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Abstract

Parental effects occur whenever the phenotype of parents or the environment that they experience

influences the phenotype and fitness of their offspring. In birds, parental effects are often mediated

by the size and biochemical quality of the eggs in terms of maternally transferred components.

Exogenous antioxidants are key egg components that accomplish crucial physiological functions

during early life. Among these, vitamin E plays a vital role during prenatal development when the

intense metabolism accompanying rapid embryo growth results in overproduction of pro-oxidant

molecules. Studies of captive birds have demonstrated the positive effect of vitamin E supplemen-

tation on diverse phenotypic traits of hatchling and adult individuals, but its effects on embryo

phenotype has never been investigated neither in captivity nor under a natural selection regime.

In the present study, we experimentally tested the effect of the in ovo supplementation of vitamin E

on morphological traits and oxidative status of yellow-legged gull (Larus michahellis) embryos.

The supplementation of vitamin E promoted somatic growth in embryos soon before hatching, but

did not affect their oxidative status. Our results suggest that maternally transferred vitamin E con-

centrations are optimized to prevent imbalances of oxidative status and the consequent raise of

oxidative damage in yellow-legged gull embryos during prenatal development.
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Parents can maximize their Darwinian fitness by modulating the allo-

cation of care to individual offspring according to their reproductive

value. In oviparous organisms, mothers can adjust offspring pheno-

type via the modulation of the size and biochemical quality of their

eggs, which can widely vary not only among mothers but also among

sibling eggs (Mousseau and Fox 1998; Saino et al. 2002; Groothuis

et al. 2005). In fact, the size and the concentration of quantitatively

major (e.g., lipids, albumen) and minor (e.g., steroid hormones, vita-

mins) maternally transferred components often vary within-clutch ac-

cording to laying order (Royle et al. 2001; Badyaev et al. 2006;

Groothuis et al. 2006; Rubolini et al. 2011; von Engelhardt and

Groothuis 2011). Mothers may adaptively tune their investment,

including prenatal maternal effects via eggs to individual offspring.

Exogenous antioxidants (e.g., vitamins and carotenoids) are

acquired with food, and may be available in limiting amounts,

implying that mothers may tune the amount of antioxidants they

transfer to their eggs according to the reproductive value of their in-

dividual offspring as determined, for example, by hatching order

(Grether et al. 2001; Catoni et al. 2008). The existence of reproduct-

ive trade-offs and the major role that antioxidants have in early-life
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offspring physiology have attracted considerable attention to the

study of ecology and evolution of maternal effects mediated by egg

antioxidants. Egg antioxidants of maternal origin provide protection

to the developing embryo against the detrimental effects of free rad-

icals produced during early-life growth (Surai et al. 1996). Low lev-

els of maternally transferred yolk antioxidants impair embryonic

development (Wilson 1997), suggesting that they play a crucial role

in counteracting oxidative stress (Surai and Speake 1998; Blount

et al. 2000; McGraw et al. 2005). In fact, intense metabolic activity

during early developmental stages exposes the organism to oxidative

stress, resulting from the breakdown of the equilibrium between the

production of pro-oxidants (reactive oxygen and nitrogen species,

ROS and RNS, respectively), and antioxidant defense and repair

mechanisms in favor of the former (Finkel and Holbrook 2000). The

prenatal period is crucial to redox homeostasis because high meta-

bolic rates during rapid growth stages can induce ROS overproduc-

tion (Rollo 2002), leading to oxidative damage to cellular

macromolecules (i.e., DNA, lipids, and proteins) and providing a

potential mechanism for negative effects on fitness-related traits

(Costantini 2014). Because of the adverse consequences of oxidative

stress on phenotype, selection is expected to favor the evolution of

mechanisms for antioxidant defense and repair of oxidative damage

(Costantini et al. 2010; Metcalfe and Alonso-Alvarez 2010;

Isaksson et al. 2011; Metcalfe and Monaghan 2013; Costantini

2014). Variation in oxidative stress (Monaghan et al. 2009,

Metcalfe and Alonso-Alvarez 2010) and in maternal transfer of anti-

oxidants depending on environmental conditions experienced by the

mother (Blount et al. 2002; Royle et al. 2003) suggests that the re-

sponse to oxidative stress may be modulated by maternal effects.

Therefore, maternal allocation of exogenous antioxidants to egg

yolk may constitute a strategy to minimize oxidative damage to de-

veloping embryos (Blount et al. 2002).

In birds, vitamin E is one of the most important yolk antioxi-

dants (Surai et al. 2016). Vitamin E is transported from the yolk to

the embryonic tissues during development (Surai et al. 1996;

Cherian and Sim 2003) and protects embryos against the toxicity of

free radicals (Khan et al. 2011). Vitamin E acts as chain-breaking

lipid antioxidant and free radical scavenger in the membranes of

cells and subcellular organelles (Young et al. 2003), maintaining the

integrity and functioning of the reproductive, muscular, circulatory,

nervous, and immune systems of vertebrates (Leshchinsky and

Klasing 2001). The effects of egg vitamin E have been mostly investi-

gated by means of maternal dietary supplementation in captivity.

These studies have shown that vitamin E supplementation positively

affects growth, immune function, performance, and antioxidant

capacity of poultry (Gore and Qureshi 1997; Surai et al. 2001;

Bhanja et al. 2012; Selim et al. 2012; Goel et al. 2013), as well as

the transcription and the expression of specific genes involved in di-

verse metabolic pathways (Surai 2002). Experiments in captivity

where egg vitamin E has been manipulated by injection have partly

clarified its direct effects on offspring phenotype. Direct manipula-

tion of yolk vitamin E levels improved hatchability, immune status,

and both embryonic and post-hatch growth of Muscovy ducks

Cairina moschata (Selim et al. 2012), and reduced the production of

ROS in tissues of hen chicks (Cherian and Sim 1997; Surai et al.

1999a). Although these experiments are valuable to identify the ef-

fects and mechanisms behind the allocation of antioxidants to eggs,

the most insightful perspective for the interpretation of the evolution

of maternal effects rests on the experimental analysis of the conse-

quences of egg quality manipulation under a natural selection re-

gime in the wild. However, information on yolk vitamin E effects

derived from yolk manipulation in free-ranging populations under

natural selection regimes is scanty and to date no study has investi-

gated the effects on embryonic growth or oxidative status in import-

ant organs that are likely to be the target of the antioxidant activity

of vitamin E.

In a recent study, we have shown that a physiological increase of

vitamin E concentration in yellow-legged gull Larus michahellis

eggs enhanced postnatal body size of chicks from the last-laid eggs

in a clutch (Parolini et al. 2015). However, information on the ef-

fects of vitamin E during the prenatal period in free-living species is

largely unavailable. For this reason, here we investigate the effect of

a physiological increase in yolk vitamin E concentration on pheno-

typic traits of embryos shortly before hatching. We expected that

the supplementation of vitamin E would promote growth, positively

affect oxidative status, and reduce embryo oxidative damage. In

addition, because vitamin E concentration declines with laying order

(Rubolini et al. 2011) and in our previous study we showed that it

limits postnatal growth of chicks from third-laid eggs, we expected a

decrease of pro-oxidant molecules accompanied by an increase of

total antioxidant capacity (TAC) mainly in embryos from last-laid

vitamin E-injected eggs. Lastly, although the concentration of vita-

min E in the yolks of yellow-legged gull eggs does not vary according

to the sex of developing embryos (Rubolini et al. 2011), we also

tested if the effect of egg treatment depended on the sex of the em-

bryo because embryos of either sex may differ in their susceptibility

to yolk antioxidants (Romano et al. 2008). Thus, we studied the ef-

fects of vitamin E on embryo morphology (body mass and tarsus

length) and oxidative status by measuring TAC, amount of pro-oxi-

dant molecules (called as ‘TOS’ 128 according to the terminology by

Erel 2005) lipid peroxidation (LPO) and protein carbonylation

(PCO) in brain and liver explanted from the embryos. We focused

on brain for 3 reasons; it is particularly sensitive to LPO because the

phospholipids of the neuronal membranes contain large amounts of

highly polyunsaturated fatty acids, it generates free radicals at a

greater extent than other tissues as a consequence of high rates of

energy metabolism and oxygen consumption, and the amount of

many exogenous antioxidants is lower compared to other tissues

(Surai et al. 1999b). Liver was chosen because it is the main reposi-

tory of antioxidants, including vitamin E (Surai 2002), and it has a

crucial role in antioxidant defense.

Materials and Methods

Field and experimental procedures
The yellow-legged gull is a monogamous species that breeds mostly

colonially (Cramp 1998). Clutch size ranges between 1 and 3 eggs

(modal size¼3), which are laid at 1–4 (most frequently 2) days inter-

vals and hatch 27–31 days after laying. Hatching is asynchronous and

spans over 1–4 days. The chicks are semi-precocial and are fed by

both parents and fledge at 35–40 days of age (Cramp 1998). We

studied a large colony (>400 pairs) breeding on an island in the

Comacchio lagoon (NE Italy, 44�200 N–12�110 E) in March–May

2014. The colony was monitored every other day and when a new

nest was found the newly laid egg was temporarily removed and

replaced with an egg collected from a nest outside of the study colony

(i.e., “dummy” egg) to avoid interference with parental incubation

behavior. Nests that were found with more than 1 egg were con-

sidered, but egg order was estimated based on previously described

differences in egg mass for the species. The removed egg was marked

and taken to a nearby tent for experimental manipulation.

The experimental design has been described in details by Parolini

et al. (2015) and in the Supplementary material, therefore it is only
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briefly summarized here. Our objective was to increase the concen-

tration of vitamin E by 1 standard deviation (SD) of the concentra-

tions measured in the egg yolk of individuals from the same colony

in a previous study (Rubolini et al. 2011). Since the concentration of

vitamin E in the yolk of yellow-legged gull eggs varied according to

egg size and position in the laying sequence (Rubolini et al. 2011),

we adjusted the injection dose according to these factors. We esti-

mated yolk mass based on total egg mass for each of the eggs in lay-

ing sequence based on a Linear Mixed Model from previously

collected yellow-legged gull eggs (yolk mass¼0.227 (0.039 SE) egg

massþ1.815 (3.461 SE); F1,88¼34.38, P<0.001). Then, we

grouped first (a-), second (b-), or third (c-) laid eggs into 3 classes

(tertiles) of size according to egg mass and calculated the standard

deviation of vitamin E concentration in the yolk for each tertile. The

injection amount of vitamin E was computed as the product of the

SD (in mg g�1) of vitamin E concentration for each tertile and pos-

ition in the laying sequence and the estimated yolk mass (see

Supplementary material). Corn oil was used as the carrier solvent of

vitamin E and it was used as a control treatment in the control group

of eggs. We adopted a within-clutch design, whereby both sham-

(control) and vitamin E-injected eggs were established within each

clutch to minimize the confounding effects of environmental and

parental effects. The following treatment schemes were assigned se-

quentially to the clutches as follows: (nest, a-, b-, c-egg): nest 1, vita-

min E injection (E), control injection (C), E; nest 2, C-E-C; nest 3, E-

C-C; nest 4, C-E-E and so forth with the following nests. The injec-

tion procedure was performed according to a previously validated

method on eggs from the same species (Romano et al. 2008).

After the in ovo vitamin E supplementation and 5 days before

the earliest expected hatching date, all the nests were visited daily to

check for any sign of imminent hatching such as eggshell fractures

(i.e., “cracking stage”). When eggshells were fractured, eggs were

weighed (to the nearest g), collected and frozen at �20 �C within 3 h

from sampling.

Field collected eggs (n¼76 eggs) were transferred to the lab

where they were dissected. We focused on 26 clutches, 15 of which

had 3 eggs, while the remaining 11 clutches had 2 eggs only. We first

removed and weighed the residual yolk sac from each egg, which

was frozen at �80 �C until the analysis of total vitamin E concentra-

tion and TAC that we performed as a validation of the experimental

treatment. We expected that vitamin E injection would result in a

measurable increase in the yolk concentrations into late develop-

mental stages, as well as in an increase in TAC. Then, the embryos

were weighed (to the nearest g) and tarsus length was measured by

calipers before the dissection of liver and brain, which were immedi-

ately weighed (to the nearest mg) and frozen at �80 �C until bio-

chemical analyses. All the measurements were taken by the same

person to ensure consistency. Molecular sexing of embryos and

chicks was performed according to Saino et al. (2008).

The study was carried out under permission of the Parco

Regionale del Delta del Po (#657, 4 February 2014), which allowed

both the manipulation and the collection of eggs when the eggshell

showed signs of imminent hatch (eggshell fractures). According to

the Guidelines for the Euthanasia of Animals by the American

Veterinary Medical Association, physical methods of euthanasia

may be necessary in some field situations if other methods are im-

practical or impossible to implement. We performed a field experi-

ment in which we could not euthanize embryos by methods such as

carbon dioxide (CO2), anesthetic agents, or decapitation. Thus, we

euthanized embryos by placing eggs into a �20 �C freezer within 3 h

from the collection.

Analysis of vitamin E content in residual yolk sac, brain,

and liver of embryos
The concentration of vitamin E in residual yolk sac, brain, and liver

from embryos was determined according to Karadas et al. (2006)

using a high-performance liquid chromatography system (Shimadzu

Liquid Chromatography, LC-10AD, Japan Spectroscopic Co. Ltd.).

Briefly, 100–150 mg of yolk and organs were homogenized with

1 mL of ethanol plus 0.7 mL NaCl 5% and extracted twice by centri-

fugation with 2 mL of hexane each. Then, hexane extracts were

pooled and evaporated at 60–65 �C under nitrogen flow and the re-

sidual was dissolved in 500 mL of a dichloromethane:methanol mix-

ture (50:50 v/v). Vitamin E (a-, and c-tocopherol) concentrations

were detected with a Hypersil GOLD type 3 mm C18 reverse-phase

column (150�4.6 mm Phase Separation, Thermo Fisher Scientific

81, Wyman, Street Waltham, MA USA) with a mobile phase of

methanol:distilled water (97:3 v/v) at a flow rate of 1.05 mL min�1

using fluorescence detection by excitation and emission wavelength

of 295 nm and 330 nm, respectively. Peaks of a-, and c-tocopherol

were identified and quantified by comparison with the retention

time of standards of tocopherols at renown concentration (Sigma,

Poole, UK). According to Karadas et al. (2006), standard solutions

a-tocopherol in methanol were used for instrument calibration,

while tocol was used as an internal standard to check for the reliabil-

ity of analytical process.

Oxidative stress methods
TAC, TOS, PCO and LPO were measured in liver and brain hom-

ogenates. In addition, TAC was also measured in the residual yolk

from sampled eggs.

An appropriate amount of yolk (�0.15 g), brain, and liver

(�0.1 g) was homogenized in 100 mM phosphate buffer pH 7.4,

with 1 mM EDTA and 100 mM KCl, by an automatic homogenizer.

After 10 min centrifugation at 13,000 rpm, an aliquot of the super-

natant was immediately processed for the determination of protein

content according to the Bradford method (Bradford 1976) using

bovine serum albumin (BSA) as a standard, while the remainder was

used for oxidative stress assays. A detailed description of applied

methods is reported in Supplementary material. Briefly, TAC was

measured according to a colorimetric method based on the discolor-

ation of 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) rad-

ical cation (ABTS*þ), adapted from Erel (2004). TOS was measured

according to a colorimetric method developed by Erel (2005),

adapted to tissue homogenates. Carbonylated proteins were meas-

ured with 2,4-dinitrophenylhydrazine (DNPH). Protein carbonyla-

tion (PCO) was measured by Western immunoblotting and

immunostained protein bands were visualized with enhanced chemi-

luminescence detection. Carbonylated proteins were quantified by

densitometric analysis using Image J 1.40d software (Schneider et al.

2012). LPO was measured according to the thiobarbituric acid re-

active substances (TBARS) method (Ohkawa et al. 1979), adapted

to tissue homogenates of embryos and were expressed as nmol

TBARS g�1 wet weight.

Statistical analyses
The effect of vitamin E treatment on its concentration in residual

yolk sac and embryo focal organs, embryo morphological traits and

oxidative status markers, was analyzed in Linear Mixed Models

(LMM; Normal as the distribution and Identity as the link function),

including clutch identity as a random intercept effect. Egg mass at

the time of laying was included as a covariate in all the models.
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Egg treatment (vitamin E versus sham-injection), embryo sex, and

egg-laying order were included as fixed-effect factors along with

their two-way interactions. All non-significant (P>0.05) interaction

terms were removed from the model in a single step. In all the mod-

els, the effect of clutch identity was tested by a likelihood ratio test,

by comparing the log-likelihood value of the model including or

excluding the random effect of clutch identity. Mixed models with

the same design, but assuming a binomial error distribution, were

run to investigate the effects of vitamin E treatment on the propor-

tion of eggs that reached the “cracking stage”, as well as on the sex

ratio of embryos. A single embryo could not be dissected because of

sample deterioration. All the statistical analyses were performed by

using SAS 9.3 PROC MIXED and PROC GLIMMIX. Group statis-

tics are presented as estimated marginal means (6 SE).

Results

Vitamin E concentration in residual yolk sac, embryo

brain, and liver
To assess the reliability of the injection procedure in causing an in-

crease in vitamin E yolk concentration, and consequently on yolk

TAC, we first analyzed whether the concentration of vitamin E and

TAC in the residual yolk sac differed between sham- and vitamin E-

injected eggs. We used the yolk sac samples from 66 embryos (n¼26

nests). As expected, vitamin E concentration was significantly higher

in vitamin E treated eggs compared to controls (F1,44.5¼4.314;

P¼0.044) (Figure 1A). Neither sex (F1,38¼1.162; P¼0.286) nor lay-

ing sequence (F1,36¼0.841; P¼0.438) affected yolk sac vitamin E

concentrations. In addition, we estimated the total amount of vitamin

E in the yolk as the product of vitamin E concentration (expressed in

mg/g) and the yolk mass estimated according to the relationship

described above (see Materials and Methods Section). The total

amount of yolk vitamin E was significantly higher in vitamin E treated

eggs compared to controls (F1,44.3¼4.623; P¼0.037), while neither

sex (F1,50.7¼0.905; P¼0.346) nor laying sequence (F1,48.7¼0.899;

P¼0.413) affected mass of vitamin E in the yolk. Accordingly, vita-

min E supplementation caused a significant increase of TAC in re-

sidual yolk sac (Figure 1B; F1,36¼4.298; P¼0.045), while no

significant effect of embryo sex (F1,38¼0.01; P¼0.929) or laying

order (F1,36¼1.25; P¼0.298) was found. Since vitamin E is effi-

ciently transferred from yolk to developing embryos, we also meas-

ured its concentration in brain and liver. The concentrations of

vitamin E measured in focal organs from vitamin E-treated embryos

soon before hatching were not significantly higher than controls in

the brain (F1,59¼1.707; P¼0.196) or in the liver (F1,35¼0.305;

P¼0.584), and did not vary according to sex (brain: F1,59¼0.083;

P¼0.775; liver: F1,38 ¼0.107; P¼0.746 for liver), laying order

(brain: F1,35¼0.066; P¼0.936; liver: F2,42¼2.561; P¼0.089) or

their interactions (all P>0.05), which were removed from the LMM.

Effect of vitamin E on embryo morphology and

oxidative status
The sample included 26 clutches, 15 of which had 3 eggs while the

remaining 11 clutches had 2 eggs. The proportion of eggs that

reached the cracking stage did not differ significantly between the

control (proportion of eggs at cracking¼30/66¼0.455; 95% confi-

dence interval¼0.335–0.575) and the vitamin E-injected eggs (36/

66¼0.545; 95% confidence interval¼0.424–0.575; v2
1¼0.76,

P¼0.384). In a LMM where clutch identity was included as a ran-

dom effect, egg mass did not differ between the experimental groups

(F1,36¼0.40, P¼0.530) but significantly declined with laying order

(F2,36¼36.41, P<0.001; estimated marginal means (SE): a-eggs:

91.8 (1.25); b-eggs: 90.1 (1.21); c-eggs: 83.8 (1.28)). The sex ratio

(proportion of males) did not differ significantly between the experi-

mental groups (controls: 10/30¼0.333; 95% confidence inter-

val¼0.164–0.502 and vitamin E: 19/36¼0.528; 95% confidence

interval¼0.365–0.691; v2
1¼1.78, P¼0.182).

A LMM of embryo body mass showed no significant effect of

the interactions among fixed-effect factors (Table 1; Figure 2). The

reduced model, retaining the main effects of sex, treatment and lay-

ing order, showed a statistically significant difference in body mass

of embryos between the experimental groups (F1,38¼4.19,

P¼0.048; control embryos: 43.2 (1.03) and vitamin E embryos

45.0 (0.99)). There was large among-clutch variation in body mass

(Likelihood ratio test; v2
1¼21.00, P<0.001). No significant effect

on tarsus length was found (Table 1). LMM of embryo liver and

brain mass revealed no significant effect of vitamin E treatment

(liver: F1,38¼0.17; P¼0.678; brain: F1,39¼0.08; P¼0.784).

No significant effect of vitamin E treatment, embryo sex, laying

order, and their interactions was found for all the considered oxida-

tive stress endpoints in both the target organs, with the exception

for a significant effect of laying order on TOS in the liver, and of sex

on TOS in the brain (Table 2).

Discussion

We experimentally increased vitamin E concentrations within

physiological limits in yolks of yellow-legged gull eggs and found

Figure 1. Marginal means (þSE) of (A) concentration of total vitamin E (mg g�1

wet weight) and (B) total antioxidant capacity (TAC - mM Trolox Eq. g�1 wet

weight) in the residual yolk sac from the embryos at the cracking stage.

Sample sizes are reported. Significant differences between vitamin E and con-

trol embryos are indicated by the asterisk (*P<0.05).
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that the supplementation of this exogenous antioxidant promoted

growth of embryos at late prenatal stages, while it did not affect oxi-

dative status of their brains or livers.

A number of studies of captive and free-living birds have shown

that vitamin E supplementation via the maternal diet increased the

concentration of this antioxidant in the egg yolk and in embryonic

tissues, promoting somatic growth at hatching (Surai et al. 1999b;

Larcombe et al. 2010; Noguera et al. 2011; Surai and Fisinin 2013;

Surai et al. 2016). However, these studies manipulated vitamin E

availability to mothers and tested the effect of dietary vitamin E sup-

plementation on the offspring. This approach integrates information

on the direct effect of maternal vitamin E on progeny with indirect

effects mediated by the consequences of increased availability of

dietary vitamin E on maternal physiology. In contrast, our in ovo in-

jection approach reveals the direct effects of vitamin E on the off-

spring, independently of maternal physiology (Surai et al. 1998;

Blount 2004). In addition, several experiments (e.g., Cherian and

Sim 1997; Surai et al. 1999a; Selim et al. 2012; Goel et al. 2013),

mainly in captivity, applied supra-physiological vitamin E doses,

hampering the ecological and evolutionary interpretation of mater-

nal effects mediated by egg vitamin E content. In designing our ex-

periment we, therefore, paid special attention to scale the injection

amount of vitamin E to natural variation, as well as according to

estimated yolk size and to position in the laying sequence. Thus, we

are confident that our vitamin E supplementation caused a post-

manipulation concentration that did not exceed the upper limit of

the natural range of variation, at least in the vast majority of the

eggs.

The injection of a physiological dose of vitamin E into the yolk

caused an increase in embryo body mass around hatching, independ-

ently of egg laying order and mass of the original egg. Since the con-

centration of vitamin E in yellow-legged gull eggs from the same

colony declines with laying order, showing a 1.6-fold difference be-

tween the second- and third-laid eggs (Rubolini et al. 2011), a more

marked positive effect of vitamin E supplementation on somatic

growth of embryos from third-laid eggs was expected. In fact, previ-

ous evidence showed that chicks hatched from third-laid eggs in-

jected with vitamin E were heavier and had significantly longer tarsi

than controls, whereas vitamin E treatment had no effect on the size

of chicks from first- or second-laid eggs (Parolini et al. 2015). These

positive effects on morphological traits of chicks from the third-laid

eggs suggest that the concentration of vitamin E in first- and second-

laid eggs at hatchling is close to optimal, whereas in the third-laid

eggs is sub-optimal. In contrast, the results from embryos suggest

that during pre-hatching development the concentration of vitamin

E in the yolk might be sub-optimal for somatic growth, and the ad-

ministration of an additional dose is beneficial to growth independ-

ent of position in the laying sequence.

From a functional perspective, maternal allocation of vitamin E

to the eggs may serve to increase body size in late prenatal stages

and to enhance post-hatching growth. Yet, the mechanisms underly-

ing the positive effect of vitamin E supplementation on embryo (and

chick) body size remains to be elucidated. Although no information

is available for embryos of any bird species, vitamin E may increase

the efficiency of conversion of egg materials into somatic tissues, as

suggested for commercial Muscovy ducks during the first 2 weeks

after hatching (Selim et al. 2012). Alternatively, vitamin E supple-

mentation may reduce the production of pro-oxidant molecules, pre-

venting oxidative stress. During early developmental stages,

embryos and chicks are particularly prone to suffering oxidative

stress because of high metabolic rates and the onset of aerobic res-

piration at hatching, implying that they need efficient antioxidant

protection particularly during the late embryo and the early post-

hatching stages (Panda and Cherian 2014). The overproduction of

pro-oxidants and the consequent oxidative imbalance should be det-

rimental to developmental and growth processes (Smith et al. 2016).

The latter hypothesis is supported by a number of studies showing

that vitamin E supplementation improves antioxidant defense

increasing superoxide dismutase (SOD) and glutathione peroxidase

(GPx) activity, preventing negative effects of LPO in broiler chicks

(Sodhi et al. 2008; Tsai et al. 2008). Since oxidative stress has been

suggested to limit growth rates (Alonso-Alvarez et al. 2007),

enhanced body mass in vitamin E-treated embryos (and hatchlings)

likely reflects the antioxidant properties of tocopherols (Marri and

Richner 2015).Thus, vitamin E may protect lipid membranes from

the harmful effects of ROS, allowing increased lipid utilization for

energy production (Schaal 2008) to be used in somatic growth.

However, the present results on oxidative status markers do not sup-

port this interpretation. While TAC was found to be larger in re-

sidual yolk from vitamin E-injected eggs (Figure 1B), TAC, TOS,

and oxidative damage to lipids and proteins in the brain and in the

liver were not affected by vitamin E supplementation (Table 2). The

lack of significant effects on oxidative status markers may depend

on the amount of residual yolk in eggs at the cracking stage. Thus,

Figure 2. Marginal means (þSE) of body mass (g) and tarsus length (mm) at

the cracking stage of embryos from control or vitamin E injected eggs.

Sample sizes are reported. Significant differences between vitamin E and

control embryos are indicated by the asterisk (*P< 0.05).

Table 1. LMM of morphological traits of embryos at the cracking

stage in relation to vitamin E treatment, sex of the embryo, and lay-

ing order. Clutch identity was included in the model as a random

intercept effect. We controlled for egg mass at the time of laying by

including it as covariate in the models. The non-significant effects

of the 2-way interactions were excluded from the final model.

Significant effects are reported in bold

Morphological traits Body mass Tarsus length

F df P F df P

Final model

Treatment 4.19 1, 38 0.048 1.54 1, 38 0.222

Sex 0.34 1, 41 0.565 0.64 1, 42 0.430

Laying order 1.68 2, 47 0.198 2.01 2, 46 0.145

Excluded terms

Treatment � sex 0.08 1, 48 0.777 0.37 1, 47 0.545

Treatment � laying order 1.14 2, 51 0.329 0.49 2, 50 0.613

Sex � laying order 2.83 2, 49 0.069 1.61 2, 50 0.210
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the small amount of yolk adsorbed by the embryos up to the crack-

ing stage may have limited the transfer of an “effective” dose of vita-

min E, able to affect the oxidative status and to reduce oxidative

damage of developing embryos. In fact, although the amount of vita-

min E was higher in the residual yolk sac of injected eggs compared

to controls (Figure 1), no significant differences were measured in

brains or livers dissected from embryos. Indeed, our results may sug-

gest that maternally transferred vitamin E concentration up to late

prenatal stages seems to be optimal in preventing the occurrence of

oxidative damage, and embryos may use the supplemental vitamin E

dose to promote somatic growth rather than to limit the detrimental

consequences of oxidative stress. These findings are consistent with

those reported in a study of red-winged blackbird Agelaius phoeni-

ceus nestlings treated with an antioxidant-enriched diet (Hall et al.

2010). The lack of positive consequences of increased vitamin E con-

centration on oxidative status markers do not lessen the role of vita-

min E in protecting embryo by oxidative stress during prenatal

development. It simply suggests that vitamin E concentrations trans-

ferred from yolk to embryo tissues during pre-hatching development

could show its beneficial effects after hatching. In fact, yolk vitamin

E is effectively transferred to the embryo and its initial concentration

determines the reserve of the chick at least for the first week post-

hatch (Surai et al. 1997). For instance, the highest concentrations of

vitamin E in the liver occur at hatching and protect chicks from the

adverse effects of oxidative stress for up to 2 weeks post-hatching

(Surai et al. 1998). Thus, since newly hatched chicks are not able to

effectively assimilate vitamin E from the diet and are dependent on

their reserve built during embryonic development (Surai 2002), its

accumulation in the embryo tissues, mainly in liver, is considered an

adaptive mechanism providing antioxidant defense in the critical

time of hatching (Surai et al. 1996).

In conclusion, our findings suggest that physiological variation in

maternally transmitted vitamin E has no major effect on embryo oxi-

dative status in two major target organs, that is, the liver and brain. In

addition, they show that a physiological increase in yolk vitamin E

concentration boosts embryonic somatic growth, consistent with pre-

vious findings on hatchlings. The conspicuous differences in the ef-

fects of maternal vitamin E on offspring phenotype occurring between

the prenatal and the early postnatal life stages, which may differ ac-

cording to hatching order, should suggest that vitamin E is of primary

importance mainly during post-hatching periods. However, the par-

tial inconsistency of the present results compared to some previous ex-

perimental studies of birds suggests that further studies are required

to assess the role of this maternally transferred antioxidant during

early life periods under a natural selection regime.
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