
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Xin Zhang,
Ningbo University, China

REVIEWED BY

Xu Dan,
Fuzhou University, China
Bin Zhou,
Nanjing Agricultural University, China

*CORRESPONDENCE

Qing Ye
yy.0526@163.com
Aiping Wu
wap@ism.cams.cn

†These have authors contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Microbes and Innate Immunity,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

RECEIVED 20 May 2022
ACCEPTED 18 July 2022

PUBLISHED 04 August 2022

CITATION

Shang J, Li C, Jin Z, Zu S, Chen S,
Chen J, Chen Z, Tang H, Qin C-F,
Ye Q and Wu A (2022) Immune
profiles in mouse brain
and testes infected by Zika virus
with variable pathogenicity.
Front. Cell. Infect. Microbiol. 12:948980.
doi: 10.3389/fcimb.2022.948980

COPYRIGHT

© 2022 Shang, Li, Jin, Zu, Chen, Chen,
Chen, Tang, Qin, Ye and Wu. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 04 August 2022

DOI 10.3389/fcimb.2022.948980
Immune profiles in mouse brain
and testes infected by Zika virus
with variable pathogenicity

Jingzhe Shang1,2†, Chunfeng Li3,4†, Zhujia Jin1,2,
Shulong Zu1,2,3,5, Songjie Chen6, Junlan Chen7, Ziyi Chen1,2,
Hua Tang8, Cheng-Feng Qin3, Qing Ye3* and Aiping Wu1,2*

1Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical
College, Beijing, China, 2Suzhou Institute of Systems Medicine, Suzhou, China,
3State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and
Epidemiology, Academy of Military Medical Sciences, Beijing, China, 4Institute for Immunity,
Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, United States,
5Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical
Sciences and Peking Union Medical College, Beijing, China, 6Departments of Genetics, School of
Medicine, Stanford University, Stanford, CA, United States, 7State Key Laboratory Breeding Base of
Basic Science of Stomatology, Ministry of Education, Hospital of Stomatology, Faculty of Medical
Sciences, Wuhan University, Wuhan, China, 8Institute of Immunology, Shandong First Medical
University, Tai’an, China
The Zika virus is responsible for neurological diseases such as microcephaly,

Guillain-Barré syndrome, neuropathy, and myelitis in human adults and

children. Previous studies have shown that the Zika virus can infect nerve

progenitor cells and interfere with neural development. However, it is unclear

how the immune system responds to infection with Zika viruses with variable

pathogenicity. Here, we used two Zika strains with relatively different

pathogenicity, the Asian ancestral strain CAM/2010 and the America

pandemic strain GZ01/2016, to infect the brains of mice. We found that both

strains elicited a strong immune response. Notably, the strain with relatively

high pathogenicity, GZ01/2016, caused more intense immune regulation, with

stronger CD8+ T cell and macrophage activation at 14 days post infection (dpi),

as well as a greater immune gene disturbance. Notably, several TNF family

genes were upregulated at 14 dpi, including Tnfrsf9, Tnfsf13, Tnfrsf8, Cd40, and

Tnfsf10. It was notable that GZ01/2016 could maintain the survival of nerve

cells at 7dpi but caused neurological disorders at 14dpi. These results indicate

that Zika viruses with high pathogenicity may induce sustained activation of the

immune system leading to nerve tissue damage.
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Introduction
Zika virus (ZIKV) is a single-stranded RNA mosquito

Flaviviridae virus. Recently, ZIKV infection has become a

global health problem (WHO, 2018). Since the first outbreak

in Yapo Island in 2007, ZIKV continues to spread from the

South Pacific Islands to the American continent (Gatherer and

Kohl, 2016). ZIKV has caused widespread concern in

international communities because of its association with

microcephaly in infants (Mlakar et al., 2016).

ZIKV affects the development of neural progenitor cells and

peripheral neurons, leading to microcephaly (Dang et al., 2016;

Li et al., 2016; Tang et al., 2016; Oh et al., 2017). However, ZIKV

also causes immune-mediated disorders in adults and

adolescents, including Guillain-Barre syndrome (GBS),

neurodegenerative diseases, and multiple sclerosis (Oehler

et al., 2014; Araujo et al., 2016; Cao-Lormeau et al., 2016;

Petersen et al., 2016; Alves-Leon et al., 2019). In an epidemic

study in Brazil, some adults with ZIKV infection developed GBS

(Ansar and Valadi, 2015). Since the first case of GBS associated

with ZIKV was reported in 2013 in French Polynesia, new cases

have increased significantly (Oehler et al., 2014; Cao-Lormeau

et al., 2016).

ZIKV infection induces an inflammatory response in the brain.

CD8+ T cells play a key role in the resistance to ZIKV infection.

Animal studies have shown that the decrease of CD8+ T cells

increased the amount of virus, while the deletion of CD8+ T cells

resulted in the death of mice (Ngono et al., 2017). Recent studies

have found that ZIKV specific CD8+ T cells have multiple functions

and antiviral activities (Grifoni et al., 2018). Analysis of infected

blood samples revealed that ZIKV of African and Asian strains

mainly infects CD14+ monocytes in blood (Foo et al., 2017). In

mice, ZIKV infection increases the incidence of epilepsy. Moreover,

ZIKV-induced neuroinflammation is alleviated when TNF-a is

inhibited (de Oliveira Souza et al., 2018). In addition to neuronal

cells, ZIKV can infect microglia in the brain and cause

inflammation (Lum et al., 2017; Meertens et al., 2017). These

studies show that ZIKV infection induces changes in the immune

microenvironment of the brain; however, the relationship between

the inflammatory response and neurological damage

remains unclear.

Another concern with ZIKV infection is its long-term

persistence in the testes (Atkinson et al., 2017). A long-term

follow-up study showed that ZIKV persists in the semen of

infected patients for up to 141 days, which leads to a potential

risk of sexual transmission (Mansuy et al., 2016). Further, studies

in mice have shown that ZIKV can cause testicular damage and

male infertility (Govero et al., 2016; Ma et al., 2016). However,

the impact of ZIKV infection on the immune microenvironment

in the testes remains unknown

Evolution analysis found that the Asian and American

strains of ZIKV that have been responsible for the outbreaks
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of microcephaly belong to two branches. Earlier studies have

shown that ZIKV strains from different sources have different

pathogenic effects (Tripathi et al., 2017). Recent experiments

have found that the Asian ancestral strain (CAM/2010) does not

cause significant neurological diseases, and have reported that a

mutation in the perM protein (S139N) of the CAM/2010 led to a

significant increase in ZIKV neurovirulence (Yuan et al., 2017).

To further explore the immune response of the host to

different virulent strains of ZIKV, we infected early-born mice to

study the dynamic immune responses in the brain and testes. We

found that both of the tested strains (CAM/2010, GZ01/2016)

elicited immune responses in the brain, with GZ01 causing the

stronger response. In GZ01 infected mice, activated CD8+ T cells

were more potent; this process involves multiple Tnfs and Tnf

receptors, such as Tnfrsf9, Tnfsf13, and Tnfrsf8. These results

indicate that GZ01 may cause continuous inflammation in brain

tissue, leading to more severe tissue damage than CAM.

Additionally, neither virus caused a significant immune

response in the testes through distant infection.
Materials and methods

Animals and virus

C57 mice were purchased from the Vital River Laboratory

(Beijing, China) and bred in our core animal facility. All animal

experiments were performed according to the standard

operating protocol (SOP) issued by the Animal Experiment

Committee of the Laboratory Animal Center, Academy of

Military Medical Sciences, China (IACUC-13-2016-001). ZIKV

strains GZ01/2016 (GZ01, GenBank: KU820898) and CAM/

2010 (CAM, GenBank: JN860885) were used according to the

methods mentioned previously (Li et al., 2017).
ZIKV infection

Eight-day-old neonatal mice were intracerebrally injected

with 100 PFU of the virus, the brain and the testes were collected

at 7, 14, and 33 days after infection to analyze the

immune response.
Flow cytometry and cell sorting

For brain single cell preparation, mice were anesthetized and

received cardiac perfusion with 20 ml 0.01 M phosphate buffered

saline (PBS). For cell surface staining, prepared single cell

suspensions were first blocked with anti-Fcg III/II Receptor

mAb (2.4 G2) for 5 min, followed by staining with

fluorescence-conjugated mAb for CD45.2 (104), CD3ϵ (145-

2C11), NK1.1 (PK136), CD4 (GK1.5), CD8 (53-6.7), CD11c
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(N418), IA/IE (M5/144.15.2), CD64 (X54-5/7.1.1), F4/80 (BM8),

CD11b (M1/70), and Ly6C (HK1.4). All mAbs were purchased

from eBioscience, except CD3, CD64, CD11b mAb (BD), and

CD4, IA/IE mAb (Biolegend).
RNA isolation and sequencing

We fed 1 mg total RNA from mice sample into the NEBNext

PolyA mRNA Magnetic Isolation Kit (NEB, catalog #E7490L),

then constructed the specific chain RNA library using the

NEBNext Ultra Directional RNA Library Prep Kit for Illumina

(NEB, catalog #E7420L). We performed library construction

according to the vendor’s instructions, starting with the chapter

“Protocol for use with NEBNext Poly (A) mRNA Magnetic

Isolation Module.” The mRNA is enriched by magnetic beads,

followed by first- and second-strand cDNA synthesis. Double-

stranded cDNA was purified using Agencourt AMPure XP

Beads for cDNA library construction. The quality of the

library was evaluated on the Agilent 2100 bioanalyzer and

quantified by qPCR using the VAHTS library quantification

Kit for Illumina (Low ROX Premixed) (Vazyme, catalog

#NQ103). Libraries were sequenced on the HiSeq X10 using

the paired end 2*150bp, single-index format. The RNA-seq data

were deposited in the National Center for Biotechnology

Information (NCBI) under accession code PRJNA759363

and PRJNA835059.
Mass spectrometry

LC-MS based tandem mass tag (TMT)- labe led

identification and quantification of the proteome were

applied for the proteomics profiling of tissue samples. In

brief, tissues were lysed in a fresh prepared lysis buffer

containing 6 M Gdmcl, 10 mM TCEP, 40 mM CAA, and 500

mM Tris (pH 8.5). After protein reduction and alkylation, the

protein concentration was measured using the BCA kit

(ThermoFisher). Next a 100-mg protein pellet was used for

trypsin digestion (1:50) overnight at 37°C. Peptides were

cleaned using a Waters HLB column. Samples were

randomized and labeled using TMT10 Plex (ThermoFisher)

in 100 mM TEAB buffer. An equal number of peptides from

each sample were pooled together as a reference. Data

acquisition was performed on a NanoAquity 2D nanoLC

(Waters) directly coupled in-line with a linear trap

quadrupole (LTQ)-Orbitrap Velos instrument (Thermo

Scient ific) via a Thermo nanoelectrospray source .

Subsequently, 3 mg of multiplexed sample was loaded on LC-

MS analysis (15 mg multiplexed sample was loaded on 2D-LC

for online fractionation). Peptides were separated by reverse-

phase chromatography at high pH in the first dimension,

followed by an orthogonal separation at low pH in the
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second dimension. The raw data were processed with the

Proteome Discoverer 2.1 (Thermo), using the UniProtKB

database, applying 1% FDR. Missing values were imputed

with a random number below 50% of the limit of detection.

The proteome data were deposited in the integrated proteime

resources (iProX) under accession code IPX0004641000.
Bioinformatics

Raw transcriptome data of the mouse brain were obtained

from the NCBI (PRJNA759363). We used a unified process to

produce the raw Fastq data of mouse brain and testes. The

quality of the Fastq data was verified by FastQC software.

Connectors, primers, and low-quality reads were removed by

Trimmomatic. Clean reads were compared to the musculus.

G38.p5 genome using the STAR software. Finally, the expression

of each gene was quantified by RSEM, and DESeq2 software was

used for data standardization and differential gene analysis. The

screening criteria of differentially expressed genes (DEGs) were

adjusted p < 0.05 and fold change > 1.5. Then, clusterProfiler was

used for GO enrichment analysis.
Immune cell type identity

The ImmuCC website provides an analysis of the percentage

of immune cells in mouse samples. The whole tissue was used as

a mixed model of different immune cells. Based on the immune

cell characteristic gene set, the proportion of different immune

cells was calculated using the support vector regression (SVR)

algorithm. The proportion of ten immune cells added up to 100.

To analyze the subtypes of CD8+ T cells and macrophages, we

first collected the related gene sets from the article and used the

ssGSEA method to calculate their over representation in tissues.
Gene set enrichment analysis

To analyze the different functions of immune cells, we

collected the gene sets of different functional modules from

IPA. The genes in each comparison group were sorted by fold

change. The correlation is represented by normalized

enrichment score (NES)
Module score

We calculated the disease gene module score of each sample

using the Gene Set Variation Analysis (GSVA) method

(Hänzelmann et al., 2013). GSVA first determines the high or

low expression of a gene in the sample, then sorts and

standardizes the genes in each sample. Finally, the ES score is
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calculated using the Kolmogorov–Smirnov (KS) like random

walk statistic.
Interaction network

We obtained the target gene interaction network through the

commercial software IPA. The reference database removes the

third-party database and only the IPA knowledge base verified

by experts is selected. The network diagram was generated using

Cytoscape software.
Results

Similarities and differences between
GZ01 and CAM infected mice

The outbreak of ZIKV in Brazil caused a global panic due to

its association with microcephaly. However, the ZIKV

identified earl ier in Asia did not appear to cause

microcephaly (Yuan et al., 2017). Phylogenetics showed that

two strains have a distant evolutionary relationship (Yuan

et al., 2017). After the mice were infected with two

representative strains (GZ01 and CAM), the GZ01 strain
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more significantly reduced the weight of the mice. However,

the di fference in the di s turbance of the immune

microenvironment caused by the two viruses remained

unclear (Figure 1A). To answer this question, we chose GZ01

and CAM strains to study the immune signature changes in

mice. On the basis of previous studies, we found that mice had

significant changes at 14 days post infection (dpi; infection

being the eighth day after birth). So, we collected 7 dpi, 14 dpi,

and 33 dpi samples to examine the changes in immune

signatures over time (Figure 1B). ZIKV RNA copies were

both increased and no significant difference in ZIKV-infected

mice were observed until 14 dpi. (Figure 1B). We detected

differences between samples by principal component analysis

(PCA) and found that ZIKV-infected mice had both

similarities and differences to control mice (Figure 1C). The

first two principal components represented a 74% change of

6146 genes. PC1 is associated with infection strains, while PC2

is associated with infected time.
Transcription disturbances in the GZ01-
and CAM-infected mice brains

The coordinated expression of genes may be related to

specific biological functions, a modular analysis method was
A

B
C

FIGURE 1

Schematics for identifying immune signatures from ZIKV-infected mouse brains. (A), Different immune response of mice caused by different
strains of Zika virus. Two representative ZIKV strains, CAM and GZ01, were selected and are indicated with black and red arrows in the
phylogenetic tree. (B), Experimental proposal for building a mouse model and data analysis. Mice were inoculated with 100 pfu of ZIKV strains
or control medium on the eighth day after birth. Brain samples were collected at 7, 14, and 33 dpi for further experiments. Viral loads of ZIKV in
mouse brains are shown in line chart. (C), PCA displaying biological variation among different infection groups.
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used to clarify the biological functions of different virulence

strains. We clustered 6146 perturbation genes into 31 modules

by k-means strategy. The genes in each module had similar

expression patterns. The biological functions of each module

were annotated through the Metascape website (Supplementary
Frontiers in Cellular and Infection Microbiology 05
Table 1). The score for each module was calculated using

Chaussabel’s method (Chaussabel et al., 2008). Pie chart is

used to show the proportion of DEGs in each module.

The annotated modules are arranged according to

biological function, the A1-C3 module is related to the
A

B

C

FIGURE 2

Identify key difference modules between CAM and GZ01 infected mice. (A), Modular map analysis: Gene expression from mice infected with
CAM and GZ01 and Control mice were compared (P < 0.05, Fold change > 1.5). Spots indicate the proportion of genes significantly that were
changed for each module in mice infected with CAM and GZ01 compared to controls. Red: Overexpressed, Blue: Underexpressed. (B, C),
Network of enriched terms of the B2 and B3 modules, colored by cluster ID, where nodes that share the same cluster ID are typically close to
each other.
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immune response, and E1-F4 is related to neural development

(F igure 2A, Supplementary Table 1) . Based on a

comprehensive comparative analysis, two unique patterns

were identified. One pattern is related to the immune

response; most immune modules increased in both groups of

mice, whereas B2 and B3 were more increased in GZ01-

infected mice than in CAM-infected mice. Another pattern is

associated with neural development; multiple neurological

modules decreased in GZ01-infected mice compared to

CAM-infected mice. To further capture the relationships

between the terms, a subset of enriched terms was selected

and rendered as a network plot. The network of the B2 module

revealed that the enriched pathways enhanced in GZ01 were

linked to Activate immune response, Interferon-gamma

production, Lymphocyte-mediated immunity, and T cell-

mediated immunity (Figure 2B). The B3 module was

enriched for the inflammatory response, granulocyte

migration, and negative regulation of the production of

molecular mediators of the immune response (Figure 2C).

These results suggest that the GZ01 strain induces a stronger

immune response involving T cell activation and interferon

production compared to the CAM strain in mouse brains.
Immune cell profiles of the brain in
GZ01- and CAM-infected mice

We first examined the changes in the composition of immune

cells in all samples. The proportions of ten types of immune cells

were detected, of which four types of immune cells (CD8+ T cells,

CD4+ T cells, macrophages, and monocytes) accounted for the

majority (Figure 3A). We used flow cytometry to analyze the true

ratios of the four types of immune cells. The results showed that

the proportion ofmicroglia andmonocytes in ZIKV-infected mice

was significantly lower than that in control mice (Figures 3B, C).

However, the proportion of CD8+ T cells was significantly higher

than that in control mice (Figure 3D). Additionally, the

proportion of CD4+ T cells was not significantly different

among the three experiments (Figure 3D).

As immune cells have multiple states, we further analyzed the

changes in the functional sets of CD8+ T cells and macrophages.

The CD8+ T cells in the GZ01 infected mice were activated for

longer, and the CD8+ activation function of the CAM-infected

mice was significantly lower than that of the GZ01-infected mice

at 14 dpi (Figure 3E). Moreover, the function of macrophages was

significantly stronger in both strains compared to the Control, and

there was no significant difference between the two strains at 7 dpi

and 14 dpi.
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Immune molecular perturbation between
GZ01- and CAM-infected mice
We next examined the perturbation of immune response

molecules in ZIKV-infected mice. To this end, we collected a

set of immune response molecules, which obtained 3335 direct

and indirect immune response genes. Using a cut threshold of

fold change > 1.5 and padj < 0.05, differentially expressed

immune response genes were identified between GZ01- and

CAM-infected mice. At 7 dpi, multiple cytokines were

significantly upregulated in GZ01-infected mice compared to

CAM-infected mice. However, at 14 dpi, only seven cytokines

were significantly upregulated, including Cxcl16, Cd44, Cd93,

Cd40, Tnfrsf9, Tnfrsf4, and Tnfsf10 (Figure 4A).

Moreover, 245 and 42 DEGs were obtained at 7 dpi and 14

dpi, respectively ( Figure S1A and Figure 4B). IPA software was

used to analyze the two gene sets, and both classical pathways

and upstream regulatory factors were identified. At 7 dpi, the

activation pathway in GZ01-infected mice was found to involve

multiple acute inflammatory signals, including acute phase

response signaling, the Th17 activation pathway, and TREM1

signaling. Additionally, GZ01-infected mice showed activation

of the neuroinflammation signaling pathway (Figure S1B). IPA

software was used to predict the regulatory network of

differential gene sets at 14 dpi; this regulatory network

predicts the function of input and related genes. In this

regulatory network, three functional sets were observed: pro-

inflammatory signal, MAPK activation signal, and T cell signal

(Figure 4C). The inflammatory signals included Tnfsf10,

Tnfrsf9, Tnfrsf4, and S100a9. Tnfrsf9 involves the

development, survival, and activation of T cells (Miller et al.,

2002), while Tnfrsf4 is a co-stimulator of long-term T cell

immunity (Hendriks et al., 2005). The activation of the MAPK

pathway was predicted on the basis of the down-regulation of

Dusp4/6. Cd40 binds to the Nfat gene to induce secretion of

cytokines by T cells (Munroe and Bishop, 2007).

Immune checkpoints play an important role in the immune

regulation process. We compared the expression differences

between immunoinhibitor- and immunostimulator-related

genes in different samples. The results showed that both

strains significantly upregulated immunosuppressives and

immunostimulatory genes relative to the control mouse brain

(Figure S2A). Further, DEGs from the immunostimulatory

gene set showed that GZ01-infected mice had a higher FC

than CAM-infected mice. Notably four Tnf factors were

specifically upregulated in GZ01-infected mice at 14dpi,

including Tnfrsf9, Tnfsf13, Tnfrsf8, and TNfrsf5 (Figures

S2B, C).
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Nervous system function is significantly
influenced by the GZ01 strain compared
to the CAM strain

After collecting multiple neurological disease gene sets from

IPA to analyze the effects of different strains on the nervous
Frontiers in Cellular and Infection Microbiology 07
system, we first integrated all nerve function genes into a single

gene set. A Venn plot showed that there were fewer specific

DEGs in CAM-infected mice, but more specific DEGs in GZ01-

infected mice (Figure 5A). Next, we examined the difference in

neurological function between different strains of infection. At 7

dpi, CAM-infected mice developed neuronal damage and
A

B

D

E

C

FIGURE 3

Immune cell profiles of mice infected with ZIKV and Control. (A), Zika infection leads to activation of CD8+ T and microglia cells. A, The
proportions of the ten immune cell types investigated. The immune cell ratio was calculated using expression data from the immuCC website.
(B–D), Flow cytometry immunophenotypic analysis of a case of microglia, monocyte, CD4, and CD8 in Control and mice infected with ZIKV.
(E), Comparison of the enrichment scores of immune cell subtypes in different infection groups by GSVA.*P < 0.05; **P < 0.01, ***P < 0.001,
****P < 0.0001, ns, not significant (two-tailed unpaired Student’s t-test).
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demyelination of nervous tissue, and simultaneously, activated

neuronal stimulation and regeneration. However, GZ01-infected

mice showed specific down-regulation of multiple neural

developmental functions and increased neurological survival.

At 14 dpi, atrophy of nervous tissue was down-regulated in

CAM infected mice. In GZ01-infected mice, the function set of

multiple nerve signals were down-regulated (Figure 5B). These

results suggest that GZ01 and CAM have varying effects on

neurological function in mice. At 7 dpi, the neurological

development of GZ01-infected mice was affected, whereas the

neurological function of CAM-infected mice had begun to

recover. By 14 dpi, the nerves of GZ01-infected mice had been

damaged, resulting in weakened nerve signal function.

To further identify the most important neuroregulatory

genes, we analyzed the neuro-related genes with specific

changes in viral strains. For neuron-associated genes with

specific changes in GZ01-infected mice at 7 dpi (156

upregulated genes, 291 down-regulated genes), most upstream
Frontiers in Cellular and Infection Microbiology 08
regulators of GZ01-specific disturbances have been shown to be

related to neural development (Figure 5C), including Efna1,

Lmna, Nr4a2 (Jakaria et al., 2019), Pou4f1 (Zou et al., 2012), and

Slc6a3 (Arpón et al., 2018). Additionally, Bdnf is related to nerve

survival and disease (Hu and Russek, 2008). At 14 dpi, the

network of GZ01 strain-disturbed genes can be divided into two

parts (Figure 5D): One part constitutes an immune molecular

network with the STAT3 gene as the core (most of these genes

have upregulated expression), and another part related to nerve

signal, including Thrb, Gh, and other down-regulated genes.
ZIKV infection induces upregulation of
apoptosis-related proteins at 14 dpi

The transcriptome data is insufficient to provide a picture of

the correct biological state, particularly regulatory processes and
A

B C

FIGURE 4

Differential expression profiles of immune molecules between two strains infected mice. (A), Fold change of differentially expressed cytokines
between mice infected with GZ01 and CAM at 7 dpi and 14 dpi. (B), Heatmap of differentially expressed immune genes between CAM and GZ01
at 14 dpi. (C), Regulatory networks of differentially expressed immune genes and predictive regulatory genes at 14 dpi.
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post-translational modifications. The proteomic data of ZIKV-

infected mice at 14 dpi were obtained by mass spectrometry, and

we observed 68 differentially expressed proteins between

infected and control mice (Figure 6A and Supplementary

Table 2). The immune signals involved in these proteins

include the apoptotic execution phase and response to IL-7

(Figure 6B), a cytokine that is important for B and T cell

development (ElKassar and Gress, 2010). We found 14 genes

that overlapped with the differential genes from transcriptome,

including 10 differential genes in the 7dpi sample and 4

differential genes in the 14dpi sample (Figure 6C). Among

them, 3 genes (Gpb2, Lcp1, and Vim) are significantly up-

regulated at 7dpi in GZ01 infected mice against control mice

(Figure 6D). The relationship between the differential proteins

and the differential genes is worth exploring. Based on the genes

in the two groups, we predicted the regulatory network between
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the transcriptome and the Proteome (Figure 6E). We found that

two hub genes, Spi1 and Vim, are important bridges between the

transcriptome and Proteome.
Immune signal disturbances in testicular
tissue are weak

Studies have shown that ZIKV exists for a long time in

testicular tissues. As the stimulated distal tissue, we detected

the disturbance of its immune signal. We found that the virus

in the testes of ZIKV-infected mice was undetectable from 7

dpi (Figure S3A). The PCA results showed that at the same

time point, the difference between different infection mice was

small (Figure S3B). There was no significant difference in the
A B

DC

FIGURE 5

Characteristics of neurological disturbance in different infection groups. (A), The common and specific gene numbers between GZ01 and CAM
infections are shown in the Venn diagram. (B), GSEA scores of neurological gene set in different comparison groups. (C), Upstream regulatory
factors for GZ01-specific genes related to neurological function at 7 dpi. (D), Regulatory network based on GZ01-specific differentially
expressed neural genes at 14 dpi.
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proportion of immune cells between different infection groups

(Figure S3C, D), nor was there a significant difference in CD8+

T cell function. However, the function of macrophages in the

CAM-infected mice was stronger than that in the GZ01

infected mice at 7 dpi (Figure S3E). The immune stimulation

and immunosuppressive functions also showed no significant

change in either of the infected testicular tissues (Figure S2D).
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Discussion

After preliminary experiments, we found that the mouse

phenotype changed significantly at 14 dpi after infection with

ZIKV, including observable weight loss (Figure 1A). There

was no significant difference in the viral load of mice infected

with different strains, showing that the virus replication
A B

D

E

C

FIGURE 6

Proteomics profiles of mice infected with GZ01 at 14 dpi. (A), Differentially expressed proteins in GZ01 infection mice relative to Control. (B),
Network of enriched terms of differential proteins, colored by cluster ID, where nodes that share the same cluster ID are typically close to each
other. (C), The overlapping gene numbers between DEGs of proteomics and DEGs of transcriptome. (D), Fold change of the overlapping genes
between mice infected with ZIKV and control. The lime-green label indicates the four overlapping genes between proteomic data and
transcriptional data at 14 dpi. The cyan label indicates the ten overlap genes between proteomic data and transcriptional data at 7 dpi. (E),
Regulatory network between differential proteins and the upregulated genes in transcriptome data.
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ability of different virulence strains was similar. Therefore,

this time point can be considered suitable for detecting the

immune response mechanism against ZIKV infection. We

selected the Asian ancestral strain CAM and the intensity

strain GZ01 from South America and China for a

comparative study to explore the differences in immune

profiles. Further, we explored the relationship between the

immune response and nerve injury.

Based on the gene expression module, we found that ZIKV

infection induces immune responses and affects neural

development in the mouse brain. For the immune response,

ZIKV activates ISG antiviral signaling and induces an acute

response, typically activation of NK-kb signaling and interferon

production (supplementary Table 1), which is consistent with

the study of Zhang et al., who also found that GZ01 can more

strongly induce the expression of TNFa and IFNa (Zhang et al.,

2017). Several cytokines were upregulated at 7 dpi between GZ01

and CAM infected mice, expect for Tnfrsf9, Tnfsf13, Tnfrsf8,

and Entpd1, these genes were upregulated in GZ01 infected mice

at 14dpi (Figure 4A). Tnfrsf9 is known to stimulate T cells and

induce strong anti-cancer and anti-autoimmune effects (Ye et al.,

2002; Vinay et al., 2006). Tnfsf13 is believed to attenuate

influenza virus replication in later stages (Tran et al., 2013).

Tnfrsf8 is expressed in activated T cells and B cells, which

activate NF-kb signaling (Higuchi et al., 2005). Furthermore,

upregulation of Tnfrsf8 is linked to patients with chronic

inflammatory diseases (Oflazoglu et al., 2009). These results

show that GZ01 infection causes chronic inflammation in the

mouse brain.

GZ01-infected mice showed a stronger immune response

than CAM-infected mice at 7 dpi. Although CD8+ T cell

activation function was stronger in both ZIKV infected mice

than in control mice at 7 dpi, CD8+ T cell activation was

significantly stronger in GZ01-infected mice than in CAM-

infected mice at 14 dpi. These results indicate that GZ01

continues to activate CD8+ T cells at later stages.

At the level of immune molecules, several immune genes

were upregulated in GZ01-infected mice, which were related to

proinflammatory activity, MAPK activation, and T cell

activation. The GZ01 strain also specifically upregulates the

expression of Cxcl16, Cd40, and Tnfsf10 at 14 dpi. Cxcl16 acts

as a scavenger in macrophages and has a strong chemotactic

effect (Van Der Voort et al., 2005), Cd40 is important for

inflammatory responses including T cell mediated immunity

and memory B cell development (van Kooten and Banchereau,

1997; Bennett et al., 1998), and Tnfsf10 induces apoptosis

(Kuribayashi et al., 2008). The proteomic data also showed

that the GZ01 strain enhanced apoptosis signals. Vim and

Lmna proteins were upregulated in GZ01 infected mice. Lmna

play a key role in nuclear envelope integrity maintenance and

nuclear architecture (Cohen et al., 2001).

To explore the relationship between the immune response

and nerve damage, we compared the effects of different strains
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on neurological function. We observed different regulatory

patterns between CAM- and GZ01-infected mice at 7dpi.

Nerve damage and nerve regeneration were significantly

enhanced in CAM-infected mice, while in the GZ01-infected

mice, the nerve survival ability was enhanced and multiple

neurodevelopmental functions were decreased. Thus, the GZ01

strain appears to be more potent in suppressing the immune

system and enhances the survival of nerve cells to complete

proliferation in infected cells. The difference between the two

strains was more pronounced at 14 dpi. The neurotrophic

function was reduced in the CAM-infected mice, whereas the

multiple neurodevelopmental functions in the GZ01-infected

group were still low. These results suggest that the greater

virulence of GZ01 may be associated with a stronger, sustained

immune response, which in turn leads to brain tissue entering a

chronic inflammatory state at 14 dpi.

In summary, we compared the effects of different ZIKV strains

on the immune system of mouse brain and found that GZ01

infectedmice had a longer lasting inflammatory response compared

with CAM strain. GZ01 inhibited the neuronal apoptosis signal and

replicated continuously in the infected cells. As a result, the immune

system seems continuously activate by the Tnf signal, which affects

the development of brain tissue and nerves. However, this

hypothesis still needs further experimental verification.
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SUPPLEMENTARY FIGURE 1

(A), Heatmap of differentially expressed immune genes between CAM and
GZ01 at 7 dpi. (B), Functional enrichment of differentially expressed genes

between CAM and GZ01 at 7 dpi.

SUPPLEMENTARY FIGURE 2

Evaluation of immune checkpoint in tissues from mice infected by each
strain. (A), Calculation of the immune checkpoint scores of mouse brain

by GSVA. (B, C), Differential fold changes of immune stimulation gene
from brain at 7 dpi and 14 dpi. (D), Calculation of immune checkpoint

scores of mouse testes by GSVA. *P < 0.05; **P < 0.01, ***P < 0.001,
****P < 0.0001, ns, not significant (two-tailed unpaired Student’s t-test).

SUPPLEMENTARY FIGURE 3

Changes in the immune microenvironment of mice testes. (A), Viral loads
of ZIKV in the mouse shown in line chart. (B), PCA displaying biological
variation among different infection groups. (C), The proportion of ten

main immune cell types. The immune cell ratio was calculated using
expression data from the immuCC website. (D), Comparison of the

immune cell ratio of immune cell subtypes in different infection groups.

(E), Comparison of the enrichment scores of immune cell subtypes in
different infection groups by GSVA.
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