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Abstract

The core genome represents the set of genes shared by all, or nearly all, strains of a given population or species of
prokaryotes. Inferring the core genome is integral to many genomic analyses, however, most methods rely on the
comparison of all the pairs of genomes; a step that is becoming increasingly difficult given the massive accumulation
of genomic data. Here, we present CoreCruncher; a program that robustly and rapidly constructs core genomes across
hundreds or thousands of genomes. CoreCruncher does not compute all pairwise genome comparisons and uses a
heuristic based on the distributions of identity scores to classify sequences as orthologs or paralogs/xenologs.
Although it is much faster than current methods, our results indicate that our approach is more conservative than
other tools and less sensitive to the presence of paralogs and xenologs. CoreCruncher is freely available from: https://
github.com/lbobay/CoreCruncher. CoreCruncher is written in Python 3.7 and can also run on Python 2.7 without mod-
ification. It requires the python library Numpy and either Usearch or Blast. Certain options require the programs muscle
or mafft.
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Introduction

The core genome is defined as the set of genes that are
ubiquitous—or nearly ubiquitous—to a set of genomes
(Medini et al. 2005; Vernikos et al. 2015). Analysis of prokary-
otic genomes often requires identifying the core genome of a
species or a population to reconstruct strain phylogeny and
to infer various metrics (Bobay and Ochman 2018;
Maistrenko et al. 2020). Multiple tools have been built to
generate core genomes and these approaches usually require
the identification of orthologous genes by identifying best-
bidirectional hits (BBH)through the comparison of each pair
of genomes (Li et al. 2003; Kristensen et al. 2011; Miele et al.
2011; Contreras-Moreira and Vinuesa 2013; Page et al. 2015).
Due to the massive accumulation of complete bacterial
genomes, it has become computationally challenging—if
even possible—to perform all pairwise comparisons when
data sets include hundreds to thousands of genomes for a
given species (Kristensen et al. 2011). As a result, alternative
approaches are needed to efficiently process large data sets
(Page et al. 2015). Several heuristics have been developed to
address these challenges; however, very few tools have been
designed to construct core genomes specifically. Instead,
these tools usually aim to define the entire pan-genome
(i.e., the entire set of genes in a given set of genomes) (Page
et al. 2015). Because they aim to build the entire set of homo-
logs; these methods are typically much slower.

One central challenge in defining the core genome is the
correct inference of orthologous versus paralogous and xen-
ologous genes (Chen et al. 2007; Altenhoff and Dessimoz
2009, 2012). Prokaryotes frequently undergo duplication,
and more predominantly, horizontal gene transfer (HGT)
events which may introduce paralogs and xenologs, respec-
tively (Treangen and Rocha 2011). Paralogous and xenolo-
gous sequences can subsequently be lost by deletions or
due to assembly issues and, as a result, even single copy genes
may not represent true orthologs. Accurate distinction be-
tween orthologs and paralogs/xenologs is needed to build
core genomes composed solely of orthologous genes.
Traditionally, two main categories of methods are used to
identify orthologs: graph- and tree-based approaches
(Altenhoff and Dessimoz 2012; Sonnhammer et al. 2014).
Core genomes are typically built for genomes of the same
prokaryotic species—of which conspecific strains frequently
engage in homologous recombination (Bobay and Ochman
2017). Due to the frequency of recombination, tree-based
approaches offer little power to distinguish orthologs and
paralogs/xenologs making this method much better suited
to define orthologs across different species or lineages (Bobay
and Ochman 2017). Alternatively, many graph-based meth-
ods exist, though most have been implemented for the gen-
eral purpose of identifying orthologs in diverse contexts and
often aim at identifying orthogroups that may include paral-
ogs and xenologs (Tatusov et al. 1997; Remm et al. 2001; Li
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et al. 2003; Jothi et al. 2006; Kriventseva et al. 2007; Roth et al.
2008; Huerta-Cepas et al. 2016; Lafond et al. 2018; Cosentino
and Iwasaki 2019). The identification of broader orthogroups
is often desirable for analyses aimed at reconstructing the
evolution of a gene family or when building the pan-
genome of a species. Because core genomes are typically
used for phylogenomic analyses and for the inference of pop-
ulation parameters, core genes are typically defined as “true”
orthologs (i.e., without paralogs and xenologs).

Here we have developed CoreCruncher; a heuristic that
quickly and robustly infers core genomes across large data
sets of prokaryotic genomes. The key innovation of our algo-
rithm relies on the implementation of a flexible test to dis-
tinguish paralogs and xenologs from orthologs by using the
distributions of identity scores of homologous sequences to
classify sequences as true orthologs or paralogs/xenologs.
CoreCruncher is fast, has many customizable parameters,
and can build the core genome of large data sets comprising
thousands of genomes. In addition, the CoreCruncher algo-
rithm may be used to identify sets of shared orthologs across
divergent species; which expands its role beyond core ge-
nome assembly alone.

New Approaches
Due to the accumulation of sequencing data, it has become
common place to analyze hundreds to thousands of com-
plete genome sequences during the study of a single prokary-
otic species (Parks et al. 2018). Most algorithms implemented
to define orthologous genes first rely on pairwise genome
comparisons; a task that is becoming increasingly difficult
to complete as data sets grow in size (Kristensen et al.
2011). To circumvent this issue, we have developed an ap-
proach that does not conduct all pairwise genome compar-
isons and instead, robustly identifies core genomes based on
our “double outliers” approach to distinguish true orthologs
from paralogs and xenologs using the distributions of identity
scores.

In prokaryotes, the vast majority of new gene copies are
gained by HGT (i.e., xenologs) (Treangen and Rocha 2011)
which leads to the introduction of sequences that are
expected to present atypical features relative to true ortho-
logs (i.e., typically more divergent sequences) and additionally,
are often found at different genomic locations (Gao and
Miller 2020). Note that complex patterns of gene gains and
loss can make paralogs and xenologs virtually indistinguish-
able. To robustly exclude paralogs and xenologs, our method
first identifies homologous sequences by comparing each ge-
nome against a pivot genome. Putative orthologs are first
built by assigning the best hit of each genome that matched
the same gene of the pivot genome. This step yields putative
orthologous gene families without within-paralogs/xenologs
(i.e., paralogs or xenologs present in the same genome). When
present, other hits are stored in memory and classified as
within-paralogs/xenologs.

The first step of our procedure consists of identifying par-
tially hidden paralogs/xenologs (fig. 1C). Partially hidden
paralogs/xenologs occur when 1) one or more genomes
lack the orthologous sequence of the gene but contain a

paralog or a xenolog and 2) one or more genomes contain
both copies of the orthologous sequence and the paralogous
or xenologous sequence. Because at least one or more within-
paralogs/xenologs are present in some of the genomes, our
procedure uses the distribution of the identify scores of the
within-paralogs/xenologs to identify partially hidden paral-
ogs/xenologs present in other genomes (see Materials and
Methods section).

The second step of our procedure consists of identifying
completely hidden paralogs/xenologs (fig. 1D). Completely
hidden paralogs/xenologs occur when 1) one or more
genomes lack the orthologous sequence of the gene but con-
tain a paralog or a xenolog and 2) none of the genomes
contain both copies of the orthologous and the paralo-
gous/xenologous sequence. The presence of hidden paral-
ogs/xenologs is detected with our “double outlier”
procedure (fig. 2). Briefly, the distribution of identity scores
(distribution 1) of each orthologous gene family is used to
detect sequences that present significant outliers. These out-
liers likely represent paralogs or xenologs, and it is also pos-
sible that true orthologs present more divergent sequences
because some strains are more divergent than others. To
account for the differences in strain divergence across the
data set, CoreCruncher also builds the distribution of identity
scores for each putative ortholog for each genome relative to
the pivot genome. This distribution (distribution 2) is used to
estimate the overall divergence of each genome relative to the
pivot genome. For each orthologous gene family, a sequence
is identified as a completely hidden paralog/xenolog only if it
is inferred as a double outlier based on distributions 1 and 2
(see Materials and Methods section). Paralogous and xenol-
ogous sequences identified by our approach are then ex-
cluded from each orthologous gene family, which is
considered as core gene when found in high frequency across
genomes (90% of the genomes by default). When run with
the stringent option, the entire orthologous gene family is
excluded from the core genome when a hidden paralog/xen-
olog is identified.

Results
We tested CoreCruncher on a data set of 484 genomes of
Serratia marcescens downloaded from RefSeq on December
2019 (supplementary table S1, Supplementary Material on-
line). Using protein sequences and Usearch, we built the core
genome of the same data set using 12 different sets of param-
eters: the core genome was built with a sequence identity
threshold of 70%, 90%, and 95%. For each sequence threshold,
orthologous genes were considered part of the core genome if
found in 90%, 95%, 99%, or 100% of the genomes. In parallel
we built the core genome of the same data set with Roary
v3.13.0 (Page et al. 2015) using the same set of parameters.
Roary is a state-of-the-art program that simultaneously builds
the pan-genome and core genome of prokaryotic species. We
chose Roary, for comparison with CoreCruncher, as it can
directly infer a core genome and it uses pairwise genome
comparisons (BBH) to define orthologs; a methodology that
is used by most programs to define orthologs (Kristensen
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et al. 2011). Roary, however, conducts a preclustering step
that allows it to be substantially faster than many other
existing programs (Page et al. 2015).

We found that CoreCruncher systematically inferred a
slightly smaller core genome than Roary for the same set of
parameters (fig. 3). This difference can be ascribed to the fact
that CoreCruncher uses more stringent parameters to build
the core genome: 1) two sequences must present similar
(�80%) length to be inferred as homologs and 2)
CoreCruncher can distinguish paralogous and xenologous
genes from orthologous genes using the “double outlier”
test. Indeed, Roary, like other related methods, has not
been designed to detect hidden paralogs/xenologs. On aver-
age, the genes inferred as core by Roary and CoreCruncher
were highly consistent (93.2% overlap on average, nonstrin-
gent option, and 94.9% overlap on average, stringent option,
fig. 3, supplementary table S2 and fig. S1, Supplementary
Material online).

We used the data set presented in figure 3B (95% sequence
identity and 90% frequency) to analyze in more detail the
orthologs that were inconsistently classified as either being
part or not part of the core genome by the two programs.
Overall, the majority of the core genes inferred by
CoreCruncher that did not overlap with Roary’s core genome
tended to correspond to two distinct orthologs defined by
Roary (62.4% of the time). Interestingly, we found that the 270
core genes that were identified as core by CoreCruncher, and
noncore by Roary, frequently contained paralogs or xenologs.
By analyzing the Usearch output files, we found that 71% of
these CoreCruncher-specific core genes contained at least one
paralog/xenolog which is presumably why these gene families

were not considered as core by Roary. However, CoreCruncher
was able to sort out the orthologs from the paralogs/xenologs
and still consider these genes as core (note that the paralogs/
xenologs were not included in the core genome built by
CoreCruncher). In contrast, only 44% of the genes inferred
as core by both programs (shared core) presented one or
more paralogs and/or xenologs (those were successfully ex-
cluded from the core by both programs). This suggests that
the presence of paralogs and xenologs likely explains a large
part of the discrepancies between the two programs. We
further verified whether these CoreCruncher-specific core
genes were true orthologs. We reasoned that if these core
genes frequently included within-paralogs/xenologs or hid-
den paralogs/xenologs, many of them would present a wider
distribution of identity scores. Therefore, we compared the
core genes inferred by both programs to the 270 core genes
inferred only by CoreCruncher. We aligned the sequences with
muscle and computed the pairwise identify score for each
core gene. We found no significant increase in the distribution
of identity scores of the CoreCruncher-specific core genes rel-
ative to the core genes inferred by both programs; Wilcoxon
tests on the distributions of 1) minimal values, 2) the standard
variation, 3) the mean, and 4) the median values of identity
scores (supplementary fig. S2, Supplementary Material on-
line). We observed a slight but significant increase in the se-
quence length of the CoreCruncher-specific core genes
(P< 0.001, Wilcoxon test, supplementary fig. S2,
Supplementary Material online), although we do not expect
this difference to substantially affect the inference of the two
programs. Overall, this analysis indicates that BBH-based pro-
grams like Roary are more likely to be affected by the presence
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FIG. 1. Impact of paralogs and xenologs on the inference of gene orthology. Scenario (A): No paralogs/xenologs. The orthologous gene is present in
all the genomes; no paralogs or xenologs are present. Scenario (B): Within-paralogs/xenologs. The orthologous gene is present in all the genomes;
one or more within-paralog/xenolog sequences are present. Scenario (C): Partially hidden paralogs/xenologs. The orthologous gene is missing in
some genomes; some genomes are missing the orthologous sequence but contain a paralogous or a xenologous sequence (hidden paralog/
xenolog); other genomes contain both the orthologous sequence and the paralogous or xenologous sequence (within-paralog/xenolog). Scenario
(D): Completely hidden paralogs/xenologs. Some genomes are missing the orthologous sequence but contain a paralogous or a xenologous
sequence (hidden paralog/xenolog); no within-paralogs/xenologs are present in other genomes. Plain boxes represent orthologous sequences;
striped boxes represent paralogous or xenologous sequences. Scenarios A and B are expected to yield straightforward core gene predictions by
BBH-based methods and CoreCruncher. Scenarios C and D will likely lead to the inclusion of paralogous and xenologous sequences in the core
genome constructed with BBH-based approaches.
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of paralogs and xenologs and that the core genes inferred by
CoreCruncher, and not by Roary, do not show evidence for
the presence of paralogous or xenologous sequences.

The same data set was used to analyze the genes that were
predicted as core by Roary and as noncore by CoreCruncher
(901 genes, fig. 3). We found that a large portion of these
genes (38%) were excluded from the core genome by
CoreCruncher because they varied in length (by default,
CoreCruncher imposes that sequences cannot differ by

more than 20% in length). Very few of these genes (<1%)
were excluded because the sequence was missing in the pivot
genome used by CoreCruncher. Finally, 8% of these genes were
excluded from the core genome of CoreCruncher because
they contained paralogs or xenologs based on the “double
outlier” test.

To further analyze the reasons for gene exclusion by
CoreCruncher as compared with the same analysis done
by Roary, genes were aligned with muscle and pairwise
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FIG. 2. Identification of paralogs and xenologs with the double outlier test. CoreCruncher systematically tests for the presence of hidden paralogs/
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Step 1. Vertical outliers: CoreCruncher builds distribution 1 for the putative core gene: the distribution of the identity scores of the best hit of each
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the putative paralog/xenolog against the pivot genome. The putative paralog/xenolog is considered a true paralog/xenolog if its identity score is
also an outlier in distribution 2 using Tukey’s fences (see above). The paralog(s)/xenolog(s) inferred by the double outlier procedure is (are) then
removed from the putative core gene. The putative core gene will be considered part of the core genome if present above the set frequency
threshold used to define core genes (90% of genomes by default). When run with the stringent option, CoreCruncher will exclude any putative core
gene with a paralog/xenolog identified with the double outlier test.
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identity scores were computed for each of the 901 Roary-
specific core genes. We found that most of these genes
presented a much higher range of sequence identities

relative to the 2,541 core genes inferred by both Roary
and CoreCruncher (supplementary fig. S2, Supplementary
Material online). Indeed, the minimal identity score, the
average identity score, and the median identity score were
significantly lower when compared with the core genes in-
ferred by both tools (P< 0.0001, Wilcoxon test, supplemen-
tary fig. S2, Supplementary Material online)—whereas the
standard deviation of these identity scores were significantly
higher (P< 0.0001, Wilcoxon test, supplementary fig. S2,
Supplementary Material online). Surprisingly, some of these
Roary-specific core genes presented as low as 50% protein
identity (supplementary fig. S2, Supplementary Material on-
line). Roary’s inference of highly divergent sequences as part
of the same core gene—despite using a threshold of 95%
sequence identity—can be ascribed to the BBH procedure.
The BBH approach infers pairs of sequences as orthologs
based on a sequence identity threshold (95% in this analy-
sis); however, this step is followed by a clustering procedure
which occasionally aggregates together sequences that are
much more divergent than the set threshold. BBH-based
approaches are more likely to aggregate highly divergent
sequences into the same ortholog as the number of ana-
lyzed genomes increases since the clustering step can yield
clusters of poorly connected sequences (note that this issue
is even more problematic when fusions and fissions of genes
occurred and when there is no imposed threshold on se-
quence length conservation). In contrast, our procedure
imposes that every sequence of the orthologous family
must be higher than the set threshold (95% identity in
this case) relative to the sequence of the pivot genome.
This results in a core genome with a narrower sequence
identity (not lower than 90% in this case). In fact, we also
compared the core genome built by Roary with a 95% se-
quence identity threshold to the core genome obtained by
CoreCruncher using a 90% sequence identity threshold. This
resulted in a larger core genome shared by both methods:
2,640 genes (previously 2,541 when the thresholds were set
at 95% sequence identity for both tools). Overall, these
results show that CoreCruncher is more conservative than
BBH-based approaches and that lower sequence thresholds
than those typically used for BBH-based methods can be
applied.

Finally, the performance of CoreCruncher was assessed by
building the core genome of data sets with different sizes.
The genomes (protein sequences) of Escherichia coli were
downloaded from RefSeq and used to test the performance
of CoreCruncher on groups of 10, 100, 1,000, and 10,000
randomly selected genomes using the same parameters,
the same pivot genome, and the same desktop computer.
We found that the computation time increased approxima-
tively linearly with the size of the genomic data set (fig. 4A).
Importantly, CoreCruncher was able to build the core ge-
nome of 10,000 genomes in less than 29 h on a desk com-
puter and yielded a core genome of 1,890 genes. As
expected, the size of the core genome decreased with the
number of genomes (fig. 4B). These results show that
CoreCruncher is particularly well-suited for the analysis of
very large data sets.
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Discussion
CoreCruncher is a computational tool that rapidly and ro-
bustly assembles core genomes in large genomic data sets
and, because it does not conduct all pairwise genome com-
parisons, CoreCruncher is well adapted to current data sets
that are becoming increasingly larger (e.g., over 10,000
genomes). Though CoreCruncher does not define orthologs
by conducting all pairwise genome comparisons, it does not
overpredict core genes. On the contrary, the “double outlier”
test implemented in CoreCruncher yields a more stringent
core genome than typical approaches based on BBH.
Moreover, CoreCruncher can distinguish true orthologs
from orthologs containing hidden paralogs or xenologs, a
step that is not typically implemented in other tools. For
these reasons, CoreCruncher constitutes an efficient tool par-
ticularly well-suited to analyze current prokaryotic genome
data sets composed of hundreds or thousands of genomes.

Importantly, CoreCruncher is very fast. Using a desktop
computer, the core genome of 484 genomes of
S. marcescens was built in 2 h 39 min on average, with the
longest run being completed in 3 h 43 min. Conversely, over
24 h were needed to analyze each data set with Roary using
the same computer. It must be noted, however, that these
performances cannot be directly compared as Roary also
builds the entire pan-genome, whereas CoreCruncher fo-
cuses specifically on building the core genome.
Nevertheless, the most time-consuming step of Roary con-
sists of conducting the pairwise comparisons (BBH) across
genomes; a step that is used by most programs aiming to
define orthologs. As CoreCruncher does not compute all
pairwise comparisons, its running time scales approximately
linearly with the size of the data set while, for most pro-
grams relying on pairwise comparisons; the running time
scales approximately quadratically with the size of the data

set (Page et al. 2015). CoreCruncher was also tested on very
large data sets of 10,000 complete genomes of E. coli (using
protein sequences) and the program was found to complete
core genome construction in under 29 h on a desk
computer.

It should be noted that CoreCruncher yields more conser-
vative core genomes and our comparison with a BBH proce-
dure showed that the core genes inferred by CoreCruncher
present a much narrower range of sequence identity.
Although this feature is desirable to avoid the inclusion of
paralogs and xenologs in the core genome, it might tend to
exclude some true core genes from the core genome when
run with a strict identity threshold (e.g., 95%). For this reason,
we recommend using CoreCruncher with more permissive
sequence thresholds than those typically used for BBH-
based inference (e.g., 90%). We showed that BBH-based meth-
ods can infer core genes with highly divergent sequences and
these genes are unlikely true core genes. This issue is more
prone to occur when building core genomes on large data
sets with BBH-based methods due to the clustering step that
follows the inference of pairs of orthologs. As a result, we
believe that BBH-based methodologies are not best suited
to build the core genome of large sets of genomes (i.e., hun-
dreds of genomes or more).

The use of a pivot genome reduces substantially the
runtime of the program. It should be noted, however,
that using a low-quality genome assembly as a pivot ge-
nome can negatively affect the quality of the inferred core
genome. Therefore, we strongly encourage the use of a
high-quality assembly as the pivot genome. We have also
implemented a script (consensus.py) that allows users to
generate a consensus core genome from two core genomes
built with different pivot genomes (note that all other
parameters must be strictly identical between the two
runs). This procedure prevents the user from missing the
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detection of core genes that are absent in one of the two
pivot genomes. The script also checks the core genomes
and excludes potential core genes that were inconsistently
inferred by the two runs. Running CoreCruncher twice us-
ing two pivot genomes and subsequently building the con-
sensus core genome is particularly recommended for data
sets containing poor-quality assemblies such as metage-
nome assembled genomes.

Materials and Methods
CoreCruncher uses Usearch (Edgar 2010) (default) or Blast
(Altschul et al. 1997) to identify homologs based on se-
quence identity and sequence length by comparing each
genome of the data set against the pivot genome. The pivot
genome is chosen randomly if not specified. Each gene se-
quence of the pivot genome is compared against each ge-
nome of the data set, and each best hit is considered as a
putative ortholog whereas other hits are directly classified as
paralogs/xenologs (i.e., within-paralogs/xenologs). For each
gene of the pivot genome, all best hits found across the
genomes of the data set constitute a putative ortholog and,
as such, are associated together in an orthologous family
with a single or zero copy per genome. The orthologous
family is considered a putative core gene when found in all
or nearly all genomes (90% of the genomes by default). This
step ultimately results in a putative core genome where no
within-paralogs/xenologs are present; however; paralogs and
xenologs may still be included due to more complex pat-
terns of gene gains and losses or incomplete genome as-
semblies—resulting in seeming orthologs (i.e., “hidden
paralogs/xenologs”). These cases are expected to occur
when the orthologous sequence is lost, but a paralog/xen-
olog remains present in the genome (fig. 1). Current meth-
odologies based on BBH are unlikely to recognize these
sequences as paralogs or xenologs and may include them
in the core genome (Kristensen et al. 2011).

First, CoreCruncher identifies partially hidden paralogs/
xenologs as illustrated in figure 1C. Paralogous or xenol-
ogous genes can be hidden paralogs/xenologs in some
genomes (in instances where the orthologous sequence
is absent from the genome) and within-paralogs/
xenologs in other genomes. These cases are relatively
straightforward to identify: For each putative core
gene, the distribution of identity scores of all sequences
is built and compared with the identity scores of the
within-paralogs/xenologs, that is, each sequence is con-
sidered to be an ortholog unless a within-paralog/
xenologs with a higher identity score has been identified.
In the case where an ortholog presents one or more
sequences with a lower identity score than a within-
paralog/xenolog, the low-identity sequences are excluded
from the orthologous family—which will still be consid-
ered a putative core gene if it meets the frequency cri-
terion (i.e., by default an orthologous family must be
present in 90% of the genomes to be considered a pu-
tative core gene). When CoreCruncher is run with the
stringent option, an orthologous family is automatically

excluded from the core genome if a sequence with a
lower identity score than a within-paralog/xenolog is
detected. Note that this step is only conducted when
within-paralogs/xenologs have been identified for a given
orthologous gene family.

Second, CoreCruncher identifies completely hidden paral-
ogs/xenologs as represented in figure 1D. Completely hidden
paralogs/xenologs are hidden paralogs or xenologs in one or
more genomes (orthologous sequence is absent from the
genome(s)) without any within-paralogs/xenologs present
in other genomes. To ensure that no hidden paralogs/xeno-
logs are included in the core genome, our method identifies
sequences that are significantly more divergent from the
other sequences of the orthologous gene, while accounting
for the overall divergence of each genome. A given gene se-
quence may present a higher divergence rate relative to other
sequences of the orthologous gene, but this may simply be
due to the fact that this gene sequence is present in a more
divergent strain. To account for this, we exclude sequences, or
an orthologous family, from the core genome if it is itself, or if
it contains, a “double outlier,” which is defined in this study as
a sequence that is substantially more divergent from 1) the
other sequences of the orthologous gene family (fig. 2, distri-
bution 1) and 2) more divergent than the other putative
orthologs of the genome (fig. 2, distribution 2). The set of
putative core gene sequences is used to draw the distribu-
tions of identity scores for each genome that is compared
with the pivot genome (distribution 2). The median value of
each distribution is used to estimate the overall divergence
between each genome and the pivot genome. Then, for each
sequence of each putative core gene, we test for the presence
of “double outliers,” which, as defined above, is a sequence
that is significantly divergent 1) vertically: from the other
sequences of the orthologous gene (using distribution 1)
and 2) horizontally: from the average identity score computed
across all the putative orthologs relative to the pivot genome
(using distribution 2). In both cases, a sequence is defined as
an outlier with Tukey’s fences (Tukey 1977): if its identity
threshold is below Q1� 1.5(Q3–Q1) or above
Q3þ 1.5(Q3–Q1), with Q1 and Q3 the values of the first
and third quartiles, respectively. When a given sequence is
inferred as a double outlier, it is considered a hidden paralog/
xenolog and this genome’s sequence is excluded from the
putative core gene. Other sequences of the putative core
gene will still be considered part of the final core genome if
they meet the frequency criterion (i.e., by default an ortholog
must be present in 90% of the genomes to be considered a
core gene). When CoreCruncher is run with the stringent op-
tion, a putative core gene is automatically excluded from the
core genome if it contains one or more sequences inferred as
a “double outlier.” After filtering out paralogous sequences
and/or putative core genes with the “double outlier” test, the
final core genome is built.

CoreCruncher is implemented with Python 3.7 and is also
compatible with Python 2.7 and can run on Mac and Linux
operating systems. CoreCruncher requires the Python library
Numpy and Usearch (default) or Blast to identify homologs.
If specified, the core genes extracted by CoreCruncher can
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be aligned with muscle (Edgar 2004) (default) or mafft
(Katoh and Standley 2013) and these aligned protein or
nucleotide sequences will be concatenated into a single
merged alignment. CoreCruncher is capable of processing
either protein or nucleotide sequences and has been found
to be robustly capable of building the core genome for
large data sets composed of more than 10,000 genomes
in less than 29 h on a desk computer (using protein
sequences).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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