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Abstract

Background: A significant proportion of myocardial infarction (MI) patients undergo complex, coordinated perturbations at
the molecular level that may eventually drive the occurrence of ventricular dysfunction and heart failure. Despite advances
in the elucidation of key processes implicated in this condition, traditional methods relying on gene expression data and the
identification of individual biomarkers in isolation pose major limitations not only for improving prediction power, but also
for model interpretability. Mechanisms underlying clinical responses after MI remain elusive and there is no biomarker with
the capacity to accurately predict ventricular dysfunction after MI. This calls for the exploration of system-level modeling of
ventricular dysfunction in post-MI patients. Within this discovery framework key perturbations and predictive patterns are
characterized by the integrated biological activity levels observed in pathways, rather than in individual genes.

Methodology/Principal Findings: Here we report an integrative approach to identifying pathways related with ventricular
dysfunction post MI with potential prognostic and therapeutic value. We found that a diversity of pathway-level
perturbations can be profiled in samples of patients with ventricular dysfunction post MI, most of which represent major
reductions of gene expression. Highly perturbed pathways included those implicated in antigen-dependent B-cell activation
and the synthesis of leucine. By analyzing patient-specific samples encoded with information derived from highly-perturbed
pathways, it is possible to visualize differential prognostic patterns and to perform computational classification of patients
with areas under the receiver operating characteristic curve above 0.75. We also demonstrate how the integration of the
outcomes generated by different pathway-based analysis models may improve ventricular dysfunction prediction
performance.

Significance: This research offers an alternative, comprehensive view of key relationships and perturbations that may
trigger the emergence or prevention of ventricular dysfunction post-MI.
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Introduction

Heart failure (HF) is a clinical condition that can be defined as the

heart’s inability to pump enough blood to meet physiological

requirements. HF is caused by cardiac disease via the interplay of

multiple molecular and environmental factors. The major cause of

HF is ventricular dysfunction after myocardial infarction (MI). Post-

MI patients undergo molecular alterations that result in structural

and functional adaptations in the heart, and which in turn may

eventually trigger the occurrence of ventricular dysfunction and HF

[1]. Despite advances in molecular and medical research, mortality

and morbidity of HF after MI remain unacceptably high [2,3]. It

has to be acknowledged that key mechanisms underlying clinical

responses after MI remain elusive. Furthermore, currently there is

no biomarker with the capacity to accurately predict ventricular

dysfunction after MI, with the exception of brain natriuretic peptide

[4]. Thus, a crucial goal is to discover knowledge to predict the onset

of ventricular dysfunction after MI.

A major challenge for translational biomedical research in the

‘‘post-genome era’’ is to disentangle the complexity of multiple

levels of ‘‘omic’’ information, which can be used to improve our

understanding of the functioning (or malfunctioning) of biological

events implicated in the development of disease. Another

important requirement is to develop computational methodologies

for facilitating the interpretation of large-scale experiments and the

prediction of clinical outcomes. Although it is known that (post-

MI) ventricular dysfunction is the by-product of the large-scale,

dynamic interaction of complex molecular systems, there is a lack

of understanding of systemic mechanisms that can aid in the

prediction and treatment of this disease.

In the past two decades, large-scale gene expression analysis has

significantly contributed to the identification of possible processes

implicated in different disease domains. However, the use of

genome-wide microarrays to identify new biomarkers is still in its

infancy especially in the cardiovascular domain. Very few studies

reported the use of transcriptomic profiling to aid in the search of
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new cardiac biomarkers [5], most likely because of the

unavailability of cardiac tissue. In an interesting study published

by Wingrove et al. [6], gene expression of peripheral blood cells

was found to be correlated with the severity of coronary artery

disease, opening up new avenues for the search of cardiovascular

biomarkers. Indeed, the possibility to use transcriptomic biosigna-

tures of blood cells to predict clinical outcome after MI is

particularly attractive.

The standard approach to biomarker discovery based on gene

expression data typically involves two main steps: a) detection of

differentially expressed genes, and b) the description of the

resulting sets of genes in terms of their involvement in specific

biological processes. The former is commonly achieved with

different (univariate) statistical testing procedures. The latter can

be done by estimating the statistical ‘‘enrichment’’ of standard

functional annotations in the set of genes, such as those defined in

the Gene Ontology (GO) and the KEGG pathways databases [7].

Despite its proven utility for guiding biomarker research, this

standard approach presents different limitations related to both the

accuracy and interpretability of the resulting predictive models [8].

Previous research suggests, for example, that biomarkers

discovered under this traditional framework may: a) be difficult

to reproduce using independent datasets, b) lack predictive

robustness when evaluated with different computational prediction

model and datasets, c) be more difficult to interpret in the context

of previous and emerging evidence [9,10,11].

This may be explained in part by the possibility that highly-

differentially expressed genes encode ‘‘downstream effectors’’ or

‘‘reflectors’’ of biological malfunction, which tend to incorporate

elevated levels of both biological and experimental noise.

Furthermore, it has been suggested that an emphasis on the

detection of highly-differentially expressed genes may constrain

the identification of genes with potential causal roles in disease

[12]. This encourages the development of alternative, systems-

based methodologies that can both enhance and complement the

predictive power and interpretability of traditional approaches.

To address these concerns, bioinformatic advances for biomarker

discovery have involved the detection of differentially expressed

genes in the context of biological pathways or using network-derived

predictive features [9,10,11]. These methods allow researchers to

identify genes that may not be necessarily highly-differentially

expressed across control-case groups, but whose integration into

computational predictive models can improve prognostic accuracy.

Moreover, these methods offer a more descriptive, and possibly less

biased, approach to visualizing and explaining these predictions. For

example, the Gene Set Enrichment Analysis (GSEA) proposed by

Subramanian et al. [9] and subsequent versions of this technique

[13], enable researchers to identify lists of genes that can be used to

distinguish between control and case samples based on the

expression levels that these genes show in previously-annotated sets

of interrelated genes, i.e. canonical pathways. Several modeling

approaches to the progression and recurrence of cancer have been

recently proposed based on pathway-based signatures [10,11,12].

For instance, instead of detecting potential biomarkers as individual

genes, Chuang et al. [10] implemented a methodology in which new

breast cancer biomarkers were represented as sub-networks obtained

from protein interaction databases. Lee et al. [11] identified

condition-responsive genes, whose combined expression measure-

ments can be used to perform accurate phenotype classification.

These biomarker discovery methodologies are based on the idea of

finding statistically-detectable differences between phenotypes using

patterns of gene expression observed in specific molecular pathways.

Although one may further argue in favor of these approaches,

there is no unique or widely-accepted solution for implementing

pathway-driven biomarker discovery. In addition, these techniques

can represent alternative solutions that in combination may

enhance our understanding of mechanisms underlying the

behavior of potential biomarkers and therapeutic targets. In the

area of cardiovascular diseases, in general, and in HF research, in

particular, this type of investigations have not been sufficiently

investigated [8,14,15].

Here we report the integrated analysis of gene expression data

and molecular pathways relevant to ventricular dysfunction after

MI. We aimed to characterize this condition with regard to

perturbations observed in hundreds of pathways, and to explore

the application of this knowledge for automated prognostic tasks.

To accomplish these goals, we implemented an alternative

pathway-centric approach to identifying biomarkers and perform-

ing patient-specific classification, which differs from the techniques

introduced above in a number of ways. Such differences refer to

the way pathways are quantitatively described, ranked and applied

to perform patient-derived sample classification (Methods and

Discussion). Furthermore, we were interested in exploring the

potential descriptive and predictive complementarities that can be

brought with the proposed approach and a previously-published

method. To address this issue, we compared and integrated the

predictions made by our method with those generated by GSEA.

Methods

Research framework
In this study we searched for validated biological pathways that

show major gene expression perturbations in ventricular dysfunc-

tion. We compared the ‘‘level of activity’’ of pathways on the basis of

gene expression measurements derived from whole-blood samples

in patients with ventricular dysfunction (VD+, ejection fraction

#40%) and in patients without ventricular dysfunction (VD2,

ejection fraction .40%) after MI. This represents an integrated

analysis framework, which comprises the combined processing of

both types of information in parallel. Figure 1 summarizes the

research pipeline implemented and main outcomes obtained.

The first analytical phase involved the selection and transfor-

mation of gene expression and molecular pathways. The gene

expression dataset, G, consisted of 32 samples originating from 16

patients with ventricular dysfunction and from 16 patients without

ventricular dysfunction post MI. A set of 639 curated molecular

pathways, MP, were analyzed. Additional information on these

datasets is provided below. Each sample, si, was encoded as a

vector of more than 15,000 gene expression values together with

their corresponding class labels. The expression measurements in

each sample, si, were mapped (overlaid) onto each pathway in

MP. This resulted in 20448 (326639) pathways reflecting the

specific gene expression levels in the different samples, i.e. each

sample was represented by the expression levels observed in 639

pathways. Of these pathways, only 637 included at least one gene

with an expression value in G. Thus, after the sample-pathway

mapping, 20384 (326637) sample-specific pathways were avail-

able for further analyses.

The activity level, hereafter referred to as L values, of each

sample-specific pathway and a global ‘‘perturbation score’’, psc, for

each pathway were estimated. A psc is computed by comparing the

L values across the VD+ and VD2 samples, as explained in the

next sub-section. The psc values provide a quantitative indication

of the alteration of gene expression in the pathways of VD+
samples in relation to VD2 samples, or vice versa. Once the psc

values were estimated, we ranked the 637 pathways to identify the

pathways exhibiting the largest gene expression perturbations in

VD+, from now on also referred to as ‘‘top pathways’’ (TP).

Heart Dysfunction Mechanisms
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Subsequent analyses focused on these TP, which were functionally

characterized and can be seen as potential key mechanisms

underlying the phenotypic differences investigated here. More-

over, our hypothesis is that these pathways may also provide the

basis for prognostic applications. We compared these predictions

with those made by an alternative, published methodology (more

details below).

We explored potential prognostic applications based on the

analysis of L values that represent the samples obtained from the

VD+ and VD2 patients. Different classification models were

implemented and compared with those obtained from a well-

known gene expression analysis technique (see below). In a final

analysis phase, we assessed the integration of these methodologies

to support the discovery of potential novel biomarkers and more

powerful clinical decision-making support.

Detecting and scoring pathway perturbations in
ventricular dysfunction

Figure 2 depicts the main algorithmic steps and outcomes

required to calculate L and psc values. This is illustrated with an

example including 3 hypothetical pathways and 4 samples, which

belong to two clinical classes, A and B. For a given sample, si, a Li,k

value is calculated with respect to each pathway, MPk. The

pathways consist of sets of genes, g, which are graphically

represented with circles in Figure 2. Shaded circles are used to

indicate the intensity of the expression measurements in each

sample. Li,k is obtained by calculating the mean expression value

observed in MPk for the given sample, si. These calculations are

performed for all samples and pathways. Figure 2 portraits L

values with colored squares to reflect the magnitude of these

values. At the end of this procedure, each sample will be associated

with n L-values, and each pathway will assigned to m L-values, with

n and m representing the total number of pathways and number of

samples respectively. In our experiments n = 637 and m = 32. The

next step was to calculate psc values for each pathway using their

corresponding L-values. The psc value of a pathway, MPk, is equal

to the unsigned t-statistic value obtained when comparing the L

values observed across the two investigated classes, A and B. Thus,

psc estimates the magnitude of the differential change in expression

observed in MPk for the given gene expression dataset, G.

For each pathway psc value, P values were calculated to estimate

the statistical significance of these scores. This was done by

implementing a permutation-based testing procedure. The ob-

served psc values were independently compared with a null-

distribution of pscnull values. A single pscnull refers to the perturbation

scores measured in a ‘‘permuted dataset’’. A permuted dataset is

constructed by randomly permuting the class labels in the original

gene expression dataset. The null-distribution was approximated by

creating 10,000 permuted datasets and computing their corre-

sponding pscnull values. A P value reflects the proportion of pscnull

values expected to be as large (or larger) as the observed psc value.

Thus, the lower a P value, the higher the confidence that can be

assigned to the observed psc value.

Computational prognosis applications
We explored the potential application of pathway-derived

information for supporting ventricular dysfunction prognosis. We

first represented patient-specific samples using their pathway

activity levels, L, corresponding to the top 10 perturbed pathways,

TP. This information allowed us to train and test machine learning

Figure 1. Overview of research pipeline and main outcomes. Integrative pathway-based modeling of ventricular dysfunction after MI.
doi:10.1371/journal.pone.0009661.g001
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classification models. The results reported here represent the best

classification performances, which were obtained with an instance-

based learning classification model, KStar [16], and estimated with

leave-one-out cross-validation (LOOCV).

To further assess the relevance of the proposed approach, we

studied classification models based on genes that were detected by

GSEA as significantly differentially expressed [9]. Finally, we

assessed the predictive integration of different potential biomarkers

identified by our approach and GSEA.

Ethics Statement
The protocol was approved by the local ethics committee

(Comité national d’éthique de la recherché, CNER) and written

informed consent was obtained from all patients.

Patients and gene expression data
Patients with acute MI enrolled in a national MI registry and

treated with primary percutaneous coronary intervention were

used in this study. Acute MI was defined by the presence of chest

pain ,12 hours with significant ST elevation and increase in

creatine kinase and troponin I to greater than 2-fold upper limit of

normal. Blood samples were obtained at the time of mechanical

reperfusion in PAXgeneTM tubes. Ejection fraction (EF) measured

with echocardiography using Simpson’s method 1 month after

MI was used to classify the patients into low EF (#40%; 3367%)

or high EF (.40%; 61610%) groups. Both groups of patients

were age- and sex-matched and did not differ with respect to

reperfusion time, final coronary flow, multivessel disease, history of

previous infarction, cardiovascular risk factors or treatment. As

expected, enzyme release was higher in the group of patients with

impaired EF consistent with impaired tissue perfusion. Of note, 6

patients in the VD+ group died (37%) and 3 developed heart

failure during 2 year follow-up while no patient died in the VD2

group and only 1 developed heart failure. These data confirm the

poor prognosis associated with ventricular dysfunction after MI.

Total RNA from the 32 MI patients was extracted from whole

blood cells by the PAXgeneTM technology. Transcriptomic

profiles were obtained using oligonucleotide microarrays repre-

senting 25,000 genes [17]. All data are MIAME-compliant and

available at the Gene Expression Omnibus database (www.ncbi.

nlm.nih.gov/geo/) under the accession number GSE11947.

Information resources and software tools
The collection of 639 pathways were obtained from the

Molecular Signatures Database (MSigDB) hosted at the Broad

Institute [9]. We focused on the ‘‘C2 collection’’ of canonical

pathways, which represent curated metabolic and signalling

pathways originating from different online databases. The

algorithms proposed above were implemented in our laboratory

with the Java programming language. Statistical displays were

created with the Statistica package [18]. Pathways were described

in terms of statistically detectable Gene Ontology (GO) biological

process and cellular localization terms, and were obtained with the

Fatigo tool, under the BABELOMICS (v3.1) software platform

[7]. The P values describing the statistical significance of the

overrepresentation of GO terms in the pathways were estimated

with (two-tailed) Fisher’s exact tests and corrected to account for

multiple-hypotheses testing using the Benjamini & Hochberg

Figure 2. Main algorithmic steps and outcomes in pathway perturbation detection. Identification of molecular pathways differentially
perturbed in VD+ and VD2 patients. The calculation of the psc values of 3 hypothetical pathways, MP, is illustrated here with 4 samples, s. These
samples belong to two hypothetical clinical classes or phenotypes, A and B. The psc value assigned to a pathway is computed with the t-statistic
obtained from the pathway’s activity levels, L, observed in the different samples. For a given sample, an L value is defined as the mean expression
value observed in a pathway. For example, L4,k represents the activity level of the kth pathway, MPk, in relation to sample s4. Sample-specific
expression and L values are here shown for s1 and s4 only, dotted lines represent the samples not shown here for clarity. For a given pathway, shaded
circles are used to represent the intensity of the expression measurements in each sample. Shaded squares reflect the magnitude of L values
obtained in a given pathway in relation to a specific sample.
doi:10.1371/journal.pone.0009661.g002
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adjustment procedure [7]. Unless otherwise indicated, only

corrected P values are reported here and statistical significance is

defined at the level of P = 0.05. Clustering analysis and

visualisation were implemented with the GEPAS (v4.0) platform

[19]. Supervised classification models were implemented with the

Weka software system [20].

Results

Landscape of perturbed molecular pathways in post-MI
ventricular dysfunction

The psc of 637 molecular pathways were calculated using the

gene expression data from VD+ and VD2 samples. Figure 3

provides global views of the results. In panels A, B and D, vertical

bars represent the magnitude of the psc for a given pathway. The

set of psc ranges from values near 0 to 4.70 (Figure 3A). Figure 3B

shows the corresponding P values associated with the psc. Figure 3C

presents a 3D display of the complete set of psc and P values, and

indicates that the strength of the observed perturbations is directly

proportional to their statistical significance levels. Figure 3D, a

version of Figure 3A, displays the psc across the 637 molecular

pathways together with the direction of the perturbation in

relation to VD+ patients, i.e. it reflects whether the perturbation

represents either an increase or decrease in gene expression in the

VD+ class. This was done by including the signed version of the

psc, i.e. the observed t-statistic assigned to each pathway. In this

panel, the region below the horizontal (black) line includes

pathways that exhibit a reduction of their (mean) gene expression.

Major pathway perturbations and dependencies in
post-MI ventricular dysfunction

To assess the potential biological relevance of the pathway-specific

perturbations, we concentrated on the analysis of the pathway

showing the largest perturbations in the VD+ samples. Table 1

Figure 3. Landscape of perturbed molecular pathways in post-MI ventricular dysfunction. In A, B, D vertical bars represent the magnitude of
the perturbation score for a given pathway. A: Overview of perturbation scores, psc, (vertical axis) across 637 molecular pathways (horizontal axis). B:
Overview of P values (vertical axis) for the perturbation scores shown in A. C: 3D display with the distribution of molecular pathways, perturbation scores
and P values. D: Display of perturbation scores across 637 molecular pathways together with the direction of the perturbation in relation to patients with
ventricular dysfunction: The region below the horizontal (black) line includes pathways that exhibit a reduction of their (mean) gene expression.
doi:10.1371/journal.pone.0009661.g003
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summarizes the top 10 pathways exhibiting the strongest perturba-

tions. The pathways are named with the standard name given in

the MSigDB. From now on, we will refer to these pathways as

top-perturbed (TP) pathways. The pathway with the strongest

perturbation is the ASBCELLPATHWAY, a pathway responsible

for antigen dependent B- cell activation. Among these pathways

found to be significantly de-regulated are: CCR3PATHWAY

(CCR3 signaling in eosinophils), HYPERTROPHY_MODEL(a

pathway implicated in time- and exercise-dependent gene regula-

tion in human skeletal muscle) [21]; and the Erk1/Erk2 Mapk

Signaling pathway (ERKPATHWAY). Table S1 offers a more

detailed functional characterization of these pathways, including the

type of gene expression change observed in relation to VD+
samples.

These pathways exhibit various functional dependencies with

regard to shared biological processes and cellular localizations.

Moreover, they functionally interrelate through proteins shared by

the different pathways. These relationships are depicted in

Figure 4. Arcs are used to indicate that any two pathways share

proteins. This illustrates the coordinated and complex functional

inter-play required to drive specific processes relevant in post-MI

ventricular dysfunction.

Pathway-specific activity levels distinguish patient clinical
outcomes

The results reported above represent system-level insights into

some of the mechanisms possibly underpinning the development

of ventricular dysfunction in post-MI patients. Motivated by the

identification of pathways displaying substantial gene expression

perturbations, we explored the application of TP activity levels to

represent patient-specific samples and to distinguish between

them. As a starting point, each sample was encoded with the

activity levels observed in each of the top 10 pathways described in

Table 1. Under this scheme, rather than using gene expression

values, each patient can be represented by 10 pathway-specific

activity levels, L values, whose calculation was described in

Methods (Figure 2).

Using this sample-encoding scheme, we implemented a

hierarchical clustering of the samples. Note that this procedure

does not incorporate information about the class (VD+ and VD2)

assigned to each sample, i.e. the clustering represents an

unsupervised classification of samples. Figure 5 presents alternative

displays of the resulting clustering based on the activity levels of the

top 10 perturbed pathways. The true class labels for each sample

are displayed. In this figure, panels A and B offer clustering

visualizations using a dendrogram and an unrooted tree

respectively. The length of the branches in these graphs reflects

the pair-wise distances between samples. These results showed that

the samples can be discriminated in terms of clinical outcome.

Same-class patients are clustered together, and dissimilar samples

are separated. The clustering visualization reveals the existence of

two major groups of patients: One grouping 14 (out of 16) VD+
samples, and the other including 14 (out of 16) VD2 samples.

These results suggest that pathway-specific activity levels may be a

useful visualization-driven, exploratory approach to clinical

decision-making support.

Table 1. Top 10 molecular pathways exhibiting the largest gene expression perturbations in VD+ samples.

TP Name psc P Genes

TP1 ASBCELLPATHWAY 4.70 1.0E-4 CD28 CD4 CD80 HLA-DRA HLA-DRB1 IL10 IL2 IL4 TNFRSF5
TNFRSF6 TNFSF5 TNFSF6

TP2 CCR3PATHWAY 4.12 2.0E-4 ARHA CCL11 CCR3 CFL1 GNAQ GNAS GNB1 GNGT1 HRAS
LIMK1 MAP2K1 MAPK3 MYL2 NOX1 PIK3C2G PLCB1
PPP1R12B PRKCA PRKCB1 PTK2 RAF1 ROCK2 MAPK1

TP3 PELP1PATHWAY 3.73 9.0E-4 CREBBP EP300 ESR1 MAPK1 MAPK3 PELP1 SRC

TP4 HYPERTROPHY_MODEL 3.60 9.0E-4 ANKRD1 ATF3 CYR61 DUSP14 EIF4E EIF4EBP1 GDF8 HBEGF
IFNG IFRD1 IL18 IL1A IL1R1 JUND MYOG NR4A3 TCF8 VEGF
WDR1

TP5 VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS 3.55 0.0010 IARS LARS LARS2 PDHA1 PDHA2 PDHB

TP6 METPATHWAY 3.44 0.0020 ACTA1 CRK CRKL DOCK1 ELK1 FOS GAB1 GRB2 GRF2 HGF
HRAS ITGA1 ITGB1 JUN MAP2K1 MAP2K2 MAP4K1 MAPK1
MAPK3 MAPK8 MET PAK1 PIK3CA PIK3R1 PTEN PTK2 PTK2B
PTPN11 PXN RAF1 RAP1A RAP1B RASA1 SOS1 SRC STAT3

TP7 ALANINE_AND_ASPARTATE_METABOLISM 3.39 0.0026 ABAT ADSL ADSS AGXT AGXT2 ASL ASNS ASPA ASS CAD
CRAT DARS DDO GAD1 GAD2 GOT1 GOT2 GPT GPT2 NARS
PC

TP8 MPRPATHWAY 3.32 0.0025 ACTA1 ADCY1 CAP1 CCNB1 CDC2 CDC25C GNAI1 GNAS
GNB1 GNGT1 HRAS MAPK1 MAPK3 MYT1 PIN1 PRKACB
PRKACG PRKAR1A PRKAR1B PRKAR2A PRKAR2B RPS6KA1
SRC

TP9 SIG_REGULATION_OF_THE_ACTIN_CYTOSKELETON _BY_RHO_GTPASES 3.32 0.0025 ACTG1 ACTG2 ACTR2 ACTR3 AKT1 ANGPTL2 CDC42 CFL1
CFL2 FLNA FLNC FSCN1 FSCN2 FSCN3 GDI1 GDI2 LIMK1
MYH2 MYLK MYLK2 PAK1 PAK2 PAK3 PAK4 PAK6 PAK7 PFN1
PFN2 RHO ROCK1 ROCK2 RPS4X VASP WASF1 WASL

TP10 ERKPATHWAY 3.23 0.0027 DPM2 EGFR ELK1 GNAS GNB1 GNGT1 GRB2 HRAS IGF1R
ITGB1 KLK2 MAP2K1 MAP2K2 MAPK1 MAPK3 MKNK1 MKNK2
MYC NGFB NGFR PDGFRA PPP2CA PTPRR RAF1 RPS6KA1
RPS6KA5 SHC1 SOS1 SRC STAT3

psc: perturbation scores. P: Statistical significance of the perturbation. TP: Top pathway number.
doi:10.1371/journal.pone.0009661.t001
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A pathway-based prognosis application
The unsupervised discriminatory capability of L values shown

above encourages the idea of assessing the potential application of

this information for (supervised) prognosis tasks. The L values in

each sample were used as inputs to different classification models,

which were evaluated with LOOCV. The best performances for a

single-L input were observed when encoding the samples with the L

values observed in TP1 and TP5, which are the pathways involved

in antigen dependent B-cell activation and biosynthesis of valine,

leucine and isoleucine (Table 1). Using the L values from these

pathways and models based on the KStar classifier, a maximum

AUC (area under the receiver operating characteristic curve) value

of 0.80 was obtained. Combinations of multiple L values into

integrated classification models, in general, degraded classifica-

tion performance. This indicates that these pathways contribute

redundant (correlated) information for sample classification.

However, this did not hold true for one integrated biomarker

model. The combination of the L values from TP1 and TP5

improved single-input classification performance (AUC = 0.84).

TP1-specific gene expression profiles
The significant perturbation observed in TP1 motivated us to

examine the expression profiles of individual genes (and combina-

tions) in this pathway and to explore their application in prediction

models. Independent classification models were built using these

individual expression profiles as inputs. Classification models using

all measured TP1 genes as individual inputs reported AUC values

below 0.70. The best classification performance was obtained with

models based on genes CD28 and CD80 together (AUC = 0.72,

KStar classifier). These results underscore the prediction power of

integrated pathway markers (L values) in comparison to standard

models based on individual gene profiles, including those derived

from highly perturbed pathways.

Alternative pathway perturbation analysis and biomarker
identification

To further illustrate the potential prognostic application of

pathway L values, we implemented classification models built on

genes identified by a published methodology for gene expression

analysis, and compared the resulting prediction performances

against the results reported above. This task was carried out with

the GSEA algorithm [9]. This technique not only allows the

identification of differentially expressed genes between the sample

categories, but also it reports in which pathways such perturba-

tions occur.

Using the same set of (637) pathways analysed above and the 32

(VD+ vs. VD2) samples, GSEA found significant gene expression

perturbations in pathways that were included by our approach in the

list of top 10 perturbed pathways (Table S2). For example, GSEA

and our approach identified ERKPATHWAY, CCR3PATHWAY,

METPATHWAY and MPRPATHWAY in the top 10 list of

molecular perturbations. In addition, other pathways were high-

lighted by GSEA which were not among our top perturbed

pathways. For example, GSEA found that the strongest perturbation

is observed in a set of 47 genes defining a CIRCADIAN_EX-

ERCISE pathway as defined in the MSigDB (Subramanian et al.,

2005). These results illustrate not only the consistency of these two

approaches, but also, and maybe more importantly, their comple-

mentarity.

The 10 most highly differentially expressed genes detected by

GSEA were: C20orf20, QSOX1, HK2, EIF2AK2, LMNB1,

TP53RK, LY9, CCDC107, PAQR8, and SLC37A4. The following

genes showed increased expression in VD+ samples relative to VD2

samples: C20orf20, QSOX1, HK2, EIF2AK2, and LMNB1. The

other highly differentially expressed genes showed reduced expres-

sion levels in VD+ samples. Different single-gene and multiple-gene

classification models were built. With regard to single-gene models,

the best classification performances were obtained with C20orf20

(AUC = 0.85) and TP53RK (AUC = 0.85) using a KStar classifier

and LOOCV. Integrated classification models combining sub-sets

of genes, in general, degraded classification performance. The

combination of TP53RK and LMB1 reported a maximum AUC of

0.82.

Integrated biomarker models increase prognostic
performance

The previous sections indicate that these techniques provide

alternative, yet potentially complementary, approaches to biomark-

er discovery. This motivated us to investigate possible integrated

classification strategies, which combined input features derived from

our pathway-based VD+ model (L values) and from the GSEA

method (highly differentially expressed genes). We found that

different biomarker combination schemes can enhance classification

performance.

Figure 6 illustrates how such integration can generate diverse,

improved classification outcomes. Only the top single and integrated

biomarker models are shown here. The diagram depicts the

Figure 4. Interactions across perturbed pathways. Dependencies
between the top 10 molecular pathways exhibiting the largest gene
expression perturbations in VD+ samples. Nodes depict the top 10
molecular pathways exhibiting the largest gene expression perturba-
tions in VD+ samples, as described in Table 1. Arcs linking the nodes are
used to indicate functional relationships between these pathways, i.e.,
proteins are shared between any two pathways. TP1, TP4, TP5 and TP7
do not share proteins with other pathways.
doi:10.1371/journal.pone.0009661.g004

Heart Dysfunction Mechanisms

PLoS ONE | www.plosone.org 7 March 2010 | Volume 5 | Issue 3 | e9661



Figure 5. Grouping of samples based on perturbed pathways. Hierarchical clustering of VD+ and VD- samples based on the activity levels of
the top 10 perturbed pathways. Each sample was encoded using its corresponding (ten) pathway activity levels. A pathway activity level for a given
sample is defined as the mean expression value observed in the pathway for the sample under consideration. A: clustering visualization using a
dendrogram. B: clustering visualization using an unrooted tree. The length of the branches reflects pair-wise distances between samples.
doi:10.1371/journal.pone.0009661.g005
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predictive capacity estimated when integrating representative,

differentially expressed genes (LMB1 and TP53RK) and the activity

levels of top-perturbed pathways (TP1 and TP5). In Figure 6, lines

linking two biomarkers (genes or pathways) indicate that these

biomarkers were used as inputs to an integrated classifier. Different

dotted and solid lines are used to facilitate the visualization of the

multiple combinations. Arrows indicate the classification perfor-

mance outcome, as estimated with AUC values. When the diagram

is read from the top to the bottom, the incremental improvement in

classification performance can be visualized for the different input

feature combinations. The top classification performance was

obtained when the expression values of TP53RK and the L values

extracted from TP1 (Table 1) were used as inputs to the classification

model (AUC = 0.92). These findings provide additional evidence of

the potential of our modelling approach for: a) gaining deeper

mechanistic insights into processes implicated in (post-MI) ventric-

ular dysfunction, and b) exploring potentially novel biomarker

discovery strategies.

Biological insights
We finally sought to evaluate whether our pathway-driven

analysis can provide novel insights into specific molecular and

cellular mechanisms involved in ventricular dysfunction after MI.

We started by concentrating on LMNB1, one of the top 10 most

differentially expressed genes between VD+ and VD2 samples, as

detected by GSEA. LMNB1 alone provided significant prognostic

information (Figure 6). We first confirmed the microarray data

with quantitative PCR. Indeed, a significant correlation between

both techniques was demonstrated (r = 0.43, P = 0.01, Pearson

correlation) and we observed more LMNB1 mRNA in blood cells

from VD+ than in those from VD2 patients (n = 16 in each

group): 0.3160.14 vs. 0.2160.09 (mean 6 standard deviation,

P = 0.01, Mann-Whitney Rank Sum Test). We also compared

LMNB1 expression obtained by quantitative PCR between

patients with MI and patients with atypical chest pain and

without MI. LMNB1 was more expressed in MI patients (n = 22)

than in non-MI patients (n = 12): 2.4761.20 vs. 1.5060.77

(P = 0.007, Mann-Whitney Rank Sum Test). LMNB1 is the main

constituent of nuclear lamina, which participates in the control of

gene expression [22]. Interestingly, LMNB1 has been shown to

control oxidative stress responses [23]. Therefore, the increase of

LMNB1 expression after MI is consistent with activation of

oxidative stress. The prognostic performance of LMNB1 has

recently been reported for liver cancer [24]. Our study reveals for

the first time that LMNB1 may be a potential biomarker in the

cardiovascular arena.

One of the pathways highlighted by our pathway-specific

activity level analysis was the SIG_REGULATION_OF_

THE_ACTIN_CYTOSKELETON_BY_RHO_GTPASES path-

way (TP9, Table 1). This pathway involves the regulation of the

activation state of cofilin through phosphorylation mediated either

by PI3K-RHO-CDC42-PAK-LIMK or PLC-LIMK [25]. There

are experimental reasons to believe that this pathway is involved in

the development of ventricular dysfunction, and investigations are

ongoing in our laboratory to test this hypothesis.

In conclusion, our pathway-driven analyses enabled us to find

novel biomarkers and therapeutic targets in the setting of MI and

ventricular dysfunction. Studies in larger patient populations are

required to examine the clinical usefulness of our findings.

Shareable software system
The pathway-based modelling approach presented here has been

implemented into a computing-platform independent software tool,

which is freely available on request from the authors. This

demonstration prototype, kipuMarkers (for knowledge-driven inte-

grative identification of pathway-based biomarkers), allows users to

Figure 6. Integrated prognostic systems. Combination of pathway- and gene-based biomarkers for the classification of VD+ and VD2 samples.
The diagram is read from the top to the bottom, and depicts the predictive capacity estimated when integrating representative differentially
expressed genes (LMB1 and TP53RK) and the activity levels of top-perturbed pathways (TP1 and TP5). Only the top single and integrated biomarker
models are shown here. Lines linking two biomarkers (genes or pathways) indicate their combination as inputs to an integrated classifier. Different
dotted and solid lines are used to facilitate the visualization of the multiple combinations. Arrows indicate the classification performance outcome.
AUC: area under the ROC curve. The AUC values obtained with classification models based on single biomarkers are also shown, next to each
biomarker and between parentheses.
doi:10.1371/journal.pone.0009661.g006
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input a gene expression dataset (samples and class labels) and a list of

gene/protein sets that can represent known molecular pathways or

other types of biologically-meaningful groups, such as co-regulated

genes or sets of miRNA targets. The tool computes psc and P values

for all the user-defined pathways. Moreover, kipuMarkers automat-

ically generates a dataset with the samples encoded with their

corresponding pathway activity levels. The resulting dataset can

afterwards be used to develop different statistical analyses and

classification models.

Discussion

In this investigation we gained new insights into the diversity

and extent of potential perturbations observed in post-MI

ventricular dysfunction samples across hundreds of molecular

pathways. An exploration of such landscape of molecular

perturbations reveals the existence of pathways highly-altered

between VD2 and VD+, which provides not only a system-level

mechanistic understanding, but also a foundation for the

automated prediction of clinical outcomes. Moreover, this type

of research may assist in the identification of feasible therapeutic

strategies beyond the single-gene targeting paradigm.

Although the identification of putative biomarkers based on

their individual expression patterns will continue to represent a

fundamental research tool, there is a need to explore methodol-

ogies not only for improving prognostic performance, but also for

augmenting our understanding of processes defining the emer-

gence and progression of HF after MI. We showed that powerful

and descriptive models of post-MI ventricular dysfunction can be

obtained through the incorporation of gene expression and

pathway context information during the search for potential

biomarkers. This differs with the traditional discovery approach in

which gene expression analysis and process descriptions, e.g. GO

analysis of differentially expressed genes only, are implemented as

separate tasks.

Previous research also suggests that pathway-based signatures

may be more reproducible and biologically-interpretable than

traditional approaches based on the analysis of the expression of

lists of genes [9,10,12]. Furthermore, an emphasis on the detection

of highly-differentially expressed genes may represent a severe

restriction on the identification of genes with potential causal roles

in disease [12]. This is because many upstream causal factors may

be driven by mutations and events with subtle responses at the

transcriptional and post-translational levels.

An important strength of this methodology is that we can

identify potential relevant biomarkers and targets, as well as their

pathway-based activity signatures, through an unbiased and

automated analytical process. We showed how different approach-

es to estimating pathway-specific activity levels can be used to

distinguish between clinical outcomes in post-MI patients. This

was illustrated with the unsupervised and supervised analysis of

pathway perturbation patterns. Also we explored the potential

predictive value of combining pathway-based activity scores and

gene expression information obtained from an alternative,

published analysis technique. We showed how such computational

integration can improve prognostic performance. So far, brain

natriuretic peptide (BNP) is considered the golden standard for

biomarkers of ventricular dysfunction. However, in our hands, the

combination of the pathway TP1 with the gene TP53RK provided

a maximal prognostic performance with an AUC of 0.92, which is

far better than BNP alone or BNP combined with other markers

[26]. Our approach was motivated by the observation that

alternative approaches to pathway analysis can provide comple-

mentary predictive power and vistas of relevant pathways.

This alternative, yet complementary, prediction capability is a

consequence of the methodological differences exhibited by the

approaches investigated here. Our approach and GSEA [9] differ

with regard to the following aspects: pathway scoring, differential

pathway detection, and sample-specific information representation

for classification. For example, we estimate pathway activity by

calculating the mean expression value observed in a sample, while

GSEA focuses on the differential expression values observed at the

gene level. Although GSEA exploits pathway-based information to

detect relevant genes, this method emphasizes a gene-centric

approach to sample representation and classification. Nevertheless,

in connection to the identification of highly de-regulated pathways,

we also found predictive agreements between these methods. This

may be interpreted not only as an indication of the potential

relevance of these pathways, but also as supporting evidence for

the predictions made by our approach.

Among our significant findings, we found that a pathway

responsible for antigen dependent B- cell activation (TP1) could

encode a powerful feature to discriminate between VD2 and

VD+ samples. Note that this pathway does not share genes with

the other highly-altered pathways detected by our approach or

with the GSEA-derived genes (Figure 4). Such a reduction in

predictive information redundancy, together with the strong class

discriminatory power of this pathway alone, serve to explain the

good prognostic potential of this pathway in conjunction with

other potential biomarkers.

The down-regulation of TP1 in patients with VD+ appears

plausible since several of its components are known to be

protective. For instance, IL10 has been shown to be cerebropro-

tective in the setting of experimental stroke [27] and soluble

receptors of TNF-a limit its cardiotoxicity. The CCR3 receptor

has been implicated in allergy but also very recently in the growth

of choroidal vessels [28] but its implication in ventricular

dysfunction remains to be studied. Perturbation of the HYPER-

TROPHY_MODEL is also plausible since the development of HF

after MI is mediated, at least partly, by a hypertrophy of the left

ventricle. Another potentially important pathway highlighted by

our analyses is the PELP1PATHWAY. PELP1 is known to serve

as an estrogen receptor alpha coactivator with prognostic value for

several types of cancer [29,30] and is linked to the GO biological

process ‘‘response to hypoxia’’.

Perturbation of the VALINE_LEUCINE_AND_ISOLEUCINE_

BIOSYNTHESIS and ALANINE_AND_ASPARTATE_META-

BOLISM pathways suggests a de-regulation of amino acid and

protein synthesis as a potential mechanism for ventricular

dysfunction Together with the observation that other pathways of

energy metabolism are perturbed in VD+ (MPRPATHWAY and

ERKPATHWAY), our data suggest that a deregulation of

metabolism occurs in some patients after MI.

Possible limitations
A more conclusive assessment of the potential biomedical

relevance of our findings is evidently constrained by the need to

perform independent experimental validations. In the future, this

can involve the evaluation of the resulting classification models on

independent datasets, and the in vivo or in vitro perturbation of the

potentially-significant pathways in case-control samples. The

former is directly concerned with the validation of the predictive

capacity of the pathway-based patterns as prognostic biomarkers,

and the latter will be required to assess the possible therapeutic

value of some of these pathways.

Another possible limitation of our investigation is the relatively

modest size of the gene expression dataset. Nevertheless, the

integrative (pathway and gene expression) analysis strategy proposed
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here was indeed motivated to address this typical, and probably

unavoidable, restriction in proof-of-concept translational research

applications. By not relying on a single sparse dataset characterised by

thousands of noisy and correlated features, one contributes to the

reduction of false positive and negative predictions. There is also a

need to incorporate additional evidence regarding pathways and

other relevant gene/protein sets. The analysis approaches investigat-

ed here enable the straightforward incorporation of additional

information, which may be useful to indentify biomarkers or potential

therapeutic targets: sets of co-regulated genes, sub-networks of

protein-protein interactions, and clusters of genes regulated by a

common miRNA or transcription factor. A more comprehensive

coverage of (curated) network-based information, together with the

availability of new computational tools, will significantly contribute to

a more accurate and personalized patient management.

Supporting Information

Table S1 Detailed functional description of the top 10 molecular

pathways exhibiting the largest gene expression perturbations in

VD+ samples. BP and CC: Examples of biological processes and

cellular localizations highly statistically detectable in a pathway as

defined in the GO. P: statistical significance of the GO term over-

representation. Up/down indicates the direction of the change in

gene expression in the pathway, i.e., ‘‘Up’’ means that the pathway

is up-regulated in VD- in comparison to VD+. NS: Non-significant

enrichment of terms. TP: Top pathway number.

Found at: doi:10.1371/journal.pone.0009661.s001 (0.04 MB

DOC)

Table S2 Top 10 perturbed pathways detected by our approach

and by GSEA.

Found at: doi:10.1371/journal.pone.0009661.s002 (0.02 MB

DOC)
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