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Introduction

The phenomenon of senescence is a ubiquitous character-
istic of the biological world. From an ontogenetic perspec-
tive, biologists consider senescence as an evolutionarily 
acquired and genetically programmed developmental pro-
cess. The most prominently studied senescence process in 
plants is leaf senescence (Woo et al. 2013). Regulation of 
leaf senescence involves multiple layers of control, includ-
ing hormonal cues among which ethylene features promi-
nently. Numerous studies have also linked polyamines 
(PAs) to the regulation of plant cell senescence. The main 
PAs in plants include putrescine (Put), spermidine (Spd), 
spermine (Spm), and thermo-Spm (t-Spm). PAs have been 
implicated in the prolonged survival of excised organs or 
senescing organs in vivo, namely, leaves, flowers, and fruits 
(reviewed in Cai et al. 2015). However, there are contradic-
tions about whether PA levels increase or decrease during 
senescence (Cai et  al. 2015). Many studies have focused 
on the involvement of PA in plant senescence, using exog-
enous application of pharmacological doses or by genetic 
means to overproduce PAs (Cohen et  al. 1979; Mizrahi 
et  al. 1989; Besford et  al. 1993; Legocka and Zajchert 
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1999; Mehta et  al. 2002; Mattoo et  al. 2006; Mattoo and 
Handa 2008; Nambeesan et  al. 2010; Serafini-Fracassini 
et  al. 2010). In addition, quantification of free PAs in tis-
sue extracts has provided a “snapshot” picture of their 
levels during a continuously changing environment, since 
intra-cellular levels of PAs reflect the balance of their syn-
thesis, catabolism, attachment to other molecules, or trans-
port (Kusano and Suzuki 2015). It is now known that PA 
metabolism during senescence is linked to many intra-cel-
lular metabolic pathways, including signalling molecules 
and metabolites associated with cellular response to envi-
ronmental changes. In brief, the findings indicate that the 
internal PA pool undergoes regulation in senescing leaves. 
More information is becoming available on how PA metab-
olism is linked to physiological changes that ultimately 
lead to cell death and the nature of changes in the level 
of the free, conjugated or bound form of PAs. Processes 
interlinked with the increase or decrease in PA titer during 
senescence and the ability of plants to control senescence 
in relation to their capacity to metabolize PAs are slowly 
being unearthed (Sobieszczuk-Nowicka et  al. 2015, 2016; 
Sequera-Mutiozabal et  al. 2016). Recent studies on leaf 
senescence in a monocotyledonous crop plant, barley, dem-
onstrate an important issue in relation to the crop yield and 
impact on sustainability of agricultural crops.

Polyamines in leaf senescence: early history

Leaf senescence involves three phases: initiation, degra-
dation, and termination. The initiation phase starts with 
changes in the gene expression profiles, particularly in 
genes encoding proteins for chlorophyll degradation. Leaf 
yellowing is one of the first visible morphological symp-
toms of senescence. Other important changes within the 
senescing leaf cells are ultra-structural modifications, 
including decay of the cytoskeleton, fragmentation of the 
endoplasmic reticulum, degradation of ribosomes, and 
structural changes within chloroplasts (Thomas et  al. 
2003).

That PAs may be important for controlling the leaf 
senescence process in barley became apparent when a 
decrease in the endogenous levels of free PAs in senesc-
ing chloroplasts was observed (reviewed in: Sobieszczuk-
Nowicka and Legocka 2014). Polyamines are multi-func-
tional, ubiquitous polycationic compounds involved in 
many physiological and developmental processes, as well 
as stress tolerance, with much research focused mostly on 
Put, Spd, and Spm plus a recent addition in thermo-Spm 
(Mattoo and Handa 2008; Takahashi and Kakehi 2010; 
Kusano and Suzuki 2015). The involvement of PAs in the 
prevention of senescence was heralded by early research 
in the laboratory of Arthur Galston at Yale University, 
studies that utilized pharmacological doses of PAs and 

indicated increased protoplast viability, delay in senes-
cence, decrease in ribonuclease activity, induction of DNA 
synthesis, and mitosis in plant protoplasts (Galston et  al. 
1978; Kaur-Sawhney et  al. 1978). The effects of exog-
enously applied PAs became a common feature there-
after (Cohen et  al.1979; Apelbaum et  al. 1981; Mizrahi 
et al.1989; Besford et al. 1993; Legocka and Zajchert 1999; 
Serafini-Fracassini et  al. 2010). In particular, PAs were 
shown to delay senescence in oat and Petunia leaves, and 
PAs were found strongly bound to high-molecular weight 
proteins (Mizrahi et  al. 1989). In oat leaves exposed to 
osmotic stress, the exogenously applied Put caused chloro-
phyll degradation and rapid senescence concomitant with 
Put accumulation. However, exogenous addition of Spd or 
Spm inhibited protein degradation, chlorophyll loss, and 
stabilized thylakoid proteins, such as D1, D2, cytochrome 
f, and large subunit of carbon fixing enzyme ribulose-
bisphosphate carboxylase/oxygenase (Rubisco) enzyme 
(Besford et  al. 1993; Legocka and Zajchert 1999). Treat-
ment of excised leaves of barley senescing in darkness 
with Spd led to inhibition of RNase activity, chlorophyll 
degradation, and LHCII protein degradation (Legocka and 
Zajchert 1999), while applied Spm caused a delay in chlo-
rophyll b degradation and of some plastid proteins, while 
an increase in Ca2+-dependent transglutaminases (TGases, 
E.C. 2.3.2.13) activity was apparent (Serafini-Fracassini 
et  al. 2010). TGases catalyze post-translational modifica-
tion of proteins by establishing covalent linkage of ε-(γ-
glutamyl) moeity on PAs (Serafini-Fracassini and Del 
Duca 2008). Spm treatment of senescing Lactuca leaves in 
planta had similar effects and TGase activity was reacti-
vated (Serafini-Fracassini et al. 2010).

In development-related and dark-induced Avena sativa 
L. senescing leaves, arginine decarboxylase (ADC, EC 
4.1.1.19) activity decreased progressively, while ornithine 
decarboxylase (ODC, EC 4.1.1.17) activity was high and 
constant in aging leaves but decreased in those kept in the 
dark (Kaur-Sawhney et al. 1982). S-adenosyl-l-methionine 
decarboxylase (SAMDC, EC 4.1.1.50) activity was not cor-
related with age or senescence. Put, diaminopropane (Dap), 
agmatine, and Spm levels were high in young leaves and 
declined with age. The best single indicator of leaf senes-
cence was Spm, which decreased in excised leaves incu-
bated in the dark (Kaur-Sawhney et al. 1982).

Polyamines in leaf senescence: recent studies

PA biosynthesis, catabolism, conjugation, interconver-
sion, and transport contribute to PA homeostasis (Moschou 
and Roubelakis-Angelakis 2013). PA titer in plant cells is 
highly regulated (Cogen 1998; Moschou et al. 2008; 2012; 
Angelini et  al. 2010; Moschou and Roubelakis-Angelakis 
2013; and references therein). Transformations between 
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individual PAs may essentially contribute to darkness-
induced responses, and this was highlighted in barley leaf 
senescence (Sobieszczuk-Nowicka et al. 2016). The ques-
tion arises: “Is the increase in free PA titer at the beginning 
of senescence a part of a signalling mechanism that leads 
the cell to its death.” PA accumulation upon senescence is 
linked to up-regulation of PA biosynthesis gene and conse-
quently to increase in the corresponding enzymatic activi-
ties. Senescence is sensitive to hormonal perturbation, 
particularly to cytokinins (Lim et al. 2007). Kinetin (KIN) 
treatment delays PA accumulation and it has been implied 
that some senescence-related signals blocked by KIN influ-
ence PA synthesis (Sobieszczuk-Nowicka et  al. 2016). It 
remains to be established if PA accumulation induced at the 
beginning of the senescence process has any reactive oxy-
gen species-scavenging (ROS) function (Radyukina et  al. 
2009; Legocka et al. 2015).

Transcript levels and corresponding activation of PA 
catabolic enzymes, DAO and PAO, increase during dark-
induced senescence, and are therefore considered important 
components of senescence-related mechanisms (Ioannidis 
et  al. 2014; Sobieszczuk-Nowicka et  al. 2016). Inhibiting 
PAO activity drastically slowed down the accumulation of 
both Dap and Put, while the levels of Spd and Spm were 
substantially increased. This is expected but, remark-
ably, this also resulted in slowing down the senescence-
associated chlorophyll loss. Furthermore, inhibition of 
PAO activity led to decreased H2O2 levels, suggesting that 
PAO-mediated catabolism of Spd and/or Spm supports 
dark-induced senescence. In this regard, Arabidopsis PA 
back-conversion oxidase mutants, in which conversion of 
Spm to Spd and/or Spd to Put does not occur, have delayed 
entry into dark-induced senescence (Sequera-Mutiozabal 
et  al. 2016). Delayed dark-induced senescence in mutants 
is associated with higher Spm level and lower Spd/Spm 
ratio (Sequera-Mutiozabal et  al. 2016). AtPAO4, a mem-
ber of the five Arabidopsis PAO gene family, has high 
affinity for Spm oxidation, transforming Spm into Spd 
via back-conversion, but not Spd into Put (Takahashi et al. 
2004; Kamada-Nobusada et al. 2008; Fincato et al. 2012). 
Delayed leaf senescence is associated with higher Spm 
level, reduced ROS production, and increased nitric oxide 
(NO) levels. A synthesis of these data suggests that Spm 
is a ‘signalling’ metabolite, providing protection against 
stress through metabolic conversions that involve ascor-
bate/dehydro-ascorbate redox state modifications, changes 
in sugar and nitrogen metabolism, cross-talk with ethylene 
biosynthesis, and mitochondrial electron transport chain 
modulation (Sequera-Mutiozabal et al. 2016). Thus, meta-
bolic interactions between PAs, particularly Spm, occur 
with cell oxidative balance and transport/biosynthesis of 
amino acids, likely a strategy to cope with oxidative dam-
age during senescence.

Plant responses to environmental factors involve the 
secretion of Spd to the apoplast, where their catabolism 
leads to H2O2 production as is known in hypersensitive 
plant response. Dependent upon the amount of H2O2, the 
defence response or cell death program is initiated (Yoda 
et al. 2003, 2006, Marina et al. 2008; Moschou et al. 2008). 
Interestingly, in this regard, high Sdp and Spm pool were 
found in the apoplast during dark-induced leaf senescence. 
This resulted in gradual accumulation of apoplastic Dap 
and H2O2 (Sobieszczuk-Nowicka et  al. 2016). The initial 
amount of Put in the apoplastic pool of PAs is one order of 
magnitude lower and increases only slightly during senes-
cence. However, Put dominates in the free PA fraction, 
initially accumulating to high levels before decreasing. It 
is noted here that the decrease in free Put is accompanied 
by the formation of Put conjugates that accumulate in the 
senescing leaf to high levels, indicating that the Put-conju-
gating enzymes are active in the senescing cell (Sobieszc-
zuk-Nowicka et  al. 2016). Senescence-dependent remobi-
lized nitrogen (N) and carbon (C) flow may contribute to 
PA conjugation, since the expression of respective protein 
coding genes also increases (Sobieszczuk-Nowicka et  al. 
2016). That PAs are sensed by plant cells as organic-N and 
stimulate turnover of N molecules has been previously dis-
cussed (Mattoo et al. 2006, 2010).

Another interesting facet is the involvement of a DAO-
mediated Put oxidation process in γ-aminobutyric acid 
(GABA) production. Microarray-based profiling of gluta-
mate decarboxylase gene expression suggested that in dark-
induced senescing leaves GABA synthesis from glutamate 
is gradually suppressed (Sobieszczuk-Nowicka et al. 2016). 
Put oxidation could contribute to the alternative source of 
GABA and possibly other signalling pathways. Blocking 
Put oxidation pathway accelerated chlorophyll degradation, 
as was demonstrated from Chl a fluorescence parameters 
and plant N status. Important to note is that simultaneous 
addition of exogenous GABA together with a DAO inhibi-
tor is sufficient to prevent accelerated degradation of chlo-
roplast photosystem complexes (Sobieszczuk-Nowicka 
et  al. 2016). Together, these results highlight a central 
role for GABA signalling in senescing organ and favour 
the conclusion that Put can act as a key precursor of this 
neurotransmitter.

Hormonal regulation of plant senescence involves the 
hormone ethylene (Fluhr and Mattoo 1996; Woo et  al. 
2013). In this regard, PAs seem to be anti-senescence reg-
ulators by inhibiting ethylene, and, conversely, ethylene 
inhibits the biosynthesis of polyamines (Fluhr and Mattoo 
1996; Cassol and Mattoo 2003; Nambeesan et  al. 2010; 
Harpaz-Saad et al. 2012; Anwar et al. 2015). A possibility 
of temporal relationship between PAs and ethylene during 
plant development has been previously presented, wherein 
competition for SAM, which is an early precursor for both 



52 E. Sobieszczuk-Nowicka

1 3

PAs and ethylene, has been discussed (Fluhr and Mattoo 
1996; Cassol and Mattoo 2003; Harpaz-Saad et al. 2012). 
In addition, the fact that biosynthesis of PAs and ethylene 
can co-exist simultaneously first presented with studies on 
tomato fruit (Mehta et al. 2002) was corroborated in dark-
induced leaf senescence phenomenon in barley (Sobieszc-
zuk-Nowicka et al. 2016).

Physiological and structural changes in chloroplasts 
of barley leaves during dark-induced senescence are 

associated with PA conjugation, modification of chloro-
plast proteins, and modulation of chloroplast-localized 
transglutaminases (ChlTGases). Thus, in  situ localiza-
tion and changes in the ChlTGase activity during dark-
induced senescence mirror increase in the level of plastid 
membrane-bound Put and Spd (Sobieszczuk-Nowicka et al. 
2009, 2015).

ChlTGase catalyzes binding of [3H]Put and [3H]Spd to 
photosystem proteins (Sobieszczuk-Nowicka et  al. 2015). 
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Substrates of ChlTGases in mature leaves include apo-
proteins of the chlorophyll a/b antenna complex, LHCII, 
ATP synthase, and pSbS (photosystem II 22 kDa protein), 
known proteins that are essential in energy-dependent 
quenching and increased thermal dissipation of excessively 
absorbed light energy in the photosystems (Del Duca et al. 
1994; Dondini et  al. 2003; Della Mea et  al. 2004a; Cam-
pos et al. 2010). Several stress-responsive proteins detected 
in the polyamine-bound fraction only after dark-induced 
senescence include the antioxidant enzyme peroxiredoxin, 
heat shock protein, ent-copalyldiphosphate synthase, and 
IAA-amino acid hydrolase (Wang et  al. 2004; Van der 
Graaff et  al. 2006; Noushina et  al. 2011; Cejudo et  al. 
2012). That PAs in concert with TGases are functionally 
involved in the dark-induced leaf senescence that is sup-
ported by proteomic analysis and TGase activity/transcript 
modulation (Sobieszczuk-Nowicka et al. 2009, 2015). The 
most studied plant gene coding for a protein with TGase 
activity is Arabidopsis AtPng1p. AtPng1p is constitutively 
expressed at low levels in all plant organs during various 
stages of development and under various light conditions 

(Della Mea et  al. 2004b). Similar expression pattern was 
found for the HvPng1-like homolog in barley. However, 
HvPng1-like transcripts actually increased as soon as 
senescence was induced in the dark being concomitant 
with cell structure disintegration initiation (Sobieszczuk-
Nowicka et al. 2015).

The knowledge of the participation of PAs in leaf senes-
cence is still very fragmentary. Results reported here shed 
some light on the problem, in particular on leaf senescence 
in an important crop. These insights allow the development 
of a frame work that would provide more detailed obser-
vations into induced senescence and its biotechnological 
applications, and would stimulate new, important questions 
about the function of PAs in the process. A model depicting 
PAs function in dark-induced senescence is summarized in 
Fig. 1.

Conclusions

The development of high yielding and nutritious crops has 
become a central challenge of this century. The impact of 
induced senescence provides a window on senescence-
related crop yield and quality. The demand is to limit pre- 
and post-harvest losses which are estimated to be close to or 
>30%. Significant advances have been made in our under-
standing of leaf senescence syndrome and its underlying reg-
ulation (Schipper et al. 2015 and references therein). In addi-
tion, a theoretical model (senescence window concept, Jing 
et al. 2002) has emerged with a scenario of how the capac-
ity to senescence is established during leaf development and 
how internal and external factors are integrated with age 
to define the timing of senescence. It is extremely difficult 
to uncouple senescence regulatory pathways from stress 
responses, since the genetic program(s) underlying senes-
cence largely overlaps with that of plant defence (reviewed 
in Schipper et al. 2015). Therefore, altering one senescence 
parameter might also reduce the plant tolerance to stress.

Metabolism of PAs, mainly the catabolism of Spd and 
Spm by PAOs, has been proposed to promote senescence 
and PCD in leaves through production of H2O2 and ensuing 
oxidative stress. Senescence initiated in leaves due to long 
duration in the dark modulate PA levels through changes in 
gene expression as well as the activities of the correspond-
ing enzymes involved in PA metabolism (Sobieszczuk-
Nowicka et al. 2016) (Fig. 1). Clearly, PAs and plant senes-
cence cross the paths (Del Duca et al. 2014 and references 
therein; Ioannidis et al. 2014; Cai et al. 2015 and references 
therein; Sequera-Mutiozabal et  al. 2016; Sobieszczuk-
Nowicka et al. 2015, 2016). However, conclusive evidence 
in favour of this link in normal plant senescence has yet to 
be established. Physiological functions of PAs in senescence 
need to be gradually clarified at the molecular level. Studies 

Fig. 1   Polyamines and dark-induced barley leaf senescence. Poly-
amine (PA) metabolism is linked to many metabolic pathways in the 
cell among others by being involved in the formation of signalling 
molecules and metabolites directly related to the cellular response to 
senescence, namely, ethylene, γ-aminobutyric acid (GABA), tricar-
boxylic acid cycle (TCA) metabolites, urea cycle metabolites, amino 
acids (glutamine, glutamate), arginine, ornithine, hydrogen peroxide 
(H2O2), nitric oxide (NO), and translation factor (eIF5a precursor). 
At the beginning of the dark-induced senescence process, a rapid 
increase in the level of free putrescine (Put), spermidine (Spd), and 
spermine (Spm) is observed, due likely to simultaneous up-regulation 
of a set of genes involved in PA biosynthesis and an increase in enzy-
matic activity of the proteins they encode. This effect is accompanied 
by the formation of Put conjugates that accumulate to high levels 
in the senescing leaf. Senescence-dependent nitrogen and carbon 
flow might be shifted toward PA conjugation. At the later stages of 
the process, the levels of PAs begin to drop and are preceded by an 
increase in transcript levels and activity of the PA catabolic enzymes. 
Diamine oxidase-mediated Put oxidation is GABA production. Put 
oxidation is an alternative source of GABA to TCA and possibly 
for some signalling pathways. Furthermore, PA catabolism through 
senescence is expressed as Spd and Spm production and their trans-
port into the apoplast, where they produce H2O2 and diaminopropane 
(Dap), both of which can participate in senescence-dependent degra-
dation processes. Dark-induced leaf senescence also corresponds to 
a wide contribution of PAs to dark-induced senescence-associated 
responses within chloroplast, where PAs can be transported or syn-
thesized de novo. Identification of post-translational modification of 
plastid proteins by PAs (PA-conjugated proteins) via transglutami-
nases (TGases) during senescence suggests that PAs contribute to 
senescence-related stress response, inhibition of photosynthesis and 
cell death, chloroplast-to-gerontoplast conversion, and cellular disin-
tegration. ADC arginine decarboxylase, AIH agmatine iminohydro-
lase, CPA N-carbamoylputrescine amidohydrolase, ODC ornithine 
decarboxylase, SAM S-adenosylmethionine, SAMS SAM synthetase, 
SAMDC SAM decarboxylase, SPDS spermidine synthase, SPMS 
spermine synthase, PAO polyamine oxidase, PAObc back-conversion 
polyamine oxidase, DAO diamine oxidase

◂
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using Escherichia coli strongly suggest that polyamine 
effect on cell viability mainly occurs at the level of trans-
lation through interaction with RNA (Igarashi and Kashi-
wagi 2010). In animals, it was recently found that four kinds 
of genes are members of the polyamine modulon: genes 
encoding proteins, whose synthesis is enhanced by PAs at 
the level of translation (reviewed in Igarashi et al. 2015). In 
addition, eukaryotic initiation factor 5A (eIF5A) contains 
hypusine, which is a modified lysine with the addition of the 
4-aminobutyl moeity from Spd, that is known to regulate 
protein translation (Park et al. 2010). These findings support 
the idea that in plant senescence, PAs may regulate the pro-
cess through regulation of protein synthesis.

Finally, SAM is a precursor for the biosynthetic path-
ways of both PAs and the leaf senescence promoter eth-
ylene. Being a major substrate in 1-C metabolism and 
involved in methylation processes, SAM diverted to PAs 
and/or ethylene during leaf senescence needs to be assessed 
metabolically, as has been described recently in the tomato 
system (Lasanajak et al. 2014). Regulation of SAM levels in 
mammalian cells was found regulated involving post-trans-
lational inhibition of glycine N-methyltransferase by folate 
(Luka et  al., 2009). How plant cells regulate SAM levels 
during plant senescence is an important avenue to explore.
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