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Interest in the application of machine learning (ML) techniques to multimodal magnetic
resonance imaging (MRI) data for the diagnosis of schizophrenia (SZ) at the individual
level is growing. However, a few studies have applied the features of structural and
functional brain networks derived from multimodal MRI data to the discriminative
analysis of SZ patients at different clinical stages. In this study, 205 normal controls
(NCs), 61 first-episode drug-naive SZ (FESZ) patients, and 79 chronic SZ (CSZ) patients
were recruited. We acquired their structural MRI, diffusion tensor imaging, and resting-
state functional MRI data and constructed brain networks for each participant, including
the gray matter network (GMN), white matter network (WMN), and functional brain
network (FBN). We then calculated 3 nodal properties for each brain network, including
degree centrality, nodal efficiency, and betweenness centrality. Two classifications (SZ
vs. NC and FESZ vs. CSZ) were performed using five ML algorithms. We found that
the SVM classifier with the input features of the combination of nodal properties of
both the GMN and FBN achieved the best performance to discriminate SZ patients
from NCs [accuracy, 81.2%; area under the receiver operating characteristic curve
(AUC), 85.2%; p < 0.05]. Moreover, the SVM classifier with the input features of the
combination of the nodal properties of both the GMN and WMN achieved the best
performance to discriminate FESZ from CSZ patients (accuracy, 86.2%; AUC, 92.3%;
p < 0.05). Furthermore, the brain areas in the subcortical/cerebellum network and the
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frontoparietal network showed significant importance in both classifications. Together,
our findings provide new insights to understand the neuropathology of SZ and further
highlight the potential advantages of multimodal network properties for identifying SZ
patients at different clinical stages.

Keywords: schizophrenia, brain networks, discriminative analysis, machine learning, multimodal MRI

INTRODUCTION

Schizophrenia (SZ) is a chronic psychiatric disease with
hallucinations, delusions, and cognitive dysfunction (Lu et al.,
2016). With the development of magnetic resonance imaging
(MRI), the vast majority of studies have shown structural and
functional brain abnormalities in SZ patients (Yamasue et al.,
2004; Antonova et al., 2005; Kuroki, 2006; Pagsberg et al.,
2007; Zhou et al., 2007). Several structural MRI studies have
reported SZ patients show hippocampal volume reduction and
bilateral thalamus volume reduction compared with normal
controls (NCs) (Adriano et al., 2010, 2012), whereas the most
reported functional alterations in SZ patients are located in
thalamus, medial frontal gyrus, and superior temporal gyrus
(Ren et al., 2013; Turner, 2013). Furthermore, previous studies
have indicated that structural brain abnormalities are more
widespread in chronic SZ (CSZ) patients than in first-episode
drug-naive SZ (FESZ) patients, suggesting the potential impact
of antipsychotic medication on structural brain abnormalities
(Moncrieff and Leo, 2010; Torres et al., 2016). On the other hand,
numerous functional MRI studies indicated that CSZ patients
showed significant reductions in functional characteristics in
brain regions involved in auditory, visual processing, and
sensorimotor functions compared with FESZ patients (Wu et al.,
2018). Therefore, it is critical to develop neuroimaging-based
biomarkers for distinguishing the illness stages of SZ patients.

A number of studies based on the quantitative analysis of
brain networks have reported that SZ patients show significantly
decreased connectivity between a range of brain regions,
particularly involving connections among the frontal lobe,
temporal lobe, and insula compared with NCs (Bassett et al.,
2008; Palaniyappan et al., 2015; Erdeniz et al., 2017). Previous
studies of gray matter networks (GMNs) have shown that
SZ patients exhibit reduced betweenness centrality (BC) in
several regions and increased BC mainly in primary cortex and
paralimbic cortex regions (Zhang et al., 2012). Numerous studies
of white matter networks (WMNs) have demonstrated that a
decreased clustering coefficient (Zhou et al., 2007; Collin et al.,
2014), decreased global efficiency (van den Heuvel et al., 2013;
Drakesmith et al., 2015; Griffa et al., 2015), and decreased node
efficiency (NE) of the frontal lobe and limbic system were found
in SZ patients (van den Heuvel et al., 2010; Wang et al., 2012;
Sun et al., 2015). In addition, previous studies of functional brain
networks (FBNs) indicated that the degree centrality (DC) in SZ
patients was decreased in the bilateral putamen and increased
in the left superior frontal gyrus (Chen et al., 2015). However,
a few studies compared FESZ with CSZ patients based on the
quantitative analysis of brain networks.

Recently, machine learning (ML) methods using
neuroimaging data have been increasingly applied in the
classification between SZ patients and normal controls (NCs),
in which the classification accuracy varies from 0.65 to 0.95
(Arbabshirani et al., 2013; Talpalaru et al., 2019; Cao et al.,
2020; Guo et al., 2020; Steardo et al., 2020). The majority of
previous studies have mainly applied ML methods to a single
neuroimaging modality, including structural MRI (sMRI) (Xiao
et al., 2017; Oh et al., 2020), diffusion tensor imaging (DTI)
(Ingalhalikar et al., 2010; Ardekani et al., 2011), resting-state
functional MRI (rs-fMRI) (Koch et al., 2015; Skåtun et al., 2017;
Cai et al., 2020), and electroencephalogram (EEG) (Ke et al.,
2021). More recently, some studies have used multimodal MRI
data to detect SZ at the level of the individual, and most measures
are derived from multimodal MRI features, such as gray matter
volume, regional homogeneity, amplitude of low-frequency
fluctuation, and degree of centrality (Lu et al., 2018; Liang
et al., 2019; Lei D. et al., 2020). Our previous study has applied
multimodal MRI features to distinguish the illness stages of SZ
patients based on ML methods and the findings have contributed
to stage-specific biomarkers in diagnosis and interventions of SZ
(Wu et al., 2018).

The objective of this study is to apply the features of
both structural and functional brain networks derived from
multimodal MRI data to the discriminative analysis of SZ patients
at different clinical stages. We constructed three types of brain
networks, including GMN, WMN, and FBN, for each participant
derived from sMRI, DTI and rs-fMRI data. Three nodal
properties of each brain networks were calculated, including BC,
DC, and NE. The performance of two classifications (SZ vs. NC
and FESZ vs. CSZ) was analyzed by using different combinations
of nodal properties as the input features. Five ML algorithms
were applied in both discriminative analyses, including the linear
support vector machine (SVM) (Cortes, 1995), random forest
algorithm (RF) (Breiman, 1996), logistic regression (LR) (Peng
et al., 2002), linear discriminant analysis (LDA) (Fisher, 1936),
and K-nearest neighbor classification (KNN) (Zhang, 2016).

MATERIALS AND METHODS

Subjects
A total of 61 FESZ patients, 79 CSZ patients, and 205
NCs were recruited for this study. The SZ patients were
diagnosed by trained and experienced clinical psychiatrists using
a structured clinical interview according to Diagnostic and
Statistical Manual of Mental Disorders: Fourth Edition, Text
Revision (DSM-IV-TR) (Structured Clinical Interview for DSM
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Disorders [SCID]) criteria. The FESZ, CSZ, and NC groups
were recruited from the Affiliated Brain Hospital of Guangzhou
Medical University and the local community, respectively. All
subjects were aged between 18 and 45 years, and their biological
parents were Han Chinese. Before scanning, a clinical assessment
was performed by psychiatrists using the Positive and Negative
Syndrome Scale (PANSS) (Kay et al., 1987). The subjects obtained
a consensus score for each item on all three subscales (positive
symptoms, negative symptoms, and general psychopathology)
that was based on a seven-point scale indicating the severity of the
symptom (van Tol et al., 2014). The inclusion criteria for all SZ
patients were as follows: (1) a total score of at least 60 for the three
PANSS subscales and (2) at least 3 positive symptom items on the
PANSS with a score of at least 4. Additionally, FESZ patients were
recruited for the first time when they were seeking help due to
psychotic symptoms and did not take any antipsychotics. All CSZ
patients were taking antipsychotics, and the course of the disease
was greater than 2 years.

The exclusion criteria for all subjects included (1) any other
psychiatric Axis I disorder meeting DSM-IV criteria, including
schizoaffective disorders, intellectual disability, major depressive
disorder, bipolar disorder, delirium, dementia, memory disorder,
and other cognitive disorders; (2) mental disorder due to
substance dependence, a seriously unstable somatic disease,
definite diabetes, thyroid diseases, hypertension, or heart disease;
(3) narrow angle glaucoma; (4) a history of epilepsy, except
for febrile convulsions; (5) alcohol dependence meeting DSM-
IV-TR criteria (excluding nicotine dependence); (6) having
received electroconvulsive therapy within the past 6 months; (7)
a contraindication for MRI; (8) medical resource neuroleptic
malignant syndrome or serious tardive dyskinesia; (9) a serious
suicide attempt or an irritative state; (10) noncompliant drug
administration or a lack of legal guardians; or (11) lactating,
pregnant, planning to become pregnant. In addition, NCs were
excluded if they had a first- or second-degree relative with a
psychiatric Axis I disorder according to DSM-IV criteria. Before
enrollment, all subjects or their legal guardians provided written
informed consent. These studies were performed according
to the Declaration of Helsinki and approved by the Ethics
Committees of the Affiliated Brain Hospital of Guangzhou
Medical University.

Magnetic Resonance Imaging Data
Acquisition
MRI images were acquired using a Philips 3T MR system (Philips,
Achieva, Netherlands) located at the Affiliated Brain Hospital of
Guangzhou Medical University. The participants were instructed
to keep their eyes closed, to relax but not fall asleep, and to
move as little as possible. The sMRI data were obtained using a
sagittal three-dimensional gradient-echo T1-weighted sequence
(256 × 256 × 188 matrix with 1 mm × 1 mm × 1 mm
spatial resolution, repetition time (TR) = 8.2 ms, echo time
(TE) = 3.8 ms, flip angle = 7◦, field of view (FOV) = 256 mm× 256
mm). The DTI data were acquired using a single-shot echo-
planar imaging-based sequence with the following parameters:
slice thickness is 3 mm, no gap, 50 axial slices, TR = 6,000 ms;

TE = 70 ms; flip angle = 90◦; FOV = 256 mm × 256 mm;
spatial resolution = 2 mm × 2 mm × 3 mm; 33 nonlinear
diffusion weighting directions with b = 1000 s/mm2 and one
image without diffusion weighting (b = 0 s/mm2). The rs-fMRI
data were collected using an echo-planar imaging (EPI) sequence
(64 × 64 × 36 matrix with 3.44 mm × 3.44 mm × 4 mm
spatial resolution, TR = 2,000 ms, TE = 30 ms, flip angle = 90◦,
FOV = 220 mm× 220 mm).

Image Processing
All T1-weighted MRI data processing was performed using
the SPM8 software package1 (Institute of Neurology, University
College London, United Kingdom). First, each T1-weighted
MRI was segmented into three tissue maps, including gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF),
using the new segmentation algorithm from SPM8. Second, a
customized, population-specific template was created from the
segmented tissue maps using the DARTEL template-creation
tool. Third, all GM maps were warped to the custom template
space using its corresponding smooth, reversible deformation
parameters. A modulation was applied by locally multiplying
tissue values by the Jacobian determinants derived from the
special normalization step (Good et al., 2001). Spatial smoothing
was not performed to avoid inducing artifactual signal overlap
among spatially adjacent regions (Kong et al., 2021).

Preprocessing of the DTI dataset was implemented using
PANDA2, which is a pipeline toolbox for diffusion MRI analysis
(Cui et al., 2013). The procedure mainly included skull stripping,
simple motion and eddy current correction, and diffusion
tensor/parameter calculation. Eddy current was an important
factor for image deformation, and affine transformation was used
to register the DTI image to the T1 image, which can effectively
reduce the influence of head movement and eddy current.

Rs-fMRI data were preprocessed using SPM8 (see text
footnote 1) Institute of Neurology, University College London,
United Kingdom) and DPABI (Yan et al., 2016). First, the first 10
volumes of each functional time series were discarded because the
initial signal was unstable. Second, the remaining volumes were
corrected for different signal acquisition times and realigned to
the first volume to correct for head motion. Then, the nuisance
signals (Rigid-body 6 motion parameters, the white matter signal,
and the cerebrospinal fluid signal) were regressed out from the
data. Subsequently, all functional volumes were normalized using
EPI templates and resampled to 3-mm isotropic voxels. The
resampled data were bandpass (0.01–0.08 Hz) filtered to reduce
low-frequency drift and high-frequency physiological noise and
spatially smoothed with a 4-mm FWHM Gaussian kernel. All
participants in the study did not have excessive head motion
(<2 mm or 2◦ during realignment and <2 mm for mean motion
during framewise assessment).

Brain Network Construction
The single-subject GMN for T1-weighted MRI data was
constructed based on the GM volume images. A GMN here

1http://www.fil.ion.ucl.ac.uk/spm
2http://www.nitrc.org/projects/panda/
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included a collection of nodes and edges interconnecting the
nodes. Here, the nodes represent brain regions, and edges
represent interregional similarity in the distributions of regional
GM volume. To define the network nodes, the GM volume
image was parcellated into 268 regions of interest (ROIs)
using a 268-node functional atlas (Shen et al., 2013). The GM
volume value of each of the 268 ROIs was then calculated.
We utilized a Kullback-Leibler (KL) divergence-based similarity
(KLS) measure to estimate the network edges (Kong et al.,
2014). Specifically, the probability density function of these 268
values was estimated using kernel density estimation (KDE)
with bandwidths chosen automatically. The regional probability
distribution function (PDF) and the KL divergence between each
pair of 268 regions in their PDFs were then calculated. The
network edges were defined as KLS with a consecutive sparsity
threshold, S, ranging from 0.1 < S < 0.4 (interval = 0.01). All
of the following network analyses were performed at each of the
threshold levels in this range. For each of the network metrics, the
estimated values under the range of 0.1-0.4 were integrated with
area under curve (Wang et al., 2016).

The WMN for DTI data was also parcellated into 268
ROIs. According to deterministic white matter fiber bundle
tractography, the fiber number (FN) connected in the ROIs
was taken as the connection weight, and then the FN-weighted
connection matrix was calculated. The parameters of fiber
tractography were set: the turning angle between adjacent voxels
was less than 45 degrees or fractional anisotropy was greater
than 0.2 (Gong et al., 2009). The white matter connection was
calculated using PANDA (Cui et al., 2013). The network edges
were defined as the number of white matter fibers with the
threshold FN > 2.

The FBN for fMRI data was constructed based on the main
regional time series by averaging voxelwise time series data.
Pearson’s correlation coefficient of the interregional time series
was defined to measure the relation between network nodes.
Then, each of the resulting correlation matrices was converted
into a series of weighted networks with a sparsity threshold, S,
ranging from 0.1 < S < 0.4 (interval = 0.01). All of the following
network analyses were performed at each of the threshold levels
in this range. For each of the network metrics, the estimated
values under the range of 0.1-0.4 were integrated with area under
curve (Liu et al., 2017).

The nodal properties of each region, including DC, NE,
and BC, were then calculated using the GRETNA toolbox
(Wang et al., 2015).

Statistical Analysis
Between-group differences in age and years of education were
analyzed by one-way analysis of variance (ANOVA) using SPSS
22.0 software. A post hoc analysis was performed using Scheffé’s
method. A χ2 test was performed to determine sex differences.
Statistical significance was set at p < 0.05.

Discriminative Analysis
In this study, we randomly split the set of participants into two
groups, including a training dataset and an independent testing

dataset, at a ratio of 4:1. In the training dataset, 10-fold cross-
validation was performed. Each time, the ninefold data were used
for training, and onefold data were used for validation. Each
feature is normalized to between 0 and 1 on the training set, and
the normalized parameters are applied to the validation set. Then,
the performance of each resulting classifier was evaluated using
the independent testing dataset. Using this method, we achieved
unbiased estimates of every classifier.

The performance of two classifications (SZ patients vs.
NC and FESZ patients vs. CSZ) was analyzed using 5 ML
algorithms, including SVM, RF, LR, LDA, and KNN. Moreover,
we used the method of recursive feature elimination (RFE)
(Lin et al., 2017) to iteratively remove redundant features while
preserving discriminative features (Figure 1). The analyses for
both classification tasks were performed by using the in-house
software NEURO-LEARN3, which is a solution for collaborative
pattern analysis of neuroimaging data (Lei B. et al., 2020).

From the results obtained by NEURO-LEARN, we obtained
the weight of each input feature from the output of the classifier,
and the absolute value of the feature weights can quantify the
contribution of the features to the classifier. In this study, we
calculated the feature contribution based on the results by the
best classification performance. In addition, we divided 268 ROIs
into eight subnetworks (Finn et al., 2015), including medial
frontal, frontoparietal, default mode, subcortical/cerebellum,
motor, visual I, visual II, and visual association (Figure 2).
We selected the top 5% of combined features (BC, DC, and
NE) ranked by the weights in the best classification to discuss
subnetwork contributions.

To compare the performance of the 5 ML algorithms, we
plotted the receiver operating characteristic (ROC) curves and
calculated the area under the ROC curve (AUC). A permutation
test was applied to explore whether the AUC obtained by the
proposed model was significantly higher than the AUC of a
random guess by randomly permuting the labels of the training
data 1,000 times prior to the training step followed by the entire
classification process. Based on probability distributions, it is
possible to test the null hypothesis. The statistical significance was
set at p < 0.05.

RESULTS

Clinical and Demographic
Characteristics
The clinical and demographic characteristics of all subjects are
shown in Table 1. There were significant differences in age
and years of education were noted between NCs and CSZ
patients (p < 0.05); there were also significant differences in
age and years of education between NCs and FESZ patients
(p < 0.05). Moreover, there was no significant difference in the
positive, negative, general, and total PANSS scores between FESZ
and CSZ patients.

3https://github.com/Raniac/NEURO-LEARN
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FIGURE 1 | Flowchart of the ML classification method.

Classification Performance
Two classifications were performed to distinguish SZ patients
from NCs as well as FESZ patients from CSZ patients. The
network properties of GMN, WMN, and FBN were used as the
input features of the five ML algorithms. The results indicated
that the SVM achieved the best performance compared to the
other four ML algorithms based on RFE in both classifications
(Supplementary Tables 1, 2).

Results of Classification Between Schizophrenia
Patients and Normal Controls
When discriminating SZ patients from NCs, the classifier of
SVM with the input features of the properties of GMN and
FBN achieved the highest performance with an accuracy of
81.2% and AUC of 85.2% (p < 0.05), as shown in Figure 3 and
Supplementary Table 1.

We chose the top 5% of features ranked by their weights
in the best classification (Supplementary Table 3). Meanwhile,
we divided 268 ROIs into eight subnetworks and calculated

the frequency of each subnetwork in the top 5% of features
from the GMN and FBN. We found that the ROIs from the
GMN were distributed in the subcortical/cerebellum network,
frontoparietal network, motor network, medial frontal network,
visual I network, visual II network, and visual association
network. The ROIs from the FBN were distributed in the
subcortical/cerebellum network, frontoparietal network, medial
frontal network, visual II network, visual association network,
default mode network, and motor network (Figure 4).

Overall, the ROIs were mainly distributed in the
subcortical/cerebellum network (30%) and frontoparietal
network (21.25%), and the proportion of the features from the
GMN was greater than the proportion of the features from the
FBN in the classification between SZ patients and NCs.

Results of Classification Between First-Episode
Drug-Naive SZ and Chronic SZ Patients
When discriminating FESZ from CSZ patients, the SVM classifier
with the input features of the properties of GMN and WMN
achieved the highest performance with an accuracy of 86.2%
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FIGURE 2 | Definition of eight functional networks using a 268-node functional atlas. The figure was generated by using the toolbox BrainNet Viewer
(http://www.nitrc.org/projects/bnv/).

TABLE 1 | Demographic and clinical characteristics.

FESZ patients CSZ patients NC Statistic value p value

Sex (F:M) 41:20 54:25 110:95 χ2
= 3.53 0.03

Age (years) 32.08 ± 7.42 33.21 ± 8.37 32.52 ± 8.40 F = 5.39 <0.05a,b

Education (years) 10.39 ± 3.25 11.97 ± 3.22 12.84 ± 2.83 F = 21.33 <0.05a,b

PANSS-PScore 24.02 ± 4.50 22.47 ± 5.70 – T = 1.74 0.083

PANSS-NScore 21.64 ± 7.70 23.22 ± 7.29 – T = –1.24 0.218

PANSS-GScore 40.31 ± 8.85 39.54 ± 10.18 – T = 0.47 0.641

PANSS-TScore 85.97 ± 17.49 85.23 ± 19.44 – T = 0.23 0.816

Values are represented as the mean ± standard deviation (SD). The comparisons of age and education among the three groups (FESZ, NC, and CSZ) were performed
using a separate one-way ANOVA. Post hoc pairwise comparisons were then performed using a two-sample t-test. Statistical significance was set at p < 0.05. For the
sex distribution among the three groups, the p value was obtained using the χ2 test.
aPost hoc paired comparisons showed significant group differences between CSZ vs. NC.
bPost hoc paired comparisons showed significant group differences between FESZ vs. NC.
CSZ, chronic schizophrenia; F, female; FESZ, first-episode drug-naive schizophrenia; GScore, general score; M, male; NC, normal control; NScore, negative syndrome
score; PANSS, Positive and Negative Syndrome Scale; PScore, positive syndrome score; TScore, total syndrome score.

and AUC of 92.3% (p < 0.05), as shown in Figure 5 and
Supplementary Table 2.

We chose the top 5% of features ranked by the weights based
on the best classification combination (Supplementary Table 4).
We found that the ROIs from the GMN were distributed in the
subcortical/cerebellum network, frontoparietal network, visual
association network, motor network, medial frontal network,
visual I network, and visual II network. The ROIs from the
WMN were distributed in the subcortical/cerebellum network,
frontoparietal network, motor network, visual II network, default
mode network, visual I network, visual association network, and
medial frontal network (Figure 6).

Overall, the ROIs were mainly distributed in the
subcortical/cerebellum network (31.25%), frontoparietal

network (13.75%) and motor network (15%), and the proportion
of the features from the WMN was greater than the proportion
of the features from the GMN in the discrimination FESZ
from CSZ patients.

DISCUSSION

In this study, for the first time, we discriminated SZ patients
at different clinical stages using the complex network
properties of the GMN, WMN, and FBN. Our main findings
were as follows: (1) the SVM algorithm achieved the best
performance compared to the other four ML algorithms in
both classifications (SZ vs. NC and FESZ vs. CSZ); (2) the
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FIGURE 3 | Accuracy values of the classifications between SZ patients and NCs based on five ML methods. ∗The star indicates the highest values of best
performance of the classifications between SZ patients and NCs.

FIGURE 4 | Subnetwork distribution of ROIs from the FBN and GMN in the best classification between SZ patients and NCs.

classifier with the input features of GMN and FBN achieved
the highest performance in the classification between SZ
patients and NCs; the classifier with the input properties
of GMN and WMN achieved the highest performance in

the classification between FESZ and CSZ patients; and (3)
the features of ROIs in both subcortical/cerebellum and
frontoparietal networks showed significant importance in both
classifications.
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FIGURE 5 | Accuracy values of the classifications between FESZ and CSZ patients based on five ML methods. ∗The star indicates the highest values of best
performance of the classifications between FESZ and CSZ patients.

FIGURE 6 | Subnetwork distribution of ROIs from the GMN and WMN in the best classification between FESZ and CSZ patients.

The SVM algorithm, which determines a hyperplane that
optimally distinguishes samples into two groups, has been widely
used due to its reliable performance (Ding et al., 2015). In
this study, our results indicated that the SVM achieved the
best performance compared to the other four ML methods
(including RF, LR, LDA, and KNN) in both classifications, which

is consistent with previous studies of SZ (Chin et al., 2018;
Rampisela and Rustam, 2018). A previous study discriminated
SZ patients from NCs by analyzing multimodal brain imaging
data with an SVM classifier and achieved good classification
performance with a 91% accuracy and 100% prediction rate
(Sui et al., 2014). Greenstein et al. (2012) applied the RF
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method to discriminate SZ patients from NCs using 74
anatomic brain MRI subregions and achieved 73.7% accuracy.
Winterburn et al. (2019) performed a critical appraisal of the
accuracy of ML methodologies used in SZ patient and NC
classifications by comparing three ML methods (including SVM,
LR, and LDA), and the highest accuracy achieved was 73.5%
using SVM. Similarly, Li et al. (2015) evaluated the classification
performance of four classification methods (including LDA,
KNN, SVM, and Gaussian process classifier) on SZ diagnosis
and obtained a maximum accuracy of 85.83% using the
SVM. A recent study reviewed five traditional ML algorithms
(including SVM, RF, KNN, gradient boosting machine and naive
Bayes) frequently used for mental health and indicated that
the advantage of SVM was working relatively accurately in
general in practice (Cho et al., 2019). Our results confirmed the
effectiveness of the SVM algorithm on SZ classification with the
features of structural and functional brain networks derived from
multimodal MRI data.

The classifier with the input features of the combination
of the nodal properties of both GMN and FBN achieved
the best performance (accuracy of 81.2%) compared to the
classifiers using the input features of a single brain network when
discriminating SZ from NC. Considerable evidence indicates
that SZ is associated with structural as well as functional brain
abnormalities (Oh et al., 2017; Li et al., 2020). A recent study
revealed that the use of combined structural and functional
measures allows the highest accuracy of classification to detect
SZ (Lei D. et al., 2020). However, the input features of
previous SZ classification studies were derived from structural
and functional neuroimaging features (de Filippis et al., 2019;
Shi et al., 2021). Our results based on brain network properties
further highlight the potential advantages of multimodal features
for distinguishing SZ patients from NCs.

Importantly, we also found that the classifier using the nodal
properties of both the GMN and WMN achieved the best
performance (accuracy of 86.2%) when discriminating FESZ
from CSZ. The WMN from DTI data played a key role in
predicting individuals with FESZ, which is consistent with
previous studies (Lee et al., 2013; Samartzis et al., 2014). Friedman
et al. (2008) indicated that fractional anisotropy of the white
matter in the forceps minor or the genu of the corpus callosum
showed striking differences between FESZ and CSZ patients
based on DTI findings. White matter abnormalities in SZ as
estimated by DTI appear to be present in the early stage of
the disorder, most likely reflecting the developmental stage
(Kyriakopoulos and Frangou, 2009; Liang et al., 2019). The main
objective of our study is to analyze the importance of complex
brain networks derived from multi-modal MRI data in the
classification of SZ patients at different clinical stages. Our results
showed that GMN and FBN played a more important role in
discriminating SZ from NCs, whereas GMN and WMN played a
more important role in discriminating FESZ from CSZ. Together,
these findings may provide new insights into the neuropathology
of SZ at various clinical stages.

In this study, our results demonstrated that the ROIs in
the subcortical/cerebellar network and frontoparietal network
showed significant importance in SZ classification. A large
number of previous studies have indicated that SZ patients

showed significantly altered brain connectivity involved in the
frontoparietal network, cerebellum network and visual network
(Wang et al., 2018; de Filippis et al., 2019). Interestingly,
the frontoparietal network and the cerebellum network are
among the most commonly implicated networks in SZ patients
(Watanabe et al., 2014). The frontoparietal network, which has
multiple important hubs in the prefrontal cortex, is involved in
executive processing and cognitive control and has been shown
to exhibit abnormal activation and connectivity in SZ patients
(Minzenberg et al., 2009; Cole et al., 2013; Tu et al., 2013). The
cerebellum network, which is featured in the influential ‘cognitive
dysmetria’ hypothesis of SZ patients (Andreasen et al., 1998), has
been found to be the most important network in the functional
connectivity of SZ patients according to the extended maximal
information coefficient (Su et al., 2013). Moreover, previous
studies based on deep learning algorithms have discovered
that cortical-striatal-cerebellar functional connectivity features
exhibit great weights in the classification of SZ (Zeng et al.,
2018; Qureshi et al., 2019). We also found that the ROIs in
these two networks showed key importance in discriminating
FESZ and CSZ patients. A meta-analysis of 25 articles based
on cerebellar structural and functional abnormalities in FESZ
patients hypothesized that the changes in both structural and
functional aspects might reflect a common pathophysiology of
the cerebellum in SZ patients (Ding et al., 2019). Lui et al.
(2010) reported that 6 weeks of antipsychotic treatment increased
brain synchronous activity in the frontal and parietal regions
in FESZ patients, which might contribute to the importance
of the frontoparietal network in discriminating FESZ and CSZ
patients. In addition, the ROIs in the motor network also showed
significant importance in discriminating FESZ patients from CSZ
patients but not in SZ patients from NCs. It was reported that
the functional connectivity in the sensory-motor network could
reflect the hypothesized “neurotoxic effect” of FESZ patients
(Zhang et al., 2019), demonstrating that the motor network
deserves more attention in the search for neuroimaging markers
for evaluating neural impairment in SZ.

Interestingly, we found that the BC of network topological
features has more importance than DC and NE to the classifier
for both contrast groups. The BC is a ratio of the number
of all shortest paths between any two nodes in the network
that travel through an index node, providing an indication
of how topologically central the role of node is in overall
network communication (van den Heuvel and Fornito, 2014).
Previous brain network studies have indicated that BC in some
brain regions is decreased (van den Heuvel and Hulshoff Pol,
2010; Zhang et al., 2012). Our study may further confirm
the importance of the BC of network topological features
in identifying SZ.

LIMITATIONS OF THE METHODOLOGY

Possible study limitations should be considered. First, only
three nodal features (BC, DC, and NC) were combined in the
present study. Additional network measures, such as clustering
coefficient, path length and global efficiency, can be used and
may improve classification performance. Second, we compared
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the performance of five ML methods using only RFE as
the dimensionality reduction algorithm. Previous studies of
SZ patients have shown different classification performances
using different dimensionality reduction algorithms (Li
et al., 2015; Winterburn et al., 2019). Third, we have used
different brain atlases in the discriminative analysis of SZ
patients based on neuroimaging features and revealed that
the 268-node functional atlas outperformed the other two
brain atlases (Zang et al., 2021). However, it is necessary
to compare the effects among different combinations of
dimensionality reduction algorithms and brain atlases from
the perspective of brain network properties in future studies.
Fourth, the classification performance did not always benefit
from more modalities in either classification. Previous studies
have also shown that including more features does not
necessarily yield positive effects due to feature redundancy.
However, a recent study proposed a safe classifier that could
address this issue to some extent (Hou et al., 2019). It is
important to study whether safe classification would affect the
discriminative results based on multimodal brain networks
in future studies.

CONCLUSION

We constructed GMNs, WMNs and FBNs from sMRI, DTI and
fMRI data, respectively and then discriminated SZ patients at
different clinical stages using different combinations of nodal
properties based on five ML methods. Our results indicated the
best performance of the SVM algorithm in SZ classifications
and highlighted the potential advantages of multimodal network
properties in identifying SZ patients at different stages.
Furthermore, the ROIs in the subcortical/cerebellum network
and frontoparietal network showed significant importance in
both classifications (NC vs. SZ, FESZ vs. CSZ). Our findings may
bring new insights into the understanding of the neuropathology
of SZ from the perspective of network properties.
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