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Endosymbionts live symbiotically with insect hosts and play important roles in the evolution, growth, develop-
ment, reproduction, and environmental fitness of hosts. Weevils are one of the most abundant insect groups 
that can be infected by various endosymbionts, such as Sodalis, Nardonella, and Wolbachia. The sweet potato 
weevil, Cylas formicarius (Coleoptera: Brentidae), is a notorious pest in sweet potato (Ipomoea batatas L.) cul-
tivation. Currently, little is known about the presence of endosymbionts in C. formicarius. Herein, we assessed 
the endosymbiont load of a single geographic population of C. formicarius. The results showed that Nardonella 
and Rickettsia could infect C. formicarius at different rates, which also varied according to the developmental 
stages of C. formicarius. The relative titer of Nardonella was significantly related to C. formicarius develop-
mental stages. The Nardonella-infecting sweet potato weevils were most closely related to the Nardonella in 
Sphenophorus levis (Coleoptera, Curculionidae). The Rickettsia be identified in bellii group. These results pre-
liminarily revealed the endosymbionts in C. formicarius and helped to explore the diversity of endosymbionts 
in weevils and uncover the physiological roles of endosymbionts in weevils.
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Two or more different organisms forming a stable and lasting sym-
biotic relationship during some or the whole period of their life cycle 
is very common in nature (O’Neill et al. 1992, Hilgenboecker et al. 
2008). Usually, the larger member of the symbiotic relationship is 
called “host,” and the smaller one is called “symbiont.” The symbi-
otic relationship, combined with host metabolism, can lead to the 
emergence of new host characteristics (Moran 2001, Oliver et al. 
2010). Many insect species harbor symbiotic bacteria, which are 
generally regarded as nonpathogenic and include both mutualists 
and neutralists (Douglas 1998, Darby et al. 2005, Su et al. 2014). 
Many symbiotic bacteria are intracellular bacterial symbionts 
(endosymbionts), and some persist over generations by transovarial 
vertical transmission (Griffiths and Beck 1973, Moran 2001, Login 
et al. 2011). The endosymbionts of insects are commonly divided 
into primary (obligatory) endosymbionts and secondary (faculta-
tive) endosymbionts. Studies have shown that endosymbionts play 
important roles in the evolution, growth, development, reproduc-
tion, and environmental fitness of host insects (Oliver et al. 2009, 
Vanthournout et al. 2014, Xie et al. 2015, Molloy et al. 2016, Shokal 
et al. 2016, Zagata et al. 2016, Zhang et al. 2016, Darby et al. 2010, 
Landmann et al. 2009).

The superfamily Curculionoidea (weevils), as one of the most 
abundant insect groups, are infected with various endosymbionts. 
Nardonella is considered to be the ancestral endosymbiots, infected 
in many weevil species, including the red palm weevil Rhynchophorus 
ferrugineus, black vine weevil Otiorhynchus sulcatus, rice water 
weevil Lissorhoptrus oryzophilus, West Indian sweet potato weevil 
Euscepes postfasciatus, Listronotus bonariensis, and Steriphus 
variabilis (Hirsch et al. 2012, White et al. 2015, Huang et al. 2016, 
Morera-Margarit et al. 2019, Maire et al. 2020b). The black hard 
weevil, Pachyrhynchus infernalis, is also infected with the Nardonella, 
which play important roles in host’s cuticle formation and hardening 
by providing tyrosine (Anbutsu et al. 2017). Although Nardonella 
is considered to be the ancestral endosymbiots, but replaced by 
Curculioniphilus and Sodalis-allied symbiont in the lineage of 
Curculio and grain weevils of the genus Sitophilus, respectively 
(Conord et al. 2008, Toju et al. 2013). Curculioniphilus is hosted by 
as many as 9 Curculio species, including C. glandium, C. elephas, C. 
pellitus, and C. venosus, and 27 Curculionini species are currently 
considered to be the primary endosymbiont of the Curculio lineage 
and allied weevils of the tribe Curculionini (Toju et al. 2010, Merville 
et al. 2013). The maize weevil Sitophilus zeamais, cereal weevil S. 
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oryzae, S. granarius infected with primary endosymbiont Sodalis 
pierantonius, which play important roles in providing amino acids 
and vitamins to its hosts (Anselme et al. 2008, Vigneron et al. 2014, 
Maire et al. 2020a, Vieira and Guedes 2020). Sodalis-allied symbionts 
are also hosted in some Curculionini weevils, but with low infection 
rates, and then referred to as secondary symbiont (Toju et al. 2013). 
SOPE (Sitophilus oryzae principal endosymbiont) is the primary en-
dosymbiont of the rice weevils, supplies the weevil with vitamins, and 
interacts with mitochondrial oxidative phosphorylation and amino 
acid metabolism (Heddi et al. 1999, Gil et al. 2008).

In addition to these primary endosymbionts, many weevils are 
also infected with various secondary symbiotic bacteria, such as 
Wolbachia, Spiroplasma, Rickettsia, Cardinium, and Arsenophonus 
(Weeks et al. 2003, Thao and Baumann 2004, Weinert et al. 2009, 
Hirsch et al. 2012, Huang et al. 2016, Marino et al. 2018, Schebeck 
et al. 2018, Zaidman-Remy et al. 2018, Vieira and Guedes 2020).

The sweet potato weevil, Cylas formicarius Fabricius (Coleoptera: 
Brentidae), is a notorious pest in sweet potato (Ipomoea batatas) 
cultivation in China and countries worldwide, which causes se-
vere damage both during growth and storage, affecting the yield 
and quality of sweet potato (Kawamura et al. 2007, Hua et al. 
2020, Baro et al. 2022, Liu et al. 2022). Although the sweet po-
tato weevil has narrow host ranges, damage caused by the weevils 
is often worse. Since endosymbionts play important roles in the 
growth, development, and environmental fitness of host insects, so 
we hypothesized that sweet potato weevils may also harbor some 
endosymbionts. In this study, we detected the endosymbionts infec-
tion rates and titers during the different developmental stages of a 
single geographic population of C. formicarius and conducted phy-
logenetic analysis. The preliminary results revealed the endosymbiots 
in sweet potato weevils and provided the basis for further exploring 
the endosymbiont-insect associations.

Methods

Insects
The wild population of sweet potato weevil C. formicarius from 
South China was used in this study. The original C. formicarius 

samples were collected from sweet potatoes from Zhanjiang, 
Guangdong province, China, in November 2020. The eggs, larvae, 
pupae, and adults of C. formicarius were carefully separated from 
the damaged sweet potatoes and stored in anhydrous ethanol at 
−80 °C.

PCR Detection of Endosymbionts
Genomic DNA was extracted using a genomic DNA extraction 
kit (TianGen, Beijing, China). The mixed extraction was ran-
domly performed for every 10 adults for detecting the species of 
endosymbionts infected in sweet potato weevils, and the elytra were 
removed during extraction. Twenty-four samples (8 samples in each 
replicate, 3 biological replicates) of sweet potato weevils at each 
development stage (egg, larva, pupa, adult) were selected for single 
extraction for detecting the infection rates of endosymbionts in C. 
formicarius.

PCRs were performed in a 25-μl volume containing 1 μl of the 
template DNA, 2.5 mM MgCl2, 200 mM for each dNTP, 1 μM of each 
primer, and 1 unit of DNA Taq polymerase (Invitrogen, Guangzhou, 
China). The specific primers of endosymbionts are listed in Table 1. 
The PCR procedure was as follows: predenaturation at 94 °C for 
3 min followed by 34 cycles of 94 °C for 30 s, annealing temperature 
(listed in Table 1) for 45 s and 72 °C for 45 s, and finally extension for 
8 min at 72 °C. To confirm the specificity of the detection, the ITS-1 
gene of C. formicarius (F: 5ʹ-TTGATTACGTCCCTGCCCTTT-3ʹ, R: 
5ʹ-ACGAGCCGAGTGATCCACCG-3ʹ) (Kawamura et al. 2007) was 
used as positive control, and ddH2O was used as negative control. To 
check whether the PCRs were actually specific to the targeted sym-
biont, 2 DNA amplicons randomly selected per symbiont were sent 
to Tianyi Huiyuan Gene Technology Co., Ltd (Guangzhou, China) 
for sequencing after expected bands were visible on 1% agarose gels.

Quantitative Detection of Nardonella
Sweet potato weevil DNA was extracted from eggs, third-instar 
larvae, pupae, female adults, and male adults, respectively. TIANamp 
Genomic DNA kit (TianGen, Beijing, China) was used for single 
extraction, and DNA from the eggs was also extracted as a single 

Table 1. Symbionts and specific primers

Symbionts Gene Prime sequences (5ʹ–3ʹ) Fragment size (bp) Annealing temperature (°C) 

Nardonellaa 16S rRNA F: AAACCCTGATGCAGCTATACCGTGTGTG
R: CCAT TGTAGCACGTTTGTAGCCCTACTCA

800 55

Rickettsiab 16S rRNA F: AGAGTTTGATCCTGGCTCAG
R: GAAAGCATCTCTGCGATCCG

900 60

Sodalisc 16S rRNA F: CGRTRGCGTTAAYAGCGC
R: AACAGACCGCCTGCGTACG

200 55

SOPEd 16S rRNA F: TAATAGCGCCATCGATTGAC
R: CCGAAGGCACCAAGGCAT

530 53

Wolbachiae 16S rRNA F: GCATGAGTGAAGAAGGCC
R: AGATAGACGCCTTCGCCA

400 52

Cardiniumf 16S rRNA F: GCGGTGTAAAATGAGCGTG
R: ACCTMTTCTTAACTCAAGCCT

500 51

Arsenophonusg 23 S rRNA F: CGTTTGATGAATTCATAGTCAAA
R: GGTCCTCCAGTTAGTGTTACCCAAC

600 51

aSee reference Degnan et al. (2004).
bSee references Lane (1991) and Schulenburg et al. (2001).
cSee reference Toju et al. (2010).
dSee reference Heddi et al. (1999).
eSee reference Li et al. (2007).
fSee reference Weeks et al. (2003).
gSee reference Thao and Baumann (2004).
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pellet. The DNA samples infected with Nardonella detected by reg-
ular PCR were mixed in every 10 samples per instar/developmental 
stage as DNA templates for quantitative detection.

qPCR was performed with the CFX connect real-
time system (Bio-Rad, USA) with Thunderbird 2× SYBR 
Green PCR mix (TOYOBO, Osaka, Japan). The primers of 
Nardonella were as follows: F: ACACGGTCCAGACTCCTT, 
R: ACACGCTTTACGCCCAAT (Huang et al. 2016). The 
β-actin gene (primer F: CGTCACAAACTGGGATGACA, R: 
GAGCTTCGGTCAAAAGAACG) of C. formicarius was used as a 
housekeeping gene (Hua et al. 2020). Amplifications were performed 
in 10-μl reactions containing 5 μl of 2× SYBR Green PCR mix, 2 μl 
of template DNA, 0.5 μl of each primer (10 μM each), and 2 μl of 
ddH2O. The amplification program was as follows: 5 min activation 
at 95 °C, 40 cycles of 30 s at 95 °C, 30 s at 55 °C, and finally 30 s at 
72 °C. A nontemplate negative control was included for each primer 
set to check for primer dimers and contamination. This experiment 
was repeated 2 more times, for a total of 30 egg sets, 30 larvae, 30 
pupae, 30 female adults, and 30 male adults sampled.

Phylogenetic Analysis
The amplified products of Nardonella and Rickettsia were purified 
and recovered using the agarose gel DNA recovery kit (OMEGA, 
USA). The recovered products were used for 2-way sequencing 
(Tianyi Huiyuan, Guangzhou). Nardonella and Rickettsia 16S 
rRNA gene sequences determined in C. formicarius in this study 
have been deposited in the National Center for Biotechnology 
Information (https://www.ncbi.nlm.nih.gov). The phylogenetic trees 
of Nardonella and Rickettsia were constructed by combining the re-
ported Nardonella and Rickettsia gene sequences (Hosokawa and 
Fukatsu 2010, Toju et al. 2010, Hirsch et al. 2012, Merville et al. 
2013, Hosokawa et al. 2015, Huang et al. 2016). IQ-TREE version 
1.6.12-Linux (http://www.iqtree.org) was used to construct the phy-
logenetic trees of Nardonella and Rickettsia using the maximum 
likelihood method. The self-guided replication values were set to 
1,000 times.

Data Analysis
A Bio-Rad instrument (CFX Connect, USA) and the accompanying 
software (Bio-Rad CFX Manager) were used for qPCR data nor-
malization, and the relative quantities of endosymbionts were cal-
culated using the 2−ΔΔct method. The differences were evaluated in 
IBM SPSS Statistics v.18.0. For all ANOVA analysis, independent-
samples t-test, data were checked for homogeneity by the Levene’s 
test. Multiple comparisons of means were assessed by Tukey’s HSD 
test at a significance level α = 0.05. Figures were generated using 
Sigma Plot 14.0. Error bars in all graphs represent standard error.

Results

Species and Infection Rates of Endosymbionts in 
Cylas formicarius
We detected 7 endosymbiots, Nardonella, Sodalis, SOPE, Wolbachia, 
Cardinium, Rickettsia, and Arsenophonus, in the sweet potato 
weevils by regular PCR (Fig. 1). We successfully obtained partial 16S 
rDNA sequences amplified with Nardonella- and Rickettsia-specific 
primers, respectively. The sequences amplified with Nardonella-
specific primers found in C. formicarius (GenBank accession no. 
ON955871) matched the Nardonella found in Sphenophorus levis 
(GenBank accession no. FJ626248) by 96.37%. Hence, we have 

provisionally classified the sequences as Nardonella. The sequences 
amplified with Rickettsia-specific primers found in C. formicarius 
(GenBank accession no. OQ398824) matched the Rickettsia bellii 
(GenBank accession no. NR074484) by 99.66%, Rickettsia found 
in Ochlerotatus caspius (GenBank accession no. OP007142) by 
99.66%, Rickettsia found in Curculio sikkimensis (GenBank acces-
sion no. AB545027) by 99.55%, and Rickettsia found in Bemisia 
tabaci (GenBank accession no. MT253088) by 99.34%. Hence, 
we have classified the sequences as R. bellii. We conducted the fol-
lowing analysis on the 2 endosymbionts identified (Nardonella and 
Rickettsia).

The infection rates of the endosymbiotic bacteria were different 
in sweet potato weevils, and the results was shown in Fig. 2. The in-
fection rate of Nardonella was 69.17% ± 6.87%, significantly higher 
than that of Rickettsia (37.50% ± 7.11%), in 120 samples of sweet 
potato weevils (t = 3.191; df = 28; P = 0.003; Fig. 2).

The infection rates of the endosymbionts were also different in 
each developmental stage of sweet potato weevil (Fig. 3). The infec-
tion rate of Nardonella was relatively low in weevil female (25% ± 
12.50%) and at its highest in pupa (95.83% ± 4.17%; F = 12.4375; 
df = 4,10; P = 0.000678), with no significant difference among egg, 
larva, and male (Fig. 3a). The infection rate of Rickettsia was rela-
tively low in weevil pupa (8.33%) and at its highest in egg and fe-
male (58.33%; F = 6.6071; df = 4,10; P = 0.007213) (Fig. 3b).

Fig. 1. Infection of endosymbionts in Cylas formicarius from South China. 
Lanes 1–9 are DNA marker, positive control (ITS-1), negative control (ddH2O), 
Nardonella, Sodalis, SOPE, Wolbachia, Cardinium, Rickettsia, Arsenophonus, 
respectively.

Fig. 2. The infection rates of endosymbionts in Cylas formicarius. 
**Statistically significant difference between them based on the t-test at a 
significance level α = 0.05; bars are the mean ± SE (n = 15), t = 3.191, df = 
28, P = 0.003.

https://www.ncbi.nlm.nih.gov
http://www.iqtree.org
ON955871
FJ626248
OQ398824
NR074484
OP007142
AB545027
MT253088
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Quantitative Detection of Nardonella
Nardonella is considered to be the oldest endosymbiont among 
weevil insects, with high infection rates in C. formicarius. Here, 
we quantitatively analyzed the relative contents of Nardonella 
in different developmental stages of sweet potato weevils. The 
results showed that the relative titer of Nardonella in the egg–
pupa stages of sweet potato weevils decreased with growth and 
development, which were the highest in the eggs, decreased 
with the development and reached the lowest in the pupae, 
then increased in the adult stage (F = 17.7378; df = 4, 10; P = 
0.000155; Fig. 4), but had no significant difference between the 
males and females.

Phylogenetic Analysis of Endosymbionts
Eleven 16S rDNA gene sequences of Nardonella were selected from 
the NCBI database as reference sequences to construct phylogenetic 
trees. The phylogenetic analyses results showed that the Nardonella 
obtained from sweet potato weevils in this study was closely related 
to S. levis (a hyacinth genus insect) (Fig. 5). The Rickettsia obtained 
from sweet potato weevils in this study was closely related to R. 
bellii (Fig. 6).

Discussion

This preliminary study describes the endosymbiotic communities 
hosted by a single geographic population of C. formicarius. The 
types of endosymbionts in insect populations vary with insect spe-
cies, developmental stages, and geographical environments (Gottlieb 
et al. 2006, Himler et al. 2011, Merville et al. 2013). Previous studies 
showed that 4 sibling weevil species (Curculio spp.) were infested 
with one primary endosymbiont Candidatus Curculioniphilus 
buchneri and 3 secondary endosymbionts, Rickettsia, Spiroplasma, 
and Wolbachia (Merville et al. 2013). Otiorhynchus spp. was infested 
with Rickettsia and Nardonella (Hirsch et al. 2012). The West 
Indian sweet potato weevil, Euscepes postfasciatus, was infected 
with Nardonella (Hosokawa and Fukatsu 2010). Cereal weevils, 
maize weevils S. zeamais, house an obligatory nutritional endosym-
biont Sodalis pierantonius and occasionally Wolbachia (Zaidman-
Remy et al. 2018, Vieira and Guedes 2020). Wolbachia was also 
detected in rice weevil S. oryzae (Heddi et al. 1999) and the spruce 
bark beetle Pityogenes chalcographus (Schebeck et al. 2018). In this 
study, Candidatus Curculioniphilus buchneri and Spiroplasma were 
not detected (results not shown), and Nardonella, Sodalis, SOPE, 
Wolbachia, Cardinium, Rickettsia, and Arsenophonus were detected 
in C. formicarius by regular PCR. Only Nardonella and Rickettsia 
16S rDNA sequences were successfully obtained, and whether the 
sweet potato weevil harbored other endosymbionts needs further 
confirmation.

The primary symbionts are generally localized in specialized cells 
called bacteriocytes, grouped together in a bacteriome, undergo ver-
tical transmission from mother to offspring with high fidelity (Thao 
and Baumann 2004, Gottlieb et al. 2008, Wilson et al. 2010, Ghosh 
et al. 2020, Maire et al. 2020a). The secondary endosymbionts in-
habit various body parts, such as bacteriocytes, hemolymph, gut 
tissues, and so on, and can be transmitted vertically, and undergo 
some horizontal transmission (Oliver et al. 2010, Carvalho et al. 
2014, Li et al. 2017, Shi et al. 2018). No matter what kinds of 
endosymbionts, vertical transmission, from the mother to offspring, 
is the main transmission mode. The infection rate of Nardonella 
and Rickettsia were relatively higher in egg stage of C. formicarius. 
The egg is the first stage of progeny, so more endosymbiots may be 
retained in the eggs. The infection rate of Nardonella was lowest in 
the female adult, which was a bit unexpected. We speculated that 
the endosymbiot Nardonella failed to transfer to the reproductive 

Fig. 3. The infection rates of endosymbionts in different development stages of Cylas formicarius. Mean ± SE (n = 3) marked with the different lowercase letters 
represent a statistically significant differences based on 1-way ANOVA with Tukey’s HSD test at a significance level α = 0.05. (a) Nardonella: F = 12.4375; df = 4, 
10; P = 0.000678; (b) Rickettsia: F = 6.6071; df = 4, 10; P = 0.007213.

Fig. 4. The relative titers of Nardonella in different development stages of 
Cylas formicarius. Mean ± SE (n = 3) marked with the different lowercase 
letters represent a statistically significant differences (F = 17.7378; df = 4, 10; 
P = 0.000155) based on 1-way ANOVA with Tukey’s HSD test at a significance 
level α = 0.05.
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system of the female sweet potato weevil and then were metabolized 
by the host insects. Previous studies showed that the mechanisms 
of symbiont translocation during development and from so-
matic tissues into the germline differ widely across insect groups. 
The endosymbiont Buchnera translocates from bacteriomes to the 
ovaries in aphids through a coordinated series of exocytosis and en-
docytosis event (Koga et al. 2012). The transmission of whitefly’s 
endosymbionts was achieved by the transport of entire bacteriocytes 
(Kaltenpoth 2020). The transmission of S. pierantonius from larva to 
adult cereal weevil S. oryzae was achieved by bacteriocytes turning 
into spindle cells and migrating along the midgut epithelium, thereby 
transferring endosymbionts to midgutsites where future mesen-
teric caeca will develop (Maire et al. 2020a). Nardonella was also 
localized in bacteriome of weevils (Maire et al. 2020a). However, 
how the endosymbiots are maintained and occasionally translocated 
during metamorphosis in sweet potato weevils remains poorly un-
derstood. Whether the endosymbionts infection rates are related to 
the localization patterns, physiological state, and immune activity of 
different developmental stages of C. formicarius needs further study.

Nardonella is considered to be the most ancient, primary 
endosymbionts in weevils (Hosokawa and Fukatsu 2010, Kuriwada 
et al. 2010, Hosokawa et al. 2015, Huang et al. 2016) and infected 
many types of weevils, such as Odoiporus longicollis, Yuccaborus 
frontalis, Rhynchophorus palmarum, L. oryzophilus, etc. (Lefevre 
et al. 2004, Hosokawa et al. 2015, Huang et al. 2016, Maire et al. 
2020a, b). Previous studies showed that Nardonella plays impor-
tant roles in host’s cuticle formation and hardening by proving tyro-
sine (Anbutsu et al. 2017). Nardonella was reported to be involved 
in normal growth and development of the West Indian sweet po-
tato weevil E. fasciatus, and deletion of these bacteria significantly 
suppressed the growth rate of immature stages, and the adults were 
smaller in size and paler in color (Kuriwada et al. 2010). In this 
study, the density of Nardonella was significantly related to C. 
formicarius developmental stages. The relative titer of Nardonella 
decreased with the growth of C. formicarius from egg to pupa, and 
increased in adults, which was consistent with the changes in rice 
water weevil (Huang et al. 2016). If Nardonella also plays a nutri-
tional role in the sweet potato weevil, it may be because, unlike the 

Fig. 5. The phylogenetic analysis of Nardonella based on 16S rRNA gene. Sequences obtained from this study shown in bold.

Fig. 6. The phylogenetic analysis of Rickettsia based on 16S rRNA gene. Sequences obtained from this study shown in bold.
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egg stage, the sweet potato weevil in larval stage can eat independ-
ently the supplement nutrients, thus reducing the endosymbiont 
titers. The increase of endosymbiont titer in adult stage may be a 
preparation for vertical transmission to the progeny of host insects. 
However, the symbiotic mechanism of Nardonella and sweet potato 
weevil and the function of Nardonella in sweet potato weevil need 
further study. Rinke et al. (2011) detected Nardonella in S. levis, 
and the results of Nardonella phylogenetic analysis showed that the 
Nardonella infection in sweet potato weevils was most closely re-
lated to Nardonella in sugarcane weevil S. levis. Both species of 
weevils could be considered together when studying the function 
of Nardonella.

In recent years, molecular surveys showed that Rickettsia are 
associated with a diverse range of hosts (vertebrates, arthropods, 
plants, etc.) (Weinert et al. 2009, Caspi-Fluger et al. 2012). Some 
Rickettsia are symbionts, with an intimate relationship with hosts, 
and can be considered facultative (secondary) endosymbionts of 
arthropods (Weinert et al. 2009). Some Rickettsia can alter the re-
productive behavior, such as male killing in coleopteran or parthe-
nogenesis in hymenopteran hosts (Lawson et al. 2001, Hagimori 
et al. 2006, Weinert et al. 2009, Schebeck et al. 2018). In this 
study, there was no significant difference in the infection rate of 
Rickettsia between females and males. Therefore, we speculated 
that the Rickettsia detected in C. formicarius may not have the 
function of male killing. The Rickettsia detected in C. formicarius 
was most closely related to the Rickettsia bellii in B. tabaci, C. 
sikkimensis, C. kojimai, etc. Infection with Rickettsia increases sus-
ceptibility to insecticide (Kontsedalov et al. 2008), increases the 
thermotolerance (Brumin et al. 2011), influences the reproduction 
by changing the sex ratio, and influences offspring fitness of whitefly 
B. tabaci (Himler et al. 2011, Shi et al. 2021). Chestnut weevil C. 
sikkimensis also harbored Rickettsia, which closely related to the 
Rickettsia in B. tabaci and higher Rickettsia infections at localities 
of higher temperature (Toju and Fukatsu 2011). Thus it could be 
speculated that Rickettsia endosymbionts may also manipulate host 
thermotolerance and/or reproduction in C. formicarius. Rickettsia 
also be detected in 4 sibling weevil species (C. glandium, C. elephas, 
C. pellitus, and C. venosus) (Merville et al. 2013), and Otiorhynchus 
species be identified in rhizobius group (Hirsch et al. 2012), but little 
is known about their function. Molecular surveys coupled with bi-
ological experiments can help to explore the biological function of 
endosymbionts.

In summary, Nardonella and Rickettsia were found to infect 
C. formicarius, with different infection rates, which also varied ac-
cording to the developmental states of C. formicarius. The relative 
titer of Nardonella in the egg–pupa stages of sweet potato weevil 
decreased with growth and development and subsequently increased 
in the adults. Nardonella infection in sweet potato weevils was most 
closely related to the Nardonella in S. levis, and the Rickettsia be 
identified in bellii group. These findings preliminarily indicated the 
information on endosymbionts of sweet potato weevil, provided 
basis to further explore the diversity of endosymbionts in weevils, 
and uncovered the physiological roles of endosymbionts in weevils. 
In the future, we can conduct microbiome studies on multiple geo-
graphic populations of sweet potato weevil to better reveal the diver-
sity of insect symbionts.
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