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Summary: Cofilin is an actin-binding protein that depolymerizes
and/or severs actin filaments. This dual function of cofilin makes it
one of the major regulators of actin dynamics important for T-cell acti-
vation and migration. The activity of cofilin is spatio-temporally regu-
lated. Its main control mechanisms comprise a molecular toolbox of
phospho-, phospholipid, and redox regulation. Phosphorylated cofilin
is inactive and represents the dominant cofilin fraction in the cytoplasm
of resting human T cells. A fraction of dephosphorylated cofilin is kept
inactive at the plasma membrane by binding to phosphatidylinositol
4,5-bisphosphate. Costimulation via the T-cell receptor/CD3 complex
(signal 1) together with accessory receptors (signal 2) or triggering
through the chemokine SDF1a (stromal cell-derived factor 1a) induce
Ras-dependent dephosphorylation of cofilin, which is important for
immune synapse formation, T-cell activation, and T-cell migration.
Recently, it became evident that cofilin is also highly sensitive for
microenvironmental changes, particularly for alterations in the redox
milieu. Cofilin is inactivated by oxidation, provoking T-cell hypore-
sponsiveness or necrotic-like programmed cell death. In contrast, in a
reducing environment, even phosphatidylinositol 4,5-bisphosphate
-bound cofilin becomes active, leading to actin dynamics in the vicinity
of the plasma membrane. In addition to the well-established three
signals for T-cell activation, this microenvironmental control of cofilin
delivers a modulating signal for T-cell-dependent immune reactions.
This fourth modulating signal highly impacts both initial T-cell
activation and the effector phase of T-cell-mediated immune responses.

Keywords: costimulation, T-cell activation, immune synapse, microenvironment,
redox, actin cytoskeleton

Introduction

T cells migrate through the body and communicate with

other hematopoietic or tissue-resident cells. In each new

environment, T cells must adapt to the prevalent micromi-

lieu, and their surface receptors have to interact with ligands

on other cells or the extracellular matrix. High flexibility of

the entire cell body is a prerequisite for T-cell-mediated

immune surveillance, including transition from the radially

symmetric shape of unstimulated cells within the blood

stream to bipolarly asymmetric cells during migration or

immune synapse formation of T cells with antigen-presenting
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cells (APCs) or target cells (1). The actin cytoskeleton plays a

central role for these shape changes. It provides a scaffold for

protein clustering and signal transduction and serves as an

engine that generates physical forces important for T-cell acti-

vation and migration (2–5). Thus, regulation of the actin

cytoskeleton is pivotal for T-cell functions. The functional rel-

evance of actin rearrangements is emphasized by the fact that

they belong to the major energy-consuming processes in

cells, and in nature, energy is seldom wasted (6, 7). This

review focuses on one essential protein that modulates the

actin cytoskeletal architecture: the actin-severing and

depolymerizing protein cofilin.

Regulation of actin dynamics by cofilin

The actin cytoskeleton is a meshwork composed of 42 kDa

globular units (G-actin) that can be reversibly polymerized

to polar filaments (F-actin). Several nucleation-promoting

factors, including the Wiskott-Aldrich syndrome protein

(WASP), the WASP family Verprolin-homologous protein 2,

and the hematopoietic lineage cell–specific protein 1, regu-

late the initiation of actin polymerization through activation

of the actin-related protein 2/3 complex (8–14) (Fig. 1).

The pronounced phenotype of patients suffering from

Wiskott-Aldrich syndrome and the knowledge about the

relevance of WASP for actin polymerization (15, 16)

focused immunological research initially on WASP and other

proteins important for actin polymerization, while actin-

remodeling events other than actin polymerization were

hardly considered for a long time. This changed during the

last decade, during which time the importance of dynamic

rearrangements of the actin cytoskeleton became evident

(reviewed in 5, 17, 18). It is now known that actin reorga-

nization is tightly controlled in a spatio-temporal fashion

during T-cell activation. Proteins that bind two actin fila-

ments, like L-plastin (19–24) or a-actinin (25–27), coordi-

nate the complex actin meshwork through their crosslinking

and bundling activity (Fig. 1). Crosslinking or bundling of

actin filaments causes an increase in cytoskeletal elasticity,

thereby stabilizing the cell shape as well as cellular interac-

tions. Notably, the actin cytoskeleton is not unidirectionally

polymerized and/or crosslinked. Instead, it undergoes

constant depolymerization/enhanced polymerization cycles

termed ‘actin dynamics’. These are mediated primarily by

cofilin (5, 28) (Fig. 1).

Cofilin is a 19 kDa protein that is ubiquitously expressed

in all mammalian cells. It contains an actin-depolymerizing

factor homology (ADF-H) domain, which enables

stoichiometric binding of cofilin to both G- and F-actin

(29) (Fig. 2). Binding of cofilin to F-actin is only weakly

influenced by temperature but is highly dependent on salt

concentration and pH value (30–32). Phosphorylation on

serine 3 inactivates cofilin (33–35) by generation of a

charge repulsion between cofilin and actin, which is thought

to occur without altering the protein structure (36). Cofilin

is evolutionarily highly conserved and belongs to the ADF/

cofilin family of actin-binding proteins. The family consists

of three isoforms: non-muscle cofilin [n-cofilin or cofilin-1

(CFL-1)], muscle-specific cofilin [m-cofilin or cofilin-2

(CFL-2)], and ADF (or destrin) (28). This review focuses

on cofilin-1, which is highly expressed in human T cells

(37).

Cofilin disassembles actin filaments by increasing the

off-rate of ADP-actin at the so-called minus-pole (or

pointed-end) of actin filaments. Thereby, cofilin depolymer-

izes F-actin on the one hand and frees ADP-actin, making it

available for recycling to ATP-actin on the other hand. In

addition, cofilin is able to sever F-actin, which shortens the

overall length of the remaining actin filaments (38). Despite

the fact that severing of F-actin into smaller pieces is one

mechanism of F-actin disassembly, it also multiplies the

number of actin filaments. Each of those F-actin fragments

is prone to grow by polymerization at the barbed-end,

which induces a net enhanced actin polymerization if the

barbed-ends are not covered by capping proteins (5, 38).

Notably, although actin rearrangements demand a high

supply of energy, mere actin severing by cofilin is indepen-

dent of energy addition, as for example generated by ATP

hydrolysis. This makes enhanced actin polymerization to an

energetically favorable molecular mechanism compared to de

novo actin nucleation (30). Whether cofilin activity results in

F-actin shrinking or enhanced polymerization depends on

the conditions and availability of G-actin in the specific area

within the cell (39–41) and is likely influenced by different

signaling cascades.

The dual function of cofilin, namely depolymerization

and severing, makes it a key molecule controlling actin

dynamics. Therefore, it is not surprising that cofilin expres-

sion is essential for cell survival. Cofilin knockout mice exhi-

bit an embryonic lethal phenotype (42), and cofilin null

mutants are also lethal in yeast (43). Due to this essential

role, cofilin needs to be tightly controlled. Both extrinsic

factors of the microenvironment and intrinsic signal trans-

duction events mediate this cofilin orchestration through

phospho-, phospholipid, and redox regulation of cofilin
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within human T cells (Fig. 2). The signal transduction

pathways and the microenvironmental elements regulating

cofilin are discussed below.

Cofilin activation induced by T-cell costimulation

Costimulation of human T cells leads to cofilin activation
through dephosphorylation

T cells recognize antigens bound to major histocompatibility

complex (MHC) molecules on APCs via their antigen-

specific TCR/CD3 complex. For induction of clonal growth

and development of full functionality, T cells require not

only the competence signal through TCR/CD3 triggering

but also costimulatory signals through accessory receptors

(e.g. CD2 or CD28). Absence of costimulation is one of the

mechanisms leading to clonal anergy and antigen-specific

tolerance (44–46).

In our studies of signaling processes specifically occurring

after stimulation of accessory receptors on untransformed

human peripheral blood T cells, we uncovered an important

role for cofilin (37, 47). Our initial experimental model

A

B

Fig. 1. Structures and regulation of the actin cytoskeleton. (A) F-actin was stained in COS-7 cells with phalloidin (AlexaFluor-488) and
acquired with structured-illumination microscopy (3D-SIM acquired in the SBIC-Nikon Imaging Centre at Biopolis, Heidelberg, Germany). The
most dynamic actin reorganization takes place at the migratory front, although actin dynamics are important throughout the whole cell. F-actin
bundling or crosslinking mediates elasticity. (B) Actin polymerization, dynamics, and elasticity. Key proteins for each step are depicted (reviewed
in 2, 5). Arp2/3, actin-related protein 2/3; NPFs, nucleation-promoting factors.
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was T-cell activation through the ‘alternative pathway’ (48,

49), where stimulation of human T cells with monoclonal

antibodies directed against two or three different epitopes of

the CD2 molecule is able to fully activate T cells, even in

the absence of antigen and APCs. While many signal trans-

duction mechanisms are similar in terms of whether T cells

are stimulated via the TCR/CD3-complex or via the ‘alterna-

tive pathway’ of T-cell activation, two-dimensional gel-

electrophoresis of cells loaded with radioactively labeled

orthophosphate showed that cofilin (which is constitutively

phosphorylated on serine 3 in the cytoplasm of resting

untransformed T cells) undergoes dephosphorylation follow-

ing CD2 stimulation but not following triggering of TCR/

CD3 alone (37, 47). The principal independence of this sig-

naling process from triggering of the TCR on the cell surface

was confirmed by use of a CD2+ human NK cell clone in

which cofilin likewise undergoes dephosphorylation follow-

ing CD2 stimulation (47).

Induction of cofilin dephosphorylation/activation through

the accessory receptor CD2 but not through TCR/CD3 alone

gave rise to the assumption that cofilin represents a mediator

of T-cell costimulation. Indeed, this dephosphorylation event

is observed if T-cell stimulation through TCR/CD3 is

accomplished by stimulation through the accessory receptors

CD2 or CD28 (50–52). Accordingly, in untransformed

human T cells, expression of the T-cell growth factor IL-2,

which represents a hallmark of T-cell activation after costi-

mulation, is drastically reduced, if the interaction of cofilin

with actin is blocked by cell-permeable cofilin peptide

homologues (53).

Similar to CD2 stimulation, an activation pathway via

CD28 (in the absence of TCR/CD3 triggering) has been

described. This pathway is inducible by ‘superagonistic’

CD28 antibodies (54). Note, however, that in contrast to

‘alternative pathway’ activation via sole stimulation of CD2,

dephosphorylation and activation of cofilin does not occur if

untransformed human T cells are activated through ‘super-

agonistic’ CD28 antibodies (52). The same holds true for

phosphorylation of the actin-bundling protein L-plastin,

another costimulation-related signaling event, which coordi-

nates receptor polarization upon T-cell costimulation

(19–21, 55). Intriguingly, while CD3/CD28 costimulation

induces polarized large receptor clusters (caps) in T cells,

crosslinking of ‘superagonistic’ CD28 antibodies provokes

only small receptor clusters that fail to coalesce at one pole

of the cell. Thus, ‘superagonistic’ CD28 stimulation does not

mimic T-cell costimulation. Instead it represents induction

of a cofilin and L-plastin independent state of ‘unpolarized’

T-cell activation (52).

Cofilin-dependent actin dynamics are crucial for the

maturation of the immune synapse

Upon antigen recognition, a specialized contact zone

between T cells and APCs is formed, in which these cells

communicate and transduce signals leading to T-cell activa-

tion, proliferation, and differentiation. Analogous to the

neuronal synapse, this contact zone is called immune syn-

apse (56). Actin dynamics in the immune synapse induce

radio symmetric forces from the edge inwards, and an orga-

nized receptor movement (as microclusters) in the immune

synapse is generated (57–60). During this immune synapse

maturation, surface receptors and cytoplasmic proteins are

segregated in supramolecular activation clusters (SMACs)

within the T-cell/APC contact zone. Three SMACs have been

described, which are named central SMAC (cSMAC), periph-

eral SMAC (pSMAC), and distal SMAC (dSMAC), according

to their relative localization in the cell interface (Fig. 3). The

cSMAC contains the TCR/CD3 complex, whereas the pSMAC

has a high content of lymphocyte function-associated anti-

gen 1 (LFA-1), and the dSMAC harbors receptors with large

extracellular domains like CD45 (reviewed in 1, 61). Nota-

bly, both costimulation and sustained actin dynamics are

important to build and maintain a mature immune synapse

(4, 17, 62–65). Upon antigen recognition, cofilin is

enriched concentrically at the periphery of the contact zone,

that is, the pSMAC and dSMAC (53, 66) (Fig. 3). Interaction

of cofilin with actin is crucial for receptor redistribution and

actin dynamics within this contact zone (53). Moreover, the

Fig. 2. Regulation sites of cofilin. Cofilin is a highly regulated protein. The figure displays a threefold regulation of cofilin: phospho-regulation
at serine 3, redox regulation at cysteine residues, and phospholipid regulation via PI(4,5)P2 binding.
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effects of cofilin for protein segregation at the immune

synapse are receptor specific. Thus, inhibition of cofilin by

cofilin-derived, cell-permeable peptides that interfere with

the binding of cofilin to actin reduces accumulation of the

costimulatory receptor CD2 at the pSMAC of the immune

synapse. However, enrichment of the TCR/CD3 complex in

the cSMAC remains unchanged (53). In conclusion, activa-

tion of the actin-remodeling protein cofilin represents a

long-sought molecular mechanism that links T-cell costimu-

lation to actin dynamics-dependent maturation of the

immune synapse (50, 53).

Nuclear functions of cofilin

In addition to its function in the cytoplasm, dephosphoryl-

ated cofilin has the ability to translocate into the nucleus.

Initially, cofilin was detected in intranuclear actin rods fol-

lowing treatment of the mouse fibroblast cell line C3H-ZK

with dimethylsulfoxide or following exposure of these cells

to heat shock (67). Note that ‘actin/cofilin rods’ do not

bind phalloidin. In 1994, we showed for the first time that

cofilin translocation into the nucleus succeeds triggering of

a cell surface receptor, namely CD2 stimulation of untrans-

formed human T cells (37). By use of single amino acid

point mutations, it could be shown that dephosphorylation

of cofilin on serine 3 is required to enable its nuclear trans-

location (35). Cofilin contains a nuclear localization

sequence (KKRKK) similar to the nuclear translocation signal

sequence of simian virus 40T antigen (68, 69) (Fig. 2). As

cofilin but not actin bears a nuclear localization signal,

cofilin acts as an actin transporter into the nucleus (70).

In malignant T-lymphoma cells, dephosphorylation of

cofilin as well as the nuclear translocation of cofilin together

with actin happens spontaneously (71). As shown by confo-

cal laser scanning microscopy following intracellular staining

of T-lymphoma cells with rabbit antisera against actin and

cofilin, both proteins colocalize within nuclei. Yet, actin/

cofilin rods do not occur. The serine phosphatase inhibitor

okadaic acid prevents dephosphorylation of cofilin and

nuclear translocation of cofilin and actin. Okadaic acid rep-

resents an inhibitor of the serine phosphatases PP1 (protein

phosphatase 1) and PP2A. These findings imply a role of

PP1 or PP2A in the spontaneous dephosphorylation of cofi-

lin in transformed cells. At the same time, okadaic acid

induced apoptosis of lymphoma cells (71). Considering the

fact that actin has the capability to inactivate DNase I (72),

an enzyme involved in apoptosis (73, 74), inhibition of the

actin import into the nucleus by prevention of cofilin

dephosphorylation may contribute to the apoptotic DNA

fragmentation observed following okadaic acid treatment.

Besides the potential anti-apoptotic function of cofilin, we

speculated that another function of cofilin may be the

enhancement of transcriptional processes (37). This conclu-

sion was based on findings that injection of actin antibodies

into oocyte nuclei drastically inhibited the transcriptional

activity of RNA polymerase II and led to changes in chro-

mosome morphology (75, 76). Later it was shown that in

mammalian cells actin plays an important role for the regu-

lation of different nuclear processes like transcription,

chromatin remodeling, and nucleocytoplasmic trafficking.

Importantly, it has been shown only recently in HeLa cells

that cofilin is indeed required for RNA polymerase II tran-

scription elongation (77–79). These potential functions of

intranuclear actin/cofilin complexes, enhancement of tran-

scription, and prevention of apoptosis, precisely represent

mechanisms that one would expect to occur upon malignant

transformation as well as following T-cell costimulation. In

conclusion, cofilin-mediated actin remodeling is not only a

central integrator of costimulation in the immune synapse

but rather may fulfill key functions also within the nucleus

by enhancing transcription and preventing apoptosis.

Signaling cascades involved in cofilin dephosphorylation

In response to costimulation, cofilin activation in untrans-

formed human T cells is initiated via a Ras-MEK/PI3K (Rat

Fig. 3. Cofilin is required for organized receptor clustering in the
immune synapse. Upper part: Contact zone between APCs and T cells.
Lower part: En face view of the bull’s-eye shaped organization of the
SMACs in the T-cell membrane. Cofilin localizes to the pSMAC and
dSMAC. Immune synapses have been comprehensively reviewed
(172–174).
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sarcoma-mitogen-activated protein kinase kinase/phospho-

inositide 3-kinase) signaling cascade (51). This was

concluded from the following findings: first, transient

expression of cDNA-encoded constitutively active Ras in T

cells results in dephosphorylation of cofilin. Second, dephos-

phorylation of cofilin after T-cell costimulation or expres-

sion of constitutively active Ras can be prevented by

inhibitors of MEK or PI3K. Final proof that the GTPase Ras

plays a central role in the regulation of cofilin dephosphory-

lation came from experiments where we showed that

expression of a dominant negative form of Ras in untrans-

formed human T cells prevents activation of PI3K and

dephosphorylation of cofilin after costimulation through

CD3/CD28. Initially, these findings were surprising, since

so far it was thought that PI3K is a substrate of Ras in all

cell types except T cells (80). Yet, in the cells that were

used in this study, namely the Jurkat T-lymphoma cell line,

the situation is indeed different from untransformed T cells.

In Jurkat cells, PKB (protein kinase B)/Akt phosphorylation

and cofilin dephosphorylation occur spontaneously in the

absence of Ras activation (51).

Also, in untransformed human T cells, dephosphorylation

of cofilin can be blocked by the serine phosphatase inhibitor

okadaic acid (47). Interestingly, both PP1 and PP2A were

found to associate with and to dephosphorylate cofilin (81).

In principle, the phosphorylation state of cofilin can be

influenced by at least two other serine phosphatases, namely

slingshot (82) and chronophin (83). Phosphorylation and

thereby inactivation of cofilin is mediated by LimKinase

(LimK) and testis-specific kinases (TES kinases) (reviewed in

84). The involvement of PP1 in cofilin regulation could

recently be confirmed by knockdown of PP1 in untrans-

formed human T cells (85). The contribution of the other

enzymes to the regulation of cofilin in untransformed T cells

remains to be analyzed in detail.

Implication of the Ras-cofilin pathway for T-cell anergy

prevention

Recognition of antigen without costimulatory signals induces

clonal anergy or apoptosis of T cells, a process enabling

peripheral tolerance (44–46, 86). Anergic T cells are tolerant

toward their antigen and do not execute effector functions.

Notably, they are not able to produce IL-2 in response to sec-

ondary antigen exposure. Due to the induction of anergy,

potential autoreactive T cells that escaped the selection for

central tolerance in the thymus and circulate within the blood

stream are not hazardous for the organism.

The molecular mechanisms for the induction of periph-

eral tolerance are not yet fully understood. There are several

lines of evidence that an altered regulation of the actin

cytoskeleton is involved in the induction or maintenance of

T-cell anergy (87, 88). As described above, cofilin dephos-

phorylation is part of a costimulatory signaling pathway and

may therefore link costimulation and anergy prevention via

its regulatory functions on actin dynamics. Like cofilin acti-

vation, full Ras activation is also a costimulation-dependent

event in primary human T cells (52) and in mouse T cells

(89). Thus, TCR/CD3 triggering alone provokes only a very

weak Ras activation, whereas upon costimulation via CD28,

a strong (synergistic) activation of Ras is induced. That Ras

is indeed important for anergy prevention was underlined

by the following findings: first, activation of Ras is blocked

in primary anergic T cells (90), and second, expression of

constitutively active Ras in once anergic T cells enables them

to produce IL-2 (91). Since costimulation-induced cofilin

dephosphorylation is mediated via Ras (51), it is tempting

to speculate that active Ras mediates T-cell anergy preven-

tion via cofilin activation, thereby leading to an increase in

actin dynamics. Consequently, blocking the Ras-cofilin path-

way in T cells may serve as a valuable means to enable

induction of antigen-specific anergy.

Chemokine-mediated activation of cofilin during

migration of T cells

The actin cytoskeleton fundamentally controls the stop-

and-go behavior of T cells. Hence, the force vectors induced

by radio symmetric actin dynamics in the immune synapse

neutralize each other and induce a stop of T-cell migration,

which is important for T-cell activation (66, 92). T cells

leave their cognate APCs after their symmetry is broken

through polar forces induced by asymmetric actin dynamics

(66). Chemokines then control the migration of T cells in

lymphoid organs, their extravasation, and their movement

in inflamed tissues.

Triggering of T cells with chemokines induces cell polari-

zation by forming a lamellipodium at the leading edge and

a uropod at the rear. In principle, there are two modes of

T-cell migration which are used dependent on the microen-

vironment. On two-dimensional surfaces as they occur on

endothelial cells of vessel walls in vivo or in petri dishes

coated with integrin-ligands in vitro, T cells migrate via

short-lived interactions of integrins with their substrates and

subsequent oscillatory T-cell shape changes mediated via the

actomyosin system. This mode of migration is called amoe-
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boid migration (93, 94). The situation changes if T cells

reach three-dimensional environments in interstitial space or

extracellular matrix within tissues. Here, migration is not

dependent on integrins. T cells migrate in three-dimensional

environments by adapting their shape and squeezing

through narrow gaps within the extracellular matrix. This

movement is highly dependent on constant actin dynamics

that induce an actin flow toward the cell front (94–101).

Interference with cofilin activation or expression has no

significant impact on T-cell migration on two-dimensional

substrates, as for example on cell culture plates that are

coated with ICAM-1 (intercellular adhesion molecule-1)

(101). This result is in line with the fact that actin dynamics

are of minor importance for amoeboid migration. Cofilin

only becomes relevant for T-cell migration on two-dimen-

sional substrates if G-actin availability is limited (e.g.

through latrunculin) or if T cells are forced to migrate via

constant actin dynamics (e.g. by inhibiting actomyosin via

blebbistatin). Importantly, cofilin-dependent actin dynamics

are pivotal in three-dimensional environments, as they occur

in tissues and can be mimicked by Matrigel� matrices. By

interference with the signaling pathway leading to cofilin

dephosphorylation or by a knockdown of cofilin expression,

we showed that in the absence of cofilin-driven actin-

modulation, migration in three-dimensional environments

in terms of directionality, velocity, and euclidean distance is

strongly reduced (101). Altogether, this demonstrates that

the cofilin-mediated dynamic rearrangement of the actin

cytoskeleton is the engine that allows crawling of T cells

especially in the three-dimensional environment of tissues.

T-cell migration needs a spatio-temporal regulation of

cofilin to assure a timely movement and directionality. In

line with the dynamic rearrangement of the actin cytoskele-

ton at the leading edge, in untransformed human T cells,

cofilin is dephosphorylated at the lamellipodium via a Ras-

MEK signaling module in response to chemokine stimulation

(101). Mizuno and coworkers (102) reported a chemokine-

induced phosphorylation rather than a dephosphorylation of

cofilin. Differing from our experiments, their data were

derived from Jurkat lymphoma cells. In this system, how-

ever, the phosphorylation state of cofilin is shifted toward

the dephosphorylated protein without any stimulation, due

to a constitutively active PI3K pathway (51, 103). In

untransformed human T cells, activation of the Ras-MEK

pathway by SDF1a leads to inhibition of the cofilin kinase

LimK, thereby shifting the kinase/phosphatase balance

toward the phosphatase (101). Since one of the cofilin

phosphatases, namely PP2A, is constitutively active in

primary human T cells, dominance of PP2A over LimK

activity could mediate cofilin dephosphorylation upon

chemokine treatment. Contrary to T-cell costimulation, PI3K

is not involved in this chemokine-dependent cofilin dephos-

phorylation (51, 101). The difference in dependence of

cofilin dephosphorylation on PI3K signaling may result from

costimulation-dependent deactivation of PP2A, since this

phosphatase was found to be associated with CD28

(104). Costimulation-induced deactivation of PP2A would

require activation of another cofilin phosphatase to ensure

cofilin dephosphorylation, which is presumably regulated by

PI3K.

In summary, exposure of primary human T cells to

chemokines (e.g. the CXCR4 ligand SDF1a) induces a Ras-

MEK-dependent activation of cofilin in the lamellipodium.

The resulting onset of actin dynamics at the cell front is cru-

cial for T-cell migration in three-dimensional tissues yet is

dispensable for crawling on two-dimensional substrates.

Phospholipid regulation of cofilin at the cell membrane

Cofilin activation through dephosphorylation starts within

5 min after costimulation of primary human T cells and

takes up to 30 min to reach its pinnacle. The initial rise in

F-actin occurs during the first few minutes after costimula-

tion or chemokine treatment and declines within the

following 5 min. Thereafter, it stays at a level that is still

significantly elevated compared to unstimulated cells (105).

The kinetics suggests a faster activation of cofilin than

observed by its phophoregulation. Such an immediate con-

trol of the actin-depolymerizing activity of cofilin is likely

mediated by phospholipid regulation. Thus, one of the

actin-binding motifs of cofilin also interacts with phosphati-

dylinositol 4,5-bisphosphate [PI(4,5)P2], however, not with

its cleavage products inositol 1,4,5-trisphosphate (IP3) and

diacylglycerol (DAG) (Fig. 2). PI(4,5)P2 binding to cofilin

inhibits its capacity to associate with and depolymerize

F-actin (106–108). PLC activation, although controlled by

TCR signaling, is boosted by CD28-mediated T-cell costimu-

lation, which leads to an enhanced costimulation-dependent

PI(4,5)P2 cleavage (109–111). Therefore, we postulated that

in response to costimulation, a release of cofilin from PI

(4,5)P2 inhibition may belong to the earliest events of T-cell

activation (37). This assumption is supported by recent

work showing that stimulation of carcinoma cells with

epidermal growth factor leads to a fast hydrolysis of PI(4,5)

P2, and as a consequence, dephosphorylated cofilin is rap-

idly released from the cell membrane (39, 112–114). Aside
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from this temporal regulation of cofilin, phospholipid regu-

lation also provides spatial control of cofilin activity. Cofilin

inhibition by PI(4,5)P2 takes place near the cell membrane,

whereas phosphorylation (inactivation) of cofilin by LimK is

compartmentalized to the cytosol (40, 115). It was pro-

posed that this mechanism explains how cofilin is activated

specifically within lamellipodia or invadosomes of metasta-

sizing tumor cells to produce the asymmetric force that is

necessary for migration of the tumor cells (40, 116).

Regulation of cofilin by PI(4,5)P2 cleavage represents an

intrinsic molecular mechanism for a spatio-temporal induc-

tion of actin dynamics in carcinoma cells. Accordingly, it is

tempting to speculate that a phospholipase-mediated libera-

tion of dephosphorylated cofilin from PI(4,5)P2 upon T-cell

costimulation is responsible for the initial actin dynamics

that precedes Ras-dependent cofilin dephosphorylation.

Redox regulation of cofilin and its impact on T-cell-

mediated immune responses

The actin-binding and remodeling abilities of cofilin are influ-

enced not only by intrinsic factors like phosphorylation and PI

(4,5)P2 binding but also by microenvironmental conditions.

Surrounding factors modulate cofilin functions independently

and thus allow adaptation of immune responses to specific tis-

sues and microenvironmental circumstances. In this regard,

our group was the first one to show that cofilin is directly

targeted by both oxidation and reduction, leading to cofilin

regulation through thiol modifications in human T cells (85,

105, 117). Thereby, cofilin serves as molecular sensor that

translates changes of the redox microenvironment into cellu-

lar functions.

Oxidation-induced molecular changes of cofilin result in

disturbed actin dynamics

Physiologically, a pro-oxidative milieu exists in the gut,

which is important to control T-cell activation in a microen-

vironment in which these cells must tolerate food antigens

(118–121). Pathologically, a shift toward oxidative stress

occurs during inflammation where activated granulocytes

and macrophages release reactive oxygen species (ROS).

Similarly, a pro-oxidative micromilieu prevails in certain

tumors. Such an accumulation of ROS causes local or

general immunosuppression, which is characterized by

T-cell hyporesponsiveness (122–124). This malfunction of

T-cell-mediated immunity is accompanied by an altered

actin cytoskeleton within these cells (105). When exoge-

nous ROS are present, primary human T cells display not

only a higher amount of steady-state F-actin but also have

deficiencies in actin modulation upon cell surface receptor

triggering. We showed that these disturbed actin dynamics

can be explained by a direct oxidation of cofilin: upon

oxidation, the structure of cofilin changes, and as a

consequence, it loses its actin-depolymerizing ability, even

though it is still able to bind F-actin (105). The functional

relevance of an observed diminished binding of oxidized

cofilin to G-actin remains as yet unknown (125).

Regarding the impaired actin-depolymerizing activity of

oxidized cofilin, initially it seemed likely that oxidative stress

leads to enhanced cofilin phosphorylation, thereby prevent-

ing its activity. Surprisingly, oxidative stress does not

promote phosphorylation of cofilin but rather increases the

proportion of unphosphorylated cofilin induced by costimu-

lation of T cells (105). Even culturing T cells with hydrogen

peroxide (H2O2) alone is sufficient to induce cofilin dephos-

phorylation over time without further stimuli. As described

above, MEK and PI3K (downstream effectors of Ras) are key

proteins in the signaling cascade leading to cofilin dephos-

phorylation after T-cell costimulation (51). Although these

two proteins are activated by oxidative stress (yet indepen-

dently of Ras), they do not play a role in the H2O2-induced

diminished phosphorylation of cofilin (105). Thus, the

molecular mechanisms propagating decreased cofilin phos-

phorylation after T-cell costimulation versus oxidative stress

are distinct from each other. Our studies revealed that oxi-

dized cofilin is a poor target for the cofilin kinase LimK,

which leads to an increase in the proportion of unphosphor-

ylated yet inactive cofilin (105).

Thiol groups of cysteines are the most prominent targets

for oxidation in proteins. They can form reversible inter- or

intramolecular disulfide bonds or can be modified into higher

oxidized (in part irreversible) forms like sulfinic (RSO2H) or

sulfonic (RSO3H) acids (126). Cofilin contains four cysteine

residues (at the positions 39, 80, 140, and 148) that are

potential targets for ROS (Fig. 2). Indeed, H2O2 treatment

induces a slight mobility shift of cofilin in non-reducing SDS-

PAGE. Addition of the reducing agent dithiothreitol abolishes

this shift, suggesting reversible structural changes and the

presence of at least one disulfide bridge in oxidized cofilin

(105). In the tertiary structure of cofilin, cysteines 39 and 80

are buried inside the molecule, whereas cysteines 139 and

147 face the outside (127). By electrospray mass spectrome-

try of human recombinant cofilin, we revealed that under

oxidative stress conditions, cysteine 139 is modified to a sul-

fonic acid (Cys-SO3H), and the inner cysteines 39 and 80 are
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likely engaged in an intramolecular disulfide bridge (105)

(Fig. 2). Disulfide bridge formation within the cofilin mole-

cule was later independently confirmed in COS cells and

B-lymphoma cells treated with taurine chloramine (TnCl),

another oxidizing agent (125). In addition, the existence of

another intramolecular disulfide bridge between cysteines

139 and 147 was proposed in that study. Moreover, intermo-

lecular disulfide bridges leading to cofilin dimers or oligo-

mers have been described in vitro (128) and in glutamate-

stressed neuronal cells (129). Altogether, cofilin oxidation is

a phenomenon that has been described in different cell types

and under diverse oxidative conditions; however, the suscep-

tibility toward oxidative stress and the functional conse-

quences differ between cell types.

Cofilin cysteine-oxidation leads to T-cell

hyporesponsiveness

As described above, oxidative stress leads to an impaired

actin remodeling by cofilin. On the cellular level, impaired

actin dynamics during antigen-specific T-cell activation in

the presence of H2O2 manifest in a disturbed immune syn-

apse maturation: cofilin as well as LFA-1 do not properly

localize to the T cell/APC contact zone (105), which is rem-

iniscent of the phenotype observed if the interaction of cofi-

lin with actin is blocked by cell-permeable cofilin peptide

homologues (53). In accordance with its effects on immune

synapse formation, oxidative stress interferes with T-cell

activation and consequently induces T-cell hyporesponsive-

ness (105). This hyporesponsive state is reinforced by inhi-

bition of the migratory capacity of T cells in a pro-oxidative

microenvironment. Hence, T cells that are exposed to H2O2

exhibit defective F-actin polarization, are not able to adhere

to immobilized ICAM-1, and lose their ability to migrate

toward chemokine gradients. Interestingly, T cells whose

endogenous cofilin is replaced by C39G or C80G cofilin

(carrying a glycine instead of a cysteine at position 39 or

80) show similar characteristics as oxidatively stressed T

cells (e.g. costimulation-dependent activation is strongly

impaired if T cells express C39G cofilin even in the absence

of ROS). The cysteine-to-glycine mutants C39G and C80G

cofilin are therefore on the functional level considered as

oxidation-mimicking cofilin mutants (105, 117).

Mitochondrial translocation of oxidized cofilin provokes

necrotic-like programmed cell death

Exposing primary human T cells to H2O2 for expanded time

periods can even result in T-cell death (117, 130, 131).

Electron microscopy and InFlow microscopy revealed that

cofilin itself localizes within mitochondria of T cells after

long-term treatment with H2O2 (117). Using our oxidation-

mimicking cofilin mutants, we identified the oxidation-

induced changes of cofilin as the relevant molecular switch

that targets cofilin to the mitochondria. A single point muta-

tion at cysteine 39 or 80 to glycine is sufficient for mito-

chondrial translocation of cofilin and induction of T-cell

death. A change of cysteine to non-oxidizable alanine in

cofilin, in contrast, can rescue T cells from death induced

by H2O2. These two types of cofilin mutants, oxidation-

mimicking cysteine-to-glycine mutants and oxidation-resis-

tant cysteine-to-alanine mutants, are valuable tools to further

elucidate the molecular and cellular mechanisms leading to

and resulting from cofilin oxidation.

Chua and colleagues (132) demonstrated that cofilin trans-

locates to mitochondria in staurosporine-treated mammalian

cell lines (e.g. COS-7) and that this cofilin translocation is an

early step in cell death. The molecular mechanism of cofilin

transport to the mitochondria, however, was not elucidated in

this study. In T cells, heat-shock cognate protein 70 (HSC70),

a chaperone transporting certain proteins into mitochondria

(133, 134), seems to be one effector molecule in transferring

oxidized cofilin to the mitochondria. Upon long-term oxida-

tive stress, HCS70 binds to and colocalizes with cofilin at the

mitochondrial membrane (117). Moreover, the oxidation-

mimicking cofilin mutants bind to HSC70 even in the absence

of H2O2. Having discovered that cofilin translocation into

mitochondria is controlled by oxidation of cofilin and a

guided transport mechanism, it seemed likely that cofilin is

directly involved in the induction of T-cell death upon oxida-

tive stress. In line with this assumption, targeting of cofilin to

mitochondria by introducing the oxidation-mimicking

mutants into T cells (117) or targeting of cofilin into mito-

chondria of COS cells by fusion to a mitochondrial targeting

sequence (132) leads to mitochondrial disintegration and

cytochrome C release. Despite this cytochrome C release,

T-cell death provoked by treatment with H2O2 or by expres-

sion of oxidation-mimicking cofilin mutants is caspase

independent (117). In addition, no DNA fragmentation or

other signs of apoptosis (or autophagy) are detectable. These

observations define the H2O2-induced T-cell death to be of a

necrotic-like phenotype. The fact that expressing oxidation-

resistant cofilin mutants or downregulation of cofilin via

siRNA rescues the majority of T cells from oxidant-induced

cell death highlights the indispensable role of cofilin in the

H2O2-triggered necrotic-like T-cell death and demonstrates
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that it is a programmed rather than an accidental type of cell

death (117, 135). The sensitivity toward oxidative stress

depends on the T-cell subpopulation. Naive T cells are less

sensitive toward oxidative stress induced by low micromolar

concentrations of H2O2 than central and effector memory cells

(130). Moreover, the mode of cell death seems to be depen-

dent on the cell death-inducing agent and cell type analyzed.

Thus, in contrast to H2O2-induced necrotic-like programmed

cell death in untransformed human T cells, staurosporine-

induced and cofilin-dependent cell death of COS cells (132)

as well as TnCl-induced cell death in COS cells and B-lym-

phoma cells (125) were reported to occur by apoptosis rather

than necrotic-like programmed cell death.

Reduction of cofilin as a spatio-microenvironmental

control mechanism of actin dynamics

As described above, accumulation of ROS can have detrimen-

tal effects on T-cell functions and survival (105, 117). With-

out effective protection, T cells would malfunction in every

situation in which a pro-oxidative milieu predominates. To

overcome this problem, the body has evolved mechanisms to

guard T cells from such an oxidative stress-mediated immune

suppression. Dendritic cells (DCs), for example, can induce

the upregulation of free thiols inside antigen-specific T cells

during an infection and can thereby rescue them from

harmful consequences of ROS at the site of inflammation

(136–138). Which proteins are affected by this environment,

however, remained unclear. Recently, we found that cofilin is

such a target for reduction; treatment of human cofilin with

reducing agents results in changes of its 3D-(NMR)-structure

(85). These structural changes do not alter the actin-depoly-

merizing function of cofilin in the absence of PI(4,5)P2.

However, they render dephosphorylated cofilin insensitive

toward inhibition by PI(4,5)P2 [although PI(4,5)P2 still binds

to reduced cofilin]. Thus, under reducing conditions, an addi-

tional pool of active cofilin, which is still anchored to the

membrane by PI(4,5)P2, can lead to increased actin dynamics

especially during immune synapse formation. In line with this

observation, we found that in untransformed human T cells

the F-actin content in the immune synapse is diminished, if

the T cell/APC contact occurs within a reducing milieu.

In conclusion, reduction of cofilin, which renders it

insensitive to PI(4,5)P2 inhibition, may raise the amounts of

active cofilin near the plasma membrane. Thereby, a reduc-

ing milieu may upregulate actin dynamics at the immune

synapse and the rate of T-cell activation. In a pro-oxidative

environment, cofilin reduction may enhance resistance

toward oxidative stress-induced T-cell hyporesponsiveness.

Ultimately, for the fate of the T cell, it may be crucial

which side of the redox spectrum outweighs the other, for

example, how long the protective reducing intracellular

milieu is exposed to oxidative stress.

Comprehensive model of spatio-temporal and

microenvironmental regulation of cofilin

In this review, we have described that cofilin-induced actin

dynamics are important for immune synapse formation,

T-cell activation (50, 53, 105), and T-cell migration (101).

Taking these vital functions of cofilin into account, it is clear

that cofilin needs to be tightly controlled in different subcel-

lular compartments. Here, we introduce a model of ‘spatio-

temporal and microenvironmental control of cofilin in T

cells’ (Fig. 4). It is based on in vitro data and data derived

from T cells or other cellular systems. In resting human T

cells, cofilin is mainly inactive and exists in distinct subcel-

lular locations. Cytoplasmic cofilin is mainly phosphorylated

and thus in an inactive state. The membrane-bound fraction

of cofilin is dephosphorylated but kept inactive by binding

to PI(4,5)P2. Both the cytoplasmic fraction and at least a

proportion of the membrane-bound cofilin are activated by

T-cell costimulation. Cytoplasmic cofilin becomes dephos-

phorylated through costimulation-induced activation of Ras

and its downstream effectors PI3K and MEK (51). Mem-

brane-bound dephosphorylated cofilin can be activated by

PLC-dependent PI(4,5)P2 cleavage releasing dephosphoryl-

ated cofilin into the cytoplasm (38, 40, 112). Thereby, the

cytoplasmic pool of activated cofilin is increased and actin

dynamics are reinforced. Moreover, dephosphorylated cofilin

can translocate into the nucleus (37), where it may act as

actin shuttle and as chaperone for RNA polymerase

II-dependent gene transcription (70, 79, 139–141).

Although costimulation boosts PLC activation, a large

amount of PI(4,5)P2 remains uncleaved. Therefore, a

significant fraction of cofilin remains inactive at the plasma

membrane. This PI(4,5)P2-bound fraction can be activated in

situ by the creation of a reducing milieu in T cells. Thus,

antigen-specific T-cell activation via DCs not only provides

costimulation but DCs can also induce an increase of free thi-

ols within T cells in an antigen-specific manner (136). Such a

reducing milieu changes the structure of cofilin and makes it

insensitive toward inhibition by PI(4,5)P2 (85). The resulting

additional activation of cofilin at the plasma membrane in a

reducing environment does not only increase the total pool

of active cofilin within T cells but also represents a spatial
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control of cofilin function. This mechanism appears to be

especially important for the dynamics of cortical actin as the

activated cofilin is still bound to PI(4,5)P2 and thus remains

at the plasma membrane.

The reducing conditions induced by DCs (136) can also

protect T cells surrounded by a pro-oxidative environment.

Oxidative stress occurs if ROS exceed the reducing potential

within the cytoplasm. Cofilin becomes inactivated during

Fig. 4. Spatio-temporal and microenvironmental control of cofilin in T cells. Costimulation induces cofilin activation via Ras (A1), which
results in cofilin dephosphorylation in the cytoplasm, and via PLC (A2), which liberates dephosphorylated cofilin from PI(4,5)P2 inhibition. This
results in the onset of activation-induced actin dynamics (B). In addition to its functions for actin dynamics, dephosphorylated cofilin can carry
actin into the nucleus (C). Thereby, it can modulate gene transcription by altering the nuclear actin pool and the activity of RNA polymerase II.
PI(4,5)P2 bound cofilin is inactive and detains F-actin at the plasma membrane (= cortical actin, D). In the presence of a reducing milieu, this
cofilin pool gets active despite binding to PI(4,5)P2. Thereby, actin dynamics near the plasma membrane are enhanced (E). In contrast, a strong
pro-oxidative milieu can oxidize (inactivate) cofilin which results in a stiff actin cytoskeleton and T-cell hyporesponsiveness or even necrotic-like
programmed cell death (NL-PCD) through mitochondrial disintegration (F).

© 2013 The Authors. Immunological Reviews published by John Wiley & Sons Ltd
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oxidative stress, which ultimately leads to T-cell

hyporesponsiveness due to an inability of cofilin to induce

actin dynamics and eventually a stiffening of the actin cyto-

skeleton (105). Moreover, as a long-term effect, oxidized

cofilin binds to HSC70 and translocates into the mitochon-

dria, provoking their disintegration and induction of necro-

tic-like programmed T-cell death (117). Altogether, signal

transduction pathways, factors of the microenvironment, or

both can control each of these cofilin pools in different sub-

cellular localizations with distinct kinetics, thereby influenc-

ing the outcome of a T-cell-mediated immune response.

Relevance of cofilin in diseases

The role of cofilin for uptake and spreading of
pathogens

Cortical F-actin represents a mechanical barrier for entry of

pathogens into T cells. Thus, pathogens need to induce

phagocytosis and/or an active breakdown of the F-actin

structures near the plasma membrane to get access to the

host cell. Since cofilin represents the main actin-depolymer-

izing factor, some pathogens like Listeria monocytogenes and the

human immunodeficiency virus (HIV) evolved mechanisms

to highjack cofilin to increase their pathogenicity.

Listeriosis is an infectious disease caused by the Gram-

positive bacterium Listeria monocytogenes. The severity of the

disease is in part due to the ability of L. monocytogenes to

evade the immune system by hiding within the cytoplasm

of host cells. L. monocytogenes can not only persist within the

host cells but also spread through cell-to-cell migration

without reaching the extracellular space (reviewed in 142).

The cell invasion and cell-to-cell spreading is in different

steps dependent on cofilin, and, thus, cofilin is an important

factor in the pathology of listeriosis. The surface receptor

internalin B of L. monocytogenes binds to the MET-receptor and

increases the level of phospho-cofilin via activation of LimK

in the host cytoplasm. Phosphorylated cofilin is inactive for

induction of actin dynamics, but it is necessary for activa-

tion of phospholipase D, which is required for the invasion

of L. monocytogenes into host cells (143, 144). However, the

inactivation of cofilin must be balanced during L. monocytoge-

nes internalization, since, as mentioned above, the barrier of

cortical F-actin needs to be broken down through cofilin

activation (145). In addition to its role for host cell penetra-

tion, L. monocytogenes recruits the host’s actin cytoskeleton to

create actin comet tails within the cytoplasm. Cofilin is one

important factor to create actin dynamics in the comet tail

to generate a force for bacterial movement within the host

cell (146, 147). Importantly, this actin-based movement

enables L. monocytogenes to spread into neighboring cells with-

out reaching the extracellular space. This keeps the bacteria

hidden from phagocytosis by innate immune cells and

prevents their antibody-mediated opsonization or neutraliza-

tion. Thus, cofilin regulation is an important step for the

pathogenicity of Listeria spp. (142, 148).

HIV infects human T cells and thus interferes with T-cell-

mediated immunity. Yoder and colleagues (149) demon-

strated that HIV triggers its uptake by binding to the HIV

co-receptor CXCR4. Binding of HIV to CXCR4 activates cofi-

lin, which consequently breaks down the cortical actin

through the induction of actin dynamics, allowing entry of

the virus. We have recently shown that T-cell stimulation

via the chemokine receptor CXCR4 through it natural ligand

SDF1a leads to cofilin activation via a Ras-MEK signaling

module and an acceleration of actin dynamics (101). It

would be interesting to know whether the HIV-induced

cofilin dephosphorylation follows the same signaling path-

ways as triggered by SDF1a to allow virus entry. After the

successful infection, the HIV genome is transcribed within

the cytoplasm of the host cell. Thereby, the negative regula-

tory factor (Nef) is expressed as one important protein for

HIV pathogenesis. Expression of Nef induces phosphoryla-

tion and thus deactivation of cofilin via binding to p21-

activated kinase 2 (Pak2) (149, 151). It was suggested that

this cofilin inactivation is pivotal for inhibiting the chemoki-

ne-dependent migration of HIV-infected T cells. Eventually,

these T cells are not able to provide B-cell help and thus the

induction of germinal centers and production of high affin-

ity antibodies is dampened. In addition, the slowing down

of HIV-infected T cells may induce a microenvironment

enriched by these cells and thereby facilitate infection of

bystander T cells. Thus, HIVs use cofilin at different stages

of their infection cycle.

The role of cofilin in cancer

In malignant T-lymphoma cells the phosphorylation state of

cofilin is shifted toward the dephosphorylated and thus

active form of cofilin (37). This is a tumor-promoting

mechanism, since a cofilin knockdown diminishes the clon-

ing efficiency of these cells and interference with the respec-

tive cofilin phosphatases induces apoptosis of T-lymphoma

cells (71). Cofilin is also constitutively dephosphorylated in

non-hematopoietic tumor cells, such as the cervix carcinoma

cell line HeLa or the colon carcinoma cell line KM12 (35).

Within the last decade, cofilin expression and its activation
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state were described as determining the metastatic potential

of tumor cells. They represent major factors of the severity

of the disease in several cancer entities, such as breast cancer

(116, 152). One main function of cofilin in these tumor

cells is its role for chemotaxis, directionality (153, 154),

and the maturation of the invadopodium (155, 156).

Another mechanism favoring cancer progression is the

potential downregulation of cofilin activity in T cells by

tumor cells or tumor-infiltrating immune cells like macro-

phages, granulocytes, and myeloid derived suppressor cells

(MDSCs). These can produce high amounts of immunosup-

pressive mediators (e.g. ROS or TGFb) (123, 124). Given

that cofilin is a direct target for ROS and oxidized cofilin

mediates T-cell hyporesponsiveness or necrotic-like pro-

grammed cell death (105, 117), this may be detrimental,

since adaptive immunity against tumor cells is hindered.

Myeloid cells regulate not only the redox milieu but also

amino acid catabolism. Arginase I is an enzyme that

hydrolyses arginine and induces arginine deprivation in the

surrounding tissues. It is constitutively expressed in human

neutrophils and is inducibly produced by MDSCs (157,

158). The physiological role of arginase I production and

release is the balancing of immune responses to avoid exces-

sive tissue destruction during inflammation (e.g. pus induc-

ing infections) (159). Too high arginase I activity can lead,

however, to arginine deprivation, thereby provoking T cell

hyporesponsiveness, for example, in tumor microenviron-

ments (160–162). We found that such an arginine depriva-

tion in the environment of human T cells increases the

amount of phosphorylated, inactive cofilin. Accordingly,

immune synapse formation between T cells and APCs and

the resulting T-cell activation are inhibited (163). Notably,

while polyclonal and antigen-specific proliferation of pan T

cells are diminished, the antigen-specific cytotoxicity of

CD8+ T cells, which occurs through a different type of

immune synapse, remains unaffected by arginine depriva-

tion (164).

Potential role of cofilin in chronic inflammation/

autoimmune diseases

Whereas the relevance of cofilin for infectious and neoplas-

tic diseases is without dispute, the evidence for an involve-

ment of cofilin in chronic inflammatory/autoimmune

disorders are in fact more indirect but conclusive. Notably,

autoantibodies directed against cofilin have been found in

patients suffering from rheumatoid arthritis, systemic lupus

erythematosus, polymyositis, dermatomyositis, and Behc�et’s

disease (165). This finding implies a diagnostic and/or

pathological role of cofilin in autoimmune diseases. More-

over, the environmental control of cofilin activity could be

an important key for the pathological onset or propagation

of chronic inflammatory diseases. Thus, a knockout of

p47phox disturbs activation of NADPH (nicotinamide ade-

nine dinucleotide phosphate) oxidase and thus the oxidative

burst in granulocytes. The p47phox knockout in mice or

rats increases the severity of T cell-dependent but not of T

cell-independent arthritis (166, 167). It is tempting to spec-

ulate that a shift of the redox state of cofilin toward reduc-

tion may be one molecular mechanism that leads to the

pathological activation of T cells in the joints of these

rodents. Notably, dephosphorylation/activation of cofilin is

not blocked by cyclosporine A or FK506, important immu-

nosuppressive drugs targeting the serine phosphatase PP2B

(protein phosphatase 2B/calcineurin) (81). Other well-

known immunosuppressive drugs for example, mycophenol-

ic acid, leflunomide, dexamethasone, and rapamycin, also

do not influence this signaling event. Therefore, enzymes

regulating the activity of cofilin (either directly or by influ-

encing the microenvironment) may represent interesting

novel targets for therapeutic immune modulation.

Concluding remarks

The widespread relevance of cofilin for T-cell activation

and migration as well as its implications in different

diseases suggest that pharmacological manipulation of the

signaling pathways leading to cofilin activation or a cell

type-specific inhibition of cofilin expression could provide

effective means to improve the outcome of various dis-

eases. Recently, an additional mode of cofilin regulation

has been discovered: the redox regulation of cofilin (85,

105, 117). It is independent of receptor triggering and

cytokine functions and thus provides a previously unrecog-

nized microenvironmental signal influencing T-cell-medi-

ated immune responses. Therefore, we propose a ‘four

signal model for T-cell activation’ (Fig. 5). The classical

competence signal (first signal) of T-cell activation is pro-

vided by the peptide-MHC-complex (pMHC) and its recog-

nition through the antigen-specific TCR/CD3-complex. A

second signal through costimulation of accessory receptors

(e.g. CD28 or CD2) is essential to avoid TCR-induced

anergy. It induces cofilin dephosphorylation (37) and

full T-cell activation (44, 168, 169). The third signal is

elicited through particular cytokine combinations, which

are needed for the differentiation, development, and
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polarization of helper T cells (e.g. Th1, Th2, or Th17) or

cytotoxic T cells (reviewed in 170, 171). The microenvi-

ronmental regulation of T cells can be described, as a logi-

cal extension of this concept, as a fourth or modulating

signal for T-cell activation and function. Cofilin is a key

molecule that senses alterations in the redox microenviron-

ment as well as arginine deprivation and translates these

signals into T-cell functions via its impact on actin dynam-

ics. Notably, this fourth signal of T-cell activation and

modulation is not only restricted to the activation of naive

T cells in the lymphoid organs but also represents a modu-

latory mechanism for T-cell-mediated immunity of naive

and memory T cells in non-lymphoid organs and inflamed

tissues. Future research should take this modulating fourth

signal more into account to fully understand tissue-specific

immune responses.
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