymphoid cells. The lower degree of hypomethylation in ALL 

(derived from childhood cases) may reflect the generally lower degree of hypomethylation in 

cells from younger individuals, a topic investigated below.

For five of the six cell type groups (excluding group “GE”), mean methylation across 

samples in the group (Fig. 3b), as well as SD (Fig. 3c–d), revealed largely shared PMD 

structure. SD was bimodally distributed across the genome in all five groups (Fig. 3e), and 

could thus be used to define PMD regions. For all of the five sample groups, the majority of 

PMDs defined by high-SD bins were substantially overlapping PMDs defined earlier from 

the core tumor group (Fig. 3e and Supplementary Fig. 8). For example, 82% of high-SD bins 

were overlapping between the post-natal non-blood group (PN) and the core tumor group, 

and 84% were overlapping between the post-natal blood group (PB) and the core tumor 

group. Our findings reinforce the idea that a large set of cell-type-invariant PMDs dominate 

the hypomethylation landscape in most tissues.

PMD hypomethylation emerges during embryonic development

The presence of PMD hypomethylation in multiple fetal tissue types led us to further 

investigate solo-WCGW methylation in gametes and early developmental stages (Fig. 5a–c). 

Human sperm was highly methylated, with little discernable PMD structure aside from the 

peri-centromeric region (Fig. 5a, Group I), while mouse methylomes displayed consistent 

PMD structures throughout spermatogenesis (Supplementary Fig. 9). Human germinal 

vesicle oocytes had deep PMD hypomethylation (Fig. 5a, Group II), although a subset of 

PMD boundaries appeared to differ from somatic tissues. The rapid and global 

demethylation that occurs within the Inner Cell Mass (ICM) is thought to be an active 

process, attributable to a different mechanism than PMD-associated hypomethylation37. 

Interestingly, while ICM and blastocyst samples were strongly de-methylated, they did 

retain weak PMDs with boundaries resembling those of oocytes rather than those of later 
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somatic cell types (Fig. 5a, Group III). Primordial germ cells (PGCs), which are set aside 

from the soma soon after implantation, showed an even more extreme erasure of DNA 

methylation than blastocysts, precluding any discernable PMD structure (Fig. 5a, Group IV).

Embryonic somatic tissues (Fig, 5a, Group V) were rapidly re-methylated genome-wide, and 

PMD structure could not be readily resolved, in contrast to more mature fetal samples (Fig. 

5a, Group VI). Tissues sampled at different developmental stages revealed a progressive 

emergence of PMD/HMD structure along organismal development (Fig. 5c). This analysis 

revealed a substantial degree of similarity between PMD structure in brain tissues and PMD 

structure in other lineages, something that was not apparent from genomic plots. The 

substantial similarity of PMD structure detected between ICMs, ESCs, embryonic (<8 

weeks) stages, and post-natal samples, suggests that PMD hypomethylation may begin at the 

earliest stages of development. This interpretation is strengthened by the observation that the 

degree of hypomethylation observed at the fetal and postnatal stages for each cell type 

largely mirror the lineage-specific hypomethylation rate within the same embryonic cell 

type.

PMD hypomethylation is associated with chronological age

To investigate the link between PMD-associated hypomethylation and cumulative numbers 

of cell divisions, we tested whether solo-WCGW methylation level within common PMDs 

was associated with donor age in different primary cell types. A strong age association was 

evident from the WGBS profile of sorted CD4+ T cells from a newborn vs. those from a 

103-year-old individual, with the latter being closer to a T cell derived leukemia than to the 

newborn sample (Fig. 6a). To investigate age-related properties within larger studies only 

performed using the HM450 platform, we used the common PMDs derived from all WGBS 

samples to define a standard set of solo-WCGW PMD probes represented on HM450 

(Online Methods). In these larger studies, PBMC samples from newborns had significantly 

less PMD hypomethylation than those from elderly donors (Fig. 6b left), and fetal liver 

samples had significantly less PMD hypomethylation than adult liver samples (Fig. 6b, 

right). Strikingly, fetal tissues from four different developmental lineages showed nearly 

linear accumulation of hypomethylation from 9 weeks post-gestation to 22 weeks post-

gestation (Fig. 6c). Despite small sample sizes, this was statistically significant for 3 of the 4 

fetal tissue types. A similar association was observed between PMD hypomethylation and 

gestational age in multiple mouse fetal tissue types (Supplementary Fig. 10).

An earlier study used the HM450 platform to investigate the effects of environmental (UV) 

exposure on PMD hypomethylation in human skin samples26. While the earlier study 

described PMD hypomethylation as only occurring within the sun-exposed samples of the 

epidermal layer, our re-analysis of solo-WCGWs revealed that both dermal and epidermal 

cells exhibited age-associated PMD hypomethylation without sun exposure, but that this 

process was dramatically accelerated specifically in epidermal cells upon sun exposure (Fig. 

6d). This suggests that while PMD hypomethylation is a nearly universal process in aging, 

the degree of hypomethylation is a reflection of the complete mitotic history of the cell, 

including proliferation associated with normal development and tissue maintenance, plus 

additional cell turnover occurring as a consequence of environmental insults.
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HM450 datasets showed that diverse hematopoietic cell types had a significant association 

between donor age and degree of hypomethylation, with the myeloid lineage (Fig. 6e) 

having a much slower rate of age-associated loss compared to the lymphoid lineage (Fig. 

6f). This finding is consistent with the overall lower degree of methylation observed in 

myeloid cell types from WGBS data. While the rate of loss within the myeloid lineage was 

extremely low, the association to donor age was highly significant within the large human 

monocyte dataset (Fig. 6e). This finding contradicts an earlier analysis based on many of the 

same samples, which found that monocytes lacked PMD hypomethylation and age-

associated hypomethylation24.

PMD hypomethylation is linked to mitotic cell division in cancer

We studied the landscape of cancer hypomethylation in 9,072 tumors from 33 cancer types 

included in TCGA, using the HM450 solo-WCGWs located within common PMDs (Fig. 

7a). PMD hypomethylation was nearly universal but showed extensive variation both within 

and across cancer types. Comparison to 749 adjacent normals from TCGA showed that the 

relative degree of hypomethylation across cancer types was correlated with that of the 

disease-free tissue of origin (Supplementary Fig. 11–13). This association was reduced in 

cancer types for which the normal adjacent specimens contained low fractions of relevant 

cell types representing putative cells of origin for the tumor.

Somatic mutation events are known to display mitotic clock-like properties38. Within TCGA 

tumors, we found that higher genome-wide somatic mutation densities were significantly 

associated with deeper PMD hypomethylation, suggesting that mitotic turnover may 

underlie both somatic mutation and PMD hypomethylation (Fig. 7b). This association was 

consistent using different purity thresholds (Supplementary Fig. 13c), indicating that it was 

not the result of confounding due to differential detection sensitivity related to purity.

PMD hypomethylation was also associated with somatic copy number aberration density 

(Supplementary Fig. 13d). Activation and insertion of LINE-1 endogenous retro-

transposable elements is a common event in human cancer and can induce structural 

alterations, copy number alterations, and induction of oncogenes39–41. Using somatic 

LINE-1 insertions identified from Whole Genome Sequencing (WGS) of TCGA tumors41, 

we found that LINE-1 insertion breakpoints were preferentially enriched in PMD regions 

(Fig. 7c), in agreement with an earlier study39. Intriguingly, tumors with deeper PMD 

hypomethylation had more LINE-1 insertions in 8 of 9 cancer types, with the only exception 

being endometrial cancer (Fig. 7d, Supplementary Fig. 14). While the mechanisms 

controlling LINE-1 insertion density in cancer are not well understood, they may be 

stochastically linked to the number of cell divisions (like SNVs), and/or require de-

repression of “hot” LINE-1 elements, a process which may be linked to DNA 

hypomethylation42,43.

We reasoned that tumors highly proliferative at the time of specimen collection may also 

reflect an extensive history of past cell division. Using TCGA samples with matched gene 

expression data, we identified the 60 genes most strongly associated with PMD 

hypomethylation, finding that these genes were most enriched in Gene Ontology functional 

terms associated with proliferation and mitotic cell division (Fig. 7e). In further support of 
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this link between ongoing cell proliferation and PMD hypomethylation, the genes with the 

greatest association to PMD hypomethylation were strongly enriched within a list of 350 

cell-cycle dependent genes from Cyclebase44 (Fig. 7f). Ranking tumor samples by their 

degree of PMD hypomethylation showed that this association involved most cell-cycle 

dependent genes across different mitotic stages (Fig. 7g). Remarkably, proliferative tumors 

had deep PMD hypomethylation despite having higher levels of both DNMT1 and 

DNMT3A/B, which are expressed as part of a general DNA replication program 

(Supplementary Note). The most hypomethylated tumors also had high expression of 

UHRF1 (a contributor to DNMT1 methylation maintenance activity), underscoring that 

PMD hypomethylation accumulates despite strong expression of the DNA methylation 

maintenance machinery. We also investigated whether overexpression of TET genes, which 

participate in active DNA demethylation, might contribute to PMD hypomethylation. None 

of the three TET genes were highest in the tumors with strongly hypomethylated PMDs, 

indicating that TET enzymes are not responsible for DNA methylation loss in PMD regions 

(in contrast to promoters and CpG islands, where extensive evidence exists for TET-

mediated demethylation). All of our tumor mutation and expression results suggest 

cumulative mitotic cell divisions as the major driving force behind PMD hypomethylation 

accumulation.

Replication timing and H3K36me3 both affect methylation

We used the one cell type with publicly available data for all relevant histone and topological 

marks, IMR90, to systematically analyze our solo-WCGW based PMD definition. This 

analysis confirmed previous findings6,7 that HMD/PMD structure coincided with nuclear 

architecture, as characterized by Hi-C A/B compartments, Lamin B1 distribution and 

replication timing (Fig. 8a). At the single CpG scale, Solo-WCGW CpG methylation was 

most strongly correlated with replication timing, followed by the histone mark H3K36me3 

(Supplementary Fig. 15a). The de novo methyltransferase DNMT3B has recently been 

shown to be guided to transcribed gene bodies via a direct interaction with the H3K36 

methylation mark45. Active genes marked by H3K36me3 are overwhelmingly located in 

early replicating regions, and it has been suggested that both active transcription of gene 

bodies and early replication timing contribute to differential methylation throughout the 

genome9. To disentangle the contributions of H3K36me3 and replication timing to genome-

wide DNA methylation levels and PMDs, we performed a stratified analysis of all solo-

WCGW CpGs in the genome (Fig. 8b–c). We found that the 14% of Solo-WCGWs 

overlapping H3K36me3 were highly methylated, irrespective of position relative to gene 

annotations or replication timing (Fig. 8b, left). The remaining 86% of Solo-WCGWs (those 

not overlapping an H3K36me3 peak) had lower methylation across all contexts, but were 

strongly replication-timing dependent (Fig. 8b, right). In IMR90 cells, the degree of 

methylation maintenance associated with early replication timing was even greater than the 

degree associated with H3K36me3 (Fig. 8b, right). The relative contribution of replication 

timing vs. H3K36me3 was reversed in the H1 (hESC) cell line (Fig. 8c), a cell type with 

exceptionally high DNMT3A/B activity that makes them one of the few cell types able to 

survive loss of Dnmt1 function46,47. Because most somatic cell types had detectably 

hypomethylated PMDs like IMR90 (and unlike H1), our observations support a model in 

which highly effective methylation maintenance at H3K36me3-marked regions is achieved 
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through a process mediated by the direct recruitment of DNMT3B through its PWWP 

domain45. Consistent with earlier observations9, this H3K36me3-linked maintenance 

appears to act independently from the effect of replication timing on PMD methylation loss 

(Fig. 8d).

DISCUSSION

In this study, we identified four distinct features influencing DNA methylation levels in large 

portions of the human and mouse genomes: First, the local sequence context of the CpG 

dinucleotide; second, the timing of DNA replication; third, the presence of the H3K36me3 

histone mark; and fourth, the accumulated number of cell divisions. The sequence context, 

replication timing, and H3K36me3 marks each confer differential susceptibility to 

replication-associated DNA methylation loss, and thus collectively shape PMD/HMD 

structure, while the degree of PMD hypomethylation is a function of the cumulative number 

of cell divisions from the earliest stages of embryonic development.

We showed that two local sequence features (CpG density and the WCGW sequence 

context) exert a strong influence on the rate of DNA methylation loss at individual CpGs 

within PMDs, and that these influences are consistent across cell types and species. The bulk 

of DNA methylation maintenance is performed by DNMT1 and augmented by DNMT3A/

B48. DNMT1 has been shown to act processively, with increased efficiency in the presence 

of multiple CpG sites in close proximity49, a feature consistent with the poorer methylation 

maintenance of “solo” CpGs (Fig. 8e). In vitro biochemical studies have yielded conflicting 

findings regarding the role of the immediate CpG flanking positions on DNMT1 activity, 

with one study suggesting higher affinity for G/C rich flanking sequences50, and another 

suggesting higher affinity for A/T rich sequences51. The in vivo effects of the WCGW motif 

described here on methylation maintenance efficiency should be followed up with careful 

mechanistic studies to identify the causative factor or factors. The discovery of the Solo-

WCGW signature largely allowed for our improved analysis of HMD/PMD structure, which 

may lead to better characterization of not just the “common PMDs” studied here but also 

important classes of cell-type-specific PMDs6,7,14,52 (Supplementary Note).

Most Solo-WCGW were not marked by H3K36me3, and we identified replication timing as 

the major determinant for methylation levels at these H3K36me3-negative CpGs. We 

propose that replication late in S phase provides the cell with less time for re-methylation of 

newly synthesized daughter strands during DNA replication (Fig. 8f). This re-methylation 
window model is supported by a recent study that reconstructed methylation gains and 

losses at individual CpGs upon clonal expansions of individual somatic cells in culture21, 

showing that progressive methylation loss was most pronounced at late-replicating domains. 

Further strengthening the re-methylation window model, biochemical studies have shown 

that re-methylation during mitosis is in fact relatively slow and not fully completed until 

after the S-G2 checkpoint53,54. Therefore, re-methylation efficiency is likely dependent on 

the time window between daughter strand synthesis and the beginning of M-phase. This is 

consistent with the mitotic clock-like PMD methylation loss we observe specifically within 

late-replicating regions (Fig. 8f).
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The presence of H3K36me3 appeared to override this late-replication associated methylation 

loss at Solo-WCGW CpGs (Fig. 8d). Genetic evidence suggests that maintenance of DNA 

methylation at H3K36me3-marked CpGs is mediated by the direct recruitment of DNMT3B 

to H3K36me3-marked nucleosomes45,55. The independent contributions of replication 

timing and H3K36me3 are consistent with earlier findings based on actively transcribed 

gene bodies9, and help to resolve the long-standing paradox concerning positive associations 

between actively transcribed gene bodies and DNA methylation56. This would also explain 

why head and neck squamous cell carcinomas with NSD1 mutations, which exhibit 

significant reductions in H3K36me2 and H3K36me3 levels57, have substantial loss of DNA 

methylation in the HMD compartment (Supplementary Fig. 15b). It is important to note that 

the two major genomic contexts we found to contribute to hypomethylation, are strongly 

associated with specific nuclear territories (Fig. 8g). As the heterochromatin likely 

represents a distinct compartment separated by a physical boundary, we cannot rule out other 

compositional differences of this compartment contributing to the less efficient DNA 

methylation maintenance observed there.

A number of studies have identified specific CpGs predictive of chronological age58–60 as 

well as gestation age at birth61. These signatures are largely non-overlapping with PMDs, as 
shown in earlier work26 and with the PMD solo-WCGWs identified here. We believe this is 

because PMD hypomethylation captures underlying mitotic dynamics, which are only 

loosely associated with chronological age per se. Organismal aging and the associated 

physiological changes affect transcriptional regulation of various genes and pathways, and 

many or most of the loci identified on the basis of age alone58–60 likely represent 

transcriptionally-coupled chromatin changes at these genes (for example, changes to 

Somatostatin which regulated growth hormone58). As we have shown, PMD 

hypomethylation is likely a more direct clock-like readout of mitotic age, which is generally 

correlated with chronological age but can be accelerated by environmental factors or 

processes that promote cell turnover, such as cellular damage, wounding, inflammation, etc.

DNA hypomethylation has long been proposed to allow the aberrant expression and 

transposition of retroelements that can play a role in cancer by inducing chromosomal 

aberrations at the point of insertion62–66. Genetically engineered Dnmt1 hypomorphism in 

mouse was shown to cause lymphomas frequently harboring retrotranspon-induced Notch1 

activation events43. Whole-genome sequencing has shown that approximately 50% of 

human tumors contain somatic retrotranspositions of LINE-1 elements, and that these often 

lead to structural alterations39,40,67,68 enriched within PMDs39. In one study, human lung 

tumors exhibiting mobilization of LINE-1 elements shared a common DNA 

hypomethylation signature42. Across a large TCGA cohort, we showed that tumors with 

higher degrees of PMD hypomethylation are more likely to have LINE-1 insertions (Fig. 7c–

d). This evidence is correlative in nature, and it is certainly possible that LINE-1 activity is 

caused by a methylation-independent event. However, our new results are consistent with the 

genetic models cited above, and it is tempting to hypothesize that LINE-1 activity could be 

accelerated by PMD hypomethylation.

The methylation loss process described here affects a sizeable fraction of all CpGs in the 

genome, and thus could exert a significant influence on methylation-dependent mutational 

Zhou et al. Page 10

Nat Genet. Author manuscript; available in PMC 2018 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



processes, most importantly CpG to TpG substitutions driven by methylation-dependent 

deamination of CpGs. This mutational signature accounts for a large fraction of single 

nucleotide mutations observed in both evolution and cancer, and thus we might expect 

systematic DNA methylation changes to influence the rate of these mutations. A simplistic 

model would predict that hypomethylated solo-WCGWs within late replicating PMDs would 

be protected from deamination and thus have a lower CpG to TpG mutation rate. Indeed, we 

observed some evidence in support of this model for both somatic mutations (from tumor 

sequencing) and de novo mutations in the human germline (from whole-genome trio 

sequencing). This analysis, described in detail in Supplementary Fig. 16 and the 

Supplementary Note, does not take into account other important factors such as the rate of 

transcription-coupled DNA repair, and should be confirmed in future studies.

URLs

Roadmap Epigenomics data is downloaded from ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/

roadmapepigenomics/.

BLUEPRINT epigenome project data is downloaded from ftp://ftp.ebi.ac.uk/pub/databases/

blueprint/

ENCODE data project is downloaded from www.encodeproject.org

The Bis-SNP easy run procedure is detailed at http://people.csail.mit.edu/dnaase/

bissnp2011/stepByStep.html

Our entire customized work flow ECWorkflows is hosted and freely available at https://

github.com/uec/ECWorkflows.

Picard tools was downloaded from http://broadinstitute.github.io/picard

ONLINE METHODS

Whole Genome Bisulfite Sequencing

Cases for the WGBS assay was selected from 8 of the most common cancer types (Lung 

squamous cell carcinoma, Lung adenocarcinoma, Breast, Colorectal, Endometrial, Stomach, 

Bladder, Glioblastoma). For at least one tumor from each cancer type, we also sequenced its 

adjacent histologically normal tissue; for the rest, only the tumor was profiled. We combined 

these samples with one tumor and matched normal colon cancer pair from our earlier study6, 

yielding a core set of 40 well characterized tumors and 9 adjacent normal samples 

(Supplementary Table 1). These tumors and normal samples are referred to as core tumors 
and core normals in the text. Paired-End WGBS-PE protocol was adapted from earlier 

protocols developed by our group6. Briefly, sample genomic DNA (2 μg) is sonicated using 

a Diagenode Bioruptor and will be size-selected to a range of 400–500bp. Sodium bisulfite 

conversion of all DNA samples is performed using the EZ DNA Methylation Kit (Zymo 

Research). All libraries are quality controlled by Agilent Bioanalyzer examination and 

quantified using the Kapa Biosystems kit. Cluster generation and paired-end sequencing are 
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performed according to Illumina guidelines for the HiSeq 2000, utilizing the latest version 

reagents and software updates.

External Data

The external human WGBS data consists of 19 germ cells and pre-implantation embryonic 

tissues, 13 post-implantation embryonic and fetal tissues, 37 cell lines, 59 non-blood normal 

primary tissues (including normal adjacent tissues of tumors as well as disease-free 

samples), 154 blood or blood component samples, 11 solid tumors and 50 blood 

malignancies (Supplementary Table 1). The 206 mouse WGBS data sets are constituted by 

13 ES cells, 17 germ cells and embryonic tissues, 123 primary fetal tissues and 53 primary 

postnatal normal samples. Human postnatal normals were retrieved from Roadmap 

Epigenomics Project (see URLs). Sorted blood WGBS and blood malignancies were 

downloaded from the BLUEPRINT epigenome project (see URLs). Mouse fetal WGBS 

samples were downloaded from the ENCODE project (see URLs). Other postnatal and fetal 

WGBS samples were downloaded from MethBase27. For MethBase samples, we only 

included data sets that passed the Q/C standard of the database. We list the relevant citations 

and sources of the WGBS data sets used in this work in Supplementary Table 1. HM450 

datasets and the corresponding meta-information used for age association were obtained 

from Gene Expression Omnibus by downloading the following datasets: GSE30870, 

GSE35069, GSE56046, GSE59065, GSE51954, GSE61278, GSE56515. Mutation 

prevalence for TCGA tumor samples were obtained from the Broad Institute TCGA Genome 

Data Analysis Center (2016): MutSigCV v0.9 cross-sample somatic mutation rate estimates 

(Jan 28th 2016 release). Tumors that have POLE or APOBEC family mutations, or classified 

as with microsatellite instability, were annotated to be hypermutator tumors. When 

hypermutator samples were excluded, samples without annotation were also excluded. 

Numbers of somatic LINE-1 insertions in 1-mb bins were downloaded from an earlier 

report41.

Alignment and Extraction of Methyl-cytosine Levels

Reads were aligned to the genome (build GRCh37) using BSmap71 under the following 

parameters “-p 27 -s 16 -v 10 -q 2 -A 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT

CT -A 

AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATC

ATT”. We marked duplicated reads using Picard tools (see URLs, version 1.38). DNA 

methylation rates and SNP information were called using Bis-SNP72, using the default easy-

run procedure (see URLs). Bis-SNP allows for distinguishment of C->T mutation from 

bisulfite conversion by investigating the complementary strand. CpGs with fewer than 10 

reads’ coverage are excluded from analysis.

Genomic binning

To show megabase-scale HMD/PMD structures, we chose a 100-kb window size so that the 

segments would contain a sufficient number of solo-WCGWs to give reliable methylation 

averages (Supplementary Fig. 17 and Supplementary Note), without losing resolution to 

detect the majority of PMD positions, which fall within PMDs of 500 kb or greater6.
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Definition of Preliminary PMD/HMD Domains Based on All CpGs

We used WGBS at ~15× coverage to profile methylation patterns of 40 tumors (39 new 

TCGA samples and one from our prior study6) from 8 of the most common cancer types, 

and tumors were selected on the basis of high cancer cell content (Supplementary Table 1). 

For one case from each of the 8 cancer types, we profiled both the tumor and adjacent 

normal tissue; for the rest, only the tumor was profiled. Most of our tumor samples had a 

high degree of hypomethylation, so we first used an existing HMM-based tool, MethPipe27 

using a window size setting of 10 kb, to identify PMDs in each sample individually 

(Supplementary Fig. 1a). While the fraction of the genome covered by PMDs in different 

samples differed by two to three folds (Supplementary Fig. 1b), there was sufficient overlap 

to define a shared MethPipe PMD set of 417 PMDs (covering 13% of the genome) that was 

shared among at least 21 of the 30 tumors. As a comparison group, we defined a shared 
MethPipe HMD (highly methylated domain) set that was not covered by PMDs in any tumor 

sample, and included 830 regions (covering 32% of the genome).

Final Definition of PMDs/HMDs Based on Standard Deviation of solo-WCGW Methylation

Every 100-kb bins are dichotomized into PMD/HMD using a Gaussian mixture model 

(implemented in the R package mixtools) based on cross-sample SD of beta values from our 

core tumor samples (N=40). The Gaussian mixture model assumes two subpopulations of 

100-kb bins---those located in PMDs with higher cross-sample SDs and those located in 

HMDs with lower cross-sample SDs. The final threshold of cross-sample SD for classifying 

PMDs from HMDs is determined to be 0.125. The more conservative sets of “common 

PMDs” and “common HMDs” are defined by the criteria that SD>0.15 and SD<0.10 

respectively. Overlap of PMD boundaries of two samples were measured in the percentage 

of 100-kb bins identified as both in PMDs and in HMDs in the two samples respectively. 

The mouse PMDs/HMDs were defined in the same way using 32 postnatal non-brain WGBS 

samples (Supplementary Table 1). The SD threshold for classifying PMDs from HMDs in 

mouse is determined to be 0.09.

HM450 Analysis

For TCGA HM450 data sets, raw IDATs were preprocessed by first applying background 

subtraction73 and then linear dye-bias correction matching the signal intensities of the two 

detection channels. Probe signals with detection p-value <0.05, as well as probes 

overlapping common SNPs and putative repetitive elements which cause potential cross-

hybridization were then masked74. For external data sets where raw IDATs were unavailable 

we use processed beta values downloaded from GEO. Based on our WGBS analysis, we 

classified HM450 probes according to the number of neighboring CpGs and the 

tetranucleotide sequence context. Only probes targeting solo-WCGW CpGs are retained. We 

also removed probes falling into annotated CpG Islands or is unmethylated (beta < 0.2) in at 

least 20 of the 749 matched normal tissue samples included in TCGA. This results in 6,214 

probes in common PMDs and 9,040 probes in common HMDs. Four letter acronyms for 

cancer types were taken following the official TCGA nomenclature. We used the difference 

of methylation between the mean methylation of solo-WCGW probes located in common 

PMDs and those in common HMDs to measure the degree of PMD-associated DNA 
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hypomethylation in each sample. This method avoids confounding in the case of cancer 

types derived from globally demethylated cell types such as primordial germ cells 

(Supplementary Fig. 12–13).

Analysis of The IMR90 Epigenome

Features are clustered using 1 − |ρ| as distance where ρ is the Spearman’s correlation 

coefficient. Centromeres are excluded from IMR90 analysis. IMR90 epigenome data was 

downloaded from the ENCODE project data center (accessions listed in Supplementary 

Table 1). Wavelet-transformed signals for replication timing were downloaded from GEO 

(GSM923447)75. Histone mark signal was quantified using percentage of base overlaps of 

each window with gapped peaks downloaded from the Roadmap Epigenome Consortium. 

Gene bodies were extracted from GENCODE transcript annotation version 26. Base overlap 

was used as the gene body signal. RNA-seq signal is log2 transformed number of reads 

overlapping with each window using bedtools76. Only the protein-coding gene annotation 

from the HAVANA team was used for genic analysis in Fig. 8d. Intergenic regions exclude 

all transcript annotation from all sources. Solo-WCGW CpGs LaminB1 ChIP and HiC data 

were downloaded from GEO under the accession GSE53331 and GSE35156 respectively.

Rescaling Based on PMD Methylation

We calculated the distribution of methylation values within common PMD 100-kb bins. We 

then trimmed the top and bottom 20% of this distribution for each sample setting low values 

to 0 and high values to 1, and linearly rescaled all values between 20% and 80% to the range 

[0,1] (Fig. 2e). The same genomic region of chr16p is visualized in Fig. 2f.

Stratified Analysis of Solo-WCGW CpGs in The Genome

The Solo-WCGW CpGs were first classified (Fig. 8b–c) by their overlap with H3K36me3 

into H3K36me3-positive (left) and H3K36me3-negative (right) categories, then by relative 

position to gene structures and placement in one of the four replication timing bins quartiles 

(colors, with threshold ≤ 40, (40,60],(60,75], >75.for IMR90 Repli-Seq and ≤ −0.5, 

(−0.5,0.4], (0.4,1.15],>1.15 for H1 Repli-ChIP). For Solo-WCGWs residing within +/− 10 

kb of an annotated gene, metagene plots (Fig. 8b–c) are used to show average methylation 

levels across all genes in relation to the Transcription Start Site (TSS) and the Transcription 

Termination Site (TTS). For all other Solo-WCGWs (intergenic), we showed the distribution 

of methylation values together for each replication timing group as a single violin plot.

Statistics

Except for when described explicitly in the text, P-values for two-group comparison were 

calculated using one-tailed Wilcoxon’s Rank Sum test. Correlation coefficients were 

computed with Spearman’s method, with the exact P-values calculated in R using algorithm 

AS 89, otherwise via asymptotic t-approximation when exact computation was not feasible.

Data availability

The WGBS data is available in Genome Data Commons (GDC) under the TCGA project 

with IDs and file names listed in Supplementary Table 1.
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Code availability

Our customized work flow for preprocessing WGBS sequencing data is freely accessible 

(see URLs).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Solo-WCGW CpGs are prone to hypomethylation
(a) Each genomic CpG dinucleotide was placed into one of four CpG density categories (0, 

1, 2, or 3+, depending on the number of additional CpGs within a +/− 35 bp window), and 

one of the three flanking nucleotide categories (SCGS, SCGW and WCGW, with “S” being 

C:G and “W” being A:T). Because CpGs are palindromic, WCGS and SCGW were 

combined. Each of the 4×3=12 possible contexts are shown as columns for CpGs within 

common HMDs (left) or common PMDs (right). In the illustrations, a star indicates the 

target CpGs, and solid circles indicate all neighboring CpGs within the window. The number 

of CpGs in each context is shown as a percentage of all genomic CpGs; for instance, the first 

column shows that 6% of all CpGs in the human genome are within HMDs, have 3+ 

flanking CpGs, and SCGS tetranucleotide context. (b) Violin plots show beta value 

distributions for CpGs in each context, for five human tissues (two normal colon tissues and 

three colon tumors) and two mouse tissues (one normal colon tissue and one colon tumor). 
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Violin color indicates mean beta value. Columns shaded orange and green indicate the most 

hypomethylation-resistant and most hypomethylation-prone categories, respectively. (c) 

Average methylation values (non-overlapping 100-kb bins) across a 12-mb section of 

chr16p, for the human colon samples. Values were calculated using all CpGs (left), only 

hypomethylation resistant CpGs (orange, middle), or only Solo-WCGW CpGs (green, right). 

CpG islands were removed in all analyses.
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Figure 2. Most PMDs are shared across cancer and normal tissues
(a) Average methylation values (non-overlapping 100-kb bins) for chr16p, shown for the 

core tumor/normal dataset. The “tumor” field indicates tumors (black) vs. adjacent normals, 

and “this study” field indicates samples that were newly sequenced as part of this study 

(black). Within both normal and tumor classes, tissue types are grouped and ordered by 

average methylation level of samples from the group. For instance, “endometrium” is the 

first normal group because it has the highest methylation among normal groups, and 

likewise for “GBM” among tumor groups. (b) Average methylation across all normal 

(upper) or tumor samples (lower), calculated for multiple window sizes from 10 kb to 10 mb 

(“multi-scale plot”). (c) SD across all normal or tumor samples as multi-scale plots. (d) 100-

kb SD values for the all non-overlapping genomic bins, plotted for tumors (red histogram, 

X-axis) vs. normals (blue histogram, Y-axis). Bimodal peaks for each were identified via a 
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Gaussian mixture model, and cutoffs dividing low and high SD values are indicated by 

dashed lines for each axis. A scatter cloud shows the correlation between SD values between 

the tumors and normals, indicating the percentage of 100-kb bins falling into each of the 

four quadrants as well as Spearman’s ρ. (e) Illustration of method used to rescale each 

sample’s methylation values based on genome-wide levels within a common set of PMDs 

(Online Methods). (f) Same data as panel (a), but using rescaled methylation values.
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Figure 3. Most PMDs are shared across developmental lineages
(a) Average solo-WCGW methylation levels were plotted along chromosome 16p for 390 

WGBS samples, organized into 6 groups: Germline and preimplantation embryo (GE). Post-

implantation embryonic/fetal samples (FT), grouped first by embryonic vs. extra-embryonic, 

then by average methylation. Cell lines (CL). Post-natal non-blood normal tissue samples 

(PN). Post-natal blood-derived samples (PB). Primary tumors (TM). Within each of the 6 

groups, samples were organized by cell type (labeled with color codes). Lamin B1 signal 

and replication timing of IMR90 lung fibroblast are shown below methylation heatmaps 

(bottom). (b) Mean methylation levels within each of the 5 major groups (excluding group 

GE), plotted as in Fig. 2b. (c) SD within each of the 5 major groups, plotted as in Fig. 2c. (d) 

SDs shown for the 100-kb scale alone. (e) Distribution of SD for all non-overlapping 100-kb 

genomic bins across all samples of the core tumor group (from panel (d)) are plotted on the 

Y-axis, compared to each of four major groups (FT, CL, PN, and PB), shown on the X-axis. 

Group GE is omitted due to lack of PMD structure.
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Figure 4. Most PMDs are shared across developmental lineages in mouse
Average solo-WCGW methylation levels were plotted along a representative 30-mb region 

of chromosome 17 in mouse. 206 WGBS samples are organized into four groups: 

Embryonic Stem Cells (ESC); Germline and embryos (GE); Fetal tissues (FT); Postnatal 

tissues (PN); Grouping and ordering of samples were performed as described in Fig. 3. 

Lamin and replication timing are shown on the bottom of the heatmap. Lamin A DamID 

from wild type mouse ESCs were downloaded from GEO with accession GSE6268369. 

Replication timing of day 9 differentiated ESCs were downloaded from GEO with accession 

GSE1798370.
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Figure 5. PMD hypomethylation emerges during embryonic development
(a) Multi-scale solo-WCGW average plots are shown for samples divided into seven 

developmental stages, as diagrammed in (b): paternal (I) and maternal (II) germ cells, 

implantation-related tissues (III), primordial germ cells (IV), embryonic soma (V), fetal 

soma (VI) and postnatal soma (VII). (c) Rank-based analysis of the 792 genomic 100-kb 

bins from chr16, comparing methylation ranks of the core tumors (Y-axis) to each 

developmental sample (X-axis), with each axis going from a rank of 1 (lowest methylation) 

to the rank of the highest methylation (excluding bins with missing value from either of the 

samples). Greater correlations (indicated by the Spearman’s correlation coefficient ρ) 

indicated stronger HMD/PMD structure.
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Figure 6. PMD hypomethylation is associated with chronological age
(a) Multi-scale solo-WCGW average plots are shown for newborn CD4 T cell, 103-year-old 

CD4 T cell (GSE31438) and T cell prolymphocytic Leukemia (BLUEPRINT accession 

S016KWU1). (b–f) Summarization of average PMD hypomethylation in HM450-based 

samples, by averaging beta values for 6,214 solo-WCGW probes mapped to common PMDs 

(Online Methods). Peripheral Blood Mononuclear Cell (PBMC) in newborns and 

nonagenarians (left, from GSE30870, p=8.8e-5, one-way Wilcoxon Rank Sum test), and 

disease-free fetal and adult liver tissue (right, from GSE61278). Center lines of the box plots 

indicate median, and the lower and upper bounds indicate lower and upper quartiles. The 
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lower and upper whiskers indicate smallest and largest methylation values. ** p <= 0.001 

from Wilcoxon Rank Sum test. (c–f) HM450-based solo-WCGW averages vs. age for 

individual donors for several tissue types. N is the number of donors/samples, r is Pearson’s 

product moment correlation, b1 is the estimated rate of methylation loss, and p is the p-value 

based on Pearson correlation test. (c) Four fetal tissue types during three pre-natal time 

points (from GSE56515). (d) Sun-exposed and sun-protected dermis and epidermis (from 

GSE51954). (e) Sorted blood cells of the myeloid lineage (D1: GSE35069; D2: GSE56046). 

(f) Sorted blood cells of lymphoid lineage (D1: GSE35069; D3: GSE71955; D4: 

GSE59065).
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Figure 7. PMD hypomethylation is linked to mitotic cell division in cancer
(a) PMD-HMD solo-WCGW methylation difference for 9,072 tumors from TCGA HM450 

data. Each sample is ordered within cancer type by PMD-HMD difference, and cancer types 

are ordered by average PMD-HMD difference. (b) PMD methylation (X-axis) vs. somatic 

mutation density (Y-axis) for all 3,959 high purity TCGA cases (purity>=0.7), with 

Spearman’s ρ indicated. The blue line represents the regression line for all samples, while 

the red regression line excludes “hypermutator” samples (Online Methods). (c) Density of 

somatic LINE-1 insertions (violin plot elements) in non-overlapping 1-mb genomic bins 

(N=3,053), stratified by percent of bin overlapping common PMDs (only cases with whole-

genome sequencing are included). (d) PMD methylation (X-axis) vs. LINE-1 insertion 

counts (Y-axis) for nine TCGA cancer types having substantial LINE-1 insertion counts. * 

(ρ < 0.05) and ** (ρ <= 0.01) indicate Spearman’s test significance. (e) The 10 most 

significantly enriched Gene Ontology (GO) terms for the 60 genes with the most strongly 

correlated expression vs. PMD hypomethylation in TCGA tumors, showing fold enrichment 

(grey) and false discovery rate (olive). (f) Gene Set Enrichment Analysis (GSEA) for 350 

cell-cycle-dependent genes from Cyclebase44, ranking all genes according to degree of 

expression vs. PMD hypomethylation correlation. (g) Normalized expression (Z-scores) of 

cell-cycle-dependent genes from Cyclebase (categorized by cell cycle phase) in 3,414 high 

purity TCGA tumor samples (purity >= 0.7), ordered by PMD-HMD methylation difference.
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Figure 8. Replication timing and H3K36me3 contribute independently to methylation 
maintenance
(a) Multi-scale plot of chr16p showing similarity between solo-WCGW methylation and 

other chromatin marks in the IMR90 fibroblast cell line. (b) Average methylation level of all 

genomic solo-WCGWs in IMR90, stratified by (1) overlap with H3K36me3 peaks (left vs. 

right), (2) context relative to gene annotations (“Genic” vs. “Intergenic”), and (3) Repli-seq 

replication timing bin (red, yellow, light blue, dark blue). For Solo-WCGWs residing within 

+/− 10 kb of an annotated gene (Genic), meta-gene plots show methylation averages in 

relation to the Transcription Start Site (TSS) and the Transcription Termination Site (TTS). 

For all other Solo-WCGWs (Intergenic), each replication timing group is shown as a single 

violin plot. (c) The same representation of data plotted for the H1 hESC cell line (using 

Repli-chip data rather than Repli-seq). (d) Schematic summary, showing Solo-WCGW CpG 

methylation loss primarily determined by replication timing domain but locally protected by 

H3K36me3. (e) Schematic model illustrating DNMT1 processivity favoring dense CpGs and 

leading to incomplete re-methylation of Solo CpGs. (f) Schematic illustration of the “re-

methylation timing model” where genomic regions synthesized earlier in S-phase (HMDs) 

spend more time exposed to methylation maintenance machinery and thus more complete 

methylation maintenance than PMDs. (g) Illustration of the relationship between major 

determinants of hypomethylation and 3D nuclear topology, with Lamina Associated 

Domains (LADs) occupying a distinct heterochromatic nuclear compartment.
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