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A B S T R A C T

Aims: The molecular pathogenesis of COVID-19 is similar to other coronavirus (CoV) infections viz. severe acute
respiratory syndrome (SARS) in human. Due to scarcity of the suitable treatment strategy, the present study was
undertaken to explore host protein(s) targeted by potent repurposed drug(s) in COVID-19.
Materials and methods: The differentially expressed genes (DEGs) were identified from microarray data re-
pository of SARS-CoV patient blood. The repurposed drugs for COVID-19 were selected from available literature.
Using DEGs and drugs, the protein-protein interaction (PPI) and chemo-protein interaction (CPI) networks were
constructed and combined to develop an interactome model of PPI-CPI network. The top-ranked sub-network
with its hub-bottleneck nodes were evaluated with their functional annotations.
Key findings: A total of 120 DEGs and 65 drugs were identified. The PPI-CPI network (118 nodes and 293 edges)
exhibited a top-ranked sub-network (35 nodes and 174 connectivities) with 12 hub-bottleneck nodes having two
drugs chloroquine and melatonin in association with 10 proteins corresponding to six upregulated and four
downregulated genes. Two drugs interacted directly with the hub-bottleneck node i.e. matrix metallopeptidase 9
(MMP9), a host protein corresponding to its upregulated gene. MMP9 showed functional annotations associated
with neutrophil mediated immunoinflammation. Moreover, literature survey revealed that angiotensin con-
verting enzyme 2, a membrane receptor of SARS-CoV-2 virus, might have functional cooperativity with MMP9
and a possible interaction with both drugs.
Significance: The present study reveals that between chloroquine and melatonin, melatonin appears to be more
promising repurposed drug against MMP9 for better immunocompromisation in COVID-19.

1. Introduction

The pandemic ‘coronavirus disease 2019’ (COVID-19) is a severe
respiratory illness caused by human coronavirus (HCoV), also known as
SARS (severe acute respiratory syndrome)-CoV-2 or novel coronavirus
which contains a single-stranded RNA genome [1–3]. The virus can
primarily produce influenza-like symptoms viz. fever and myalgia along
with pneumonia-like symptoms viz. dry cough and shortness of breath;
however in extreme condition acute respiratory distress syndrome
(ARDS), multiorgan failure and death may result [2,4–7]. The trans-
mission of SARS-CoV-2 from human to human occurs mostly by

physical contacts, nasal droplets, uncooked foods and excreta of con-
ciliator animals [1,2].

The SARS-CoV-2 phylogenetically belongs to other HCoVs under the
genera of beta-coronaviruses viz. epidemic SARS-CoV and MERS
(Middle East respiratory syndrome)-CoV. The whole genome of SARS-
CoV-2 has 79% nucleotide sequence homology to that of SARS-CoV.
The surface envelope spike glycoprotein-S is the major antigen of both
SARS-CoV and SARS-CoV-2 having 75% amino acid similarity. The
glycoprotein-S binds to its receptor, a plasma membrane bound protein
called angiotensin converting enzyme subtype 2 (ACE2) of human, al-
lowing endocytosis of the complexes and entry of viruses into the host
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cells [1,2,8]. The host defense mechanism during HCoV infection gets
compromised, as the immune defense responses against the interferons
occur late which ensures enough time for replication and survival of the
viruses [9]. Clinically, interferon supplementation in COVID-19 pa-
tients has been reported to reduce the virus load and inflammatory
insult [10].

Extensive review analyses using non-randomized clinical studies
[6,11–15] and in vitro/culture studies [16–18] reveal that several ap-
proved drugs including anti-viral (remdesevir) [13,14,16,17], anti-ret-
roviral (ritonavir, darunavir, lopinavir) [13,15], anti-malarial (chlor-
oquine, hydroxychloroquine) [13,14,16,17,19], anti-protozoal
(nitazoxanide, ivermectin) [14,18] and immunosuppressive (tocili-
zumab) [13] agents may be the choice of treatment for COVID-19.
Monoclonal antibody against the spike protein of SARS-CoV-2 has been
raised in view of developing protection against COVID-19 [20]. More-
over, the network analysis based on the human coronavirus genome
and host protein interactome has recently proposed that some re-
purposed drugs including anti-inflammatory agent (melatonin), non-
steroidal selective estrogen receptor modulator (toremifene), angio-
tensin receptor blockers (e.g. irbesartan), immunosuppressants (e.g.
sirolimus), anti-neoplastic drugs (e.g. mercaptopurine) and a natural
plant product (emodin) having antiviral activities may be the likely
candidates for treatment of COVID-19 [21]. However, all these phar-
macologic agents suffer from certain limitations in their uses.

Due to the paucity of information about the molecular pathogenesis
of COVID-19 and its best suitable treatment, the present study has been
executed with potential systems biology approach using integrative
protein-protein and chemo-protein network analyses to find out (a) the
most effective host protein target(s) in human and (b) the putative drug
(s) against the target(s), to establish a functional link between drug(s)
vs. targeted host protein(s) for better understanding of treatment
strategy in COVID-19.

2. Materials and methods

The systematic and stringent methodology with inclusion and ex-
clusion criteria applied in the present study is given in the flow diagram
(Fig. 1).

2.1. Raw data acquisition and processing to identify differentially expressed
genes (DEGs)

The microarray dataset (GSE1739) of gene expression profiles in the
blood of 10 SARS-CoV patients along with that of four healthy in-
dividuals were collected from the NCBI Gene Expression Omnibus
(GEO) database. Diagnostic profiles and experimental assay with the
including and excluding selection criteria for human subjects had been
described in the original publication [22]. The basic packages of the
Bioconductor project [23] were used for retrieval, background correc-
tion (logarithmic transformation) and quantile normalization of the
data in R language and environment [24]. A 95% confidence interval
was applied to select the data for further analysis. Further, the R
package limma [25] was implemented to analyze the expressions of
genes in patients and healthy individuals. The lmFit function was used
to fit the linear model using the least square method followed by an-
other function eBayes (a hierarchical Bayesian model) for computation
of moderated t-statistics on the linear model to find differential gene
expression. The moderated t-statistics uses an empirical Bayesian
shrinkage estimator to reduce the variance dependency for a specific
gene on its mean expression values [26]. The differential expression of
genes was computed using ‘false discovery rate’ (FDR) based on Ben-
jamini and Hochberg method [27] with the criteria of adjusted p-
value < 0.05 and |log2(FC)| > 1 (FC representing ‘fold change’) for
each comparison.

2.2. In silico modelling of physical ‘protein-protein interaction’ (PPI) and
‘chemo-protein interaction’ (CPI) networks

The DEGs found in the present study, had been incorporated on the
STRING 11.0 database [28] with the settings for active interaction from
all enable sources (‘Textmining’, ‘Experiments’, ‘Databases’, ‘Co-ex-
pression’, ‘Neighborhood’, ‘Gene Fusion’, ‘Co-occurrence’). The reliable
interaction strength was detected by applying parameter customized
confidence score of 0.600 as threshold to filter out spurious interac-
tions. The study included only the moderate and high probable inter-
actions between the protein partners of differentially expressed genes to
construct an integrative physical ‘protein-protein interaction’ (PPI)
network model for the characterization of molecular interactions in-
volved in SARS-CoV infection.

Then the systematic review had been performed to acquire recent
relevant literatures associated with COVID-19 therapy in PubMed da-
tabase (www.ncbi.nlm.nih.gov/pubmed/) using the following keywords:
‘SARS’,‘SARS-CoV’, ‘COVID-19’, ‘treatment’, ‘therapy’, ‘therapeutics’
and/or ‘Drug’ respectively. The search results were filtered with
‘Publication date 1 year’ for the latest updates on COVID-19 therapies to
select drug compounds from the latest literatures [18,21,29,30]. The
drugs (targeted to COVID-19/SARS-CoV-2 treatment) selected and
DEGs (identified from the peripheral blood samples of SARS-CoV pa-
tients) found in the present study were submitted to STITCH 5.0 data-
base [31] with the setting of active interactions from all enable sources
(‘Textmining’, ‘Experiments’, ‘Databases’, ‘Co-expression’, ‘Neighbor-
hood’, ‘Gene Fusion’, ‘Co-occurrence’). The known and predicted
binding interactions between genes/proteins and small chemical com-
pounds/drugs were detected by applying parameters including custo-
mized confidence score of 0.600, ‘interactor/query protein only’ and
‘network depth equal to 2’ to construct a ‘chemo-protein interaction’
(CPI) network that included moderate and strong target (protein)-drugs
interactions for COVID-19.

Furthermore the CPI network model (developed in STITCH) and PPI
network model (developed in STRING) were imported in Cytoscape
3.7.2 software [32] and merged by applying the ‘union function’ of the
Cytoscape core plugin ‘Merge Networks’ based on attribute values of
nodes and edges to get interactome model of merged physical ‘protein-
protein and chemo-protein’ (PPI-CPI) network to identify both the po-
tential drug targets (proteins) and potential drug candidates for COVID-
19.

2.3. Topology analysis of interactome model of PPI-CPI network to find sub-
networks and hub-bottleneck nodes

Molecular Complex Detection (MCODE) [33] (a Cytoscape plugin
available at http://www.cytoscape.org/plugins2.php) module using cut-
off parameters (scoring and cluster finding) and the MCODE score ≥ 4
was utilized to screen the significant/major sub-network of PPI-CPI
interactome for COVID-19. The scoring cut-off parameters were ‘loop
included’ (inclusion of loops i.e. self-edges in neighborhood density
calculation) and ‘degree cut-off 2’ (number of connections necessary for
a node to be scored). The cluster finding cut-off parameters were ‘node
score cut-off 0.2’ (cluster size for selection of new members), hairfall
included (deletion of all single connected nodes from clusters), fluff
included (allowance of cluster expansion with one neighbor shells),
node density cut-off 0.1 (controls the neighbor inclusion criteria during
‘fluffing’), K-core cut-off 2 (filters out clusters by eliminating small
inter-connected sub-cluster) and maximum depth of network cut-off
100 (limiting the distance from the seed node within which the cluster
member can be searched).

The chemo-protein components of overall PPI-CPI interactome were
analyzed in CentiScaPe 2.2 [34] plugin of Cytoscape using key network
centrality parameters like node degree (the number of neighboring
nodes to which the node of interest is directly connected), shortest path
betweenness (the number of information streams passing through a
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Fig. 1. Flowchart of the systematic and stringent methodology applied and the results found in the mechanistic systems biology analysis to identify potential drugs
against their targeted biomolecule(s) in COVID-19.
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given node) and stress (the extent to which a node can hold network
communications) to identify the most potential nodes in the PPI-CPI
network. Most relevant nodes were selected using the numerical
threshold values according to the mean centrality values for each of the
topological centrality properties: ‘mean node degree’: 5.02; ‘mean be-
tweenness’: 277.21; ‘mean stress’: 934.0. Nodes (protein/chemical)
with high degree/connectivity centrality, high betweenness centrality,
and high stress centrality (above mean threshold values) were con-
sidered as the hub-bottleneck nodes, which were finally taken into
account to serve as the functionally essential nodes (genes/proteins/
drugs) of this network model.

2.4. Functional enrichment analysis of the interactome model of the top-
ranked sub-network

The list of genes of interest with their identifiers (ID) found in the
top sub-network of PPI-CPI interactome was submitted to Enrichr web-
tool platform (http://amp.pharm.mssm.edu/Enrichr) [35,36] for the en-
richment (i.e. over representation of common annotated biological
features) analysis of functional annotations implemented across a
number of resources including ‘gene ontology’ (‘biological process’,
‘cellular component’, ‘molecular function’), ‘KEGG biological path-
ways’, ‘Jensen Disease’. The Enrichr analysis was performed using sta-
tistical parameters viz. p-value (Fisher exact test), q-value (adjusted p-
value for false discovery rate), old p-value, adjusted old p-value, odd
ratio, z-score and combined score (log(p-value) × z-value). The En-
riched results (functional annotations) were ranked based on the levels
of significance with p-values < 0.05 and corresponding combined
scores followed by selection of terms with certain cut-off (top 10 terms).

3. Results

The results found in the present mechanistic systems biology ana-
lysis are systematically documented in the flow diagram with the
findings of potential drugs against the targeted biomolecule(s) in
COVID-19 (Fig. 1).

3.1. Identification of DEGs using microarray data of SARS-CoV patient
blood

From in silico analysis of SARS microarray dataset we identified 120
differentially expressed genes among which 45 genes were upregulated
and 75 genes were downregulated. Details of the differentially ex-
pressed genes including gene identifiers (ID), “false discovery rate”
(FDR) adjusted p-values (< 0.05) and log2(fold change) values (> 1)
are summarized in Fig. 2.

3.2. Construction of interactome model of PPI-CPI network for COVID-19

The interactome model of PPI network was constructed using pro-
teins corresponding to the respective DEGs of SARS-CoV patients in
STRING webtool. A total of 72 protein nodes and 212 connections had
been found in PPI network (data not shown). Literature survey provided
a total of 65 potential drugs proposed for treatment of COVID-19
(Table 1) and these drugs were included in further analysis for selection
of most potent drug(s) against putative protein target(s). The inter-
actome model of CPI network was constructed using COVID-19 drug
candidates and DEGs of SARS-CoV patients in STITCH webtool. Total 88
nodes (proteins and drugs) and 120 connections had been found in the
CPI network (data not shown).

The characterization of protein-drug interactions in COVID-19 had
been executed through development of interactome model of PPI-CPI
network in Cytoscape by merging the already identified PPI and CPI
network and that was found to be composed of 118 nodes (proteins and
drugs) interconnected by 293 interactions (Fig. 3A). The identification
of nodes of gene products/proteins and drugs has been designated by

the corresponding gene IDs and name of the drugs respectively in the
present study. Accordingly, the respective gene IDs have been used as
the node (protein) identifiers in the further descriptions.

3.3. Identification of top-ranked sub-network and hub-bottleneck nodes
within the interactome model of PPI-CPI network for COVID-19

From the interactome model of PPI-CPI network, the MCODE
module in Cytoscape identified only one top-ranked sub-network
(cluster having MCODE score 9.33) that comprised 35 nodes (proteins
and drugs) with 174 interconnections (Fig. 3B) among which 31 nodes
appeared to be protein molecules and four viz. chloroquine, melatonin,
propranolol and quinacrine were found to be drug candidates. The sub-
network (Fig. 3B) contributed the 59.38% major connections and
29.66% nodes in the overall interactome model of PPI-CPI network
(Fig. 3A).

The top-ranked sub-network showed hub-bottleneck nodes con-
sisting of 12 proteins and drugs with high topological centrality index
values (high node connectivity, high betweenness, and high stresses,
each with greater mean cut-off threshold values) that include 10 pro-
teins corresponding to genes viz. CAMP, CCT2, ELANE, FOXO3, ITGAM,
MMP9, MPO, SIRT1, SMAD4, STAT1 and two drug candidates, namely
chloroquine and melatonin (Fig. 4A–C). The hub-bottleneck nodes were
identified using the cut-off thresholds of node degree (value 5.02), node
betweenness (value 277.21) and node stress (value 934.0) applied to
the top-ranked sub-network (Fig. 4A–B).

Among the 10 hub proteins (Fig. 4C) six proteins corresponding to
respective upregulated genes (CAMP, ELANE, FOXO3, ITGAM, MMP9,
MPO) and four proteins corresponding to respective downregulated
genes (CCT2, SIRT1, SMAD4, STAT1) (as evident in their expression
profile in Fig. 2), only matrix metallopeptidase 9 (MMP9) protein had
been found to interact with both hub drug nodes, namely chloroquine
and melatonin, in the top ranked sub-network (Fig. 3B). MMP9 had
been found as the second largest hub node consisting of connectivities
with 23 nodes (19 protein and four drug partners). Notably, the first
largest hub node ELANE had connectivities with 26 nodes without
having any interacting drug partner (Fig. 3B). Furthermore, the other
hub node FOXO3 appeared to have connectivity with melatonin as the
only interacting drug partner (Fig. 3B). However, there is no evidence
in support of the involvement of gene product of FOXO3 with the re-
spiratory viral infection. Therefore our present results clearly indicated
that MMP9 could be the most potent host protein target of chloroquine
and melatonin as interacting drugs in COVID-19.

3.4. Functional enrichment analysis of the interactome model of the top-
ranked sub-network for COVID-19

Gene enrichment analysis study (Fig. 5) indicated that the gene
products of the top-ranked sub-network were associated with biological
processes including neutrophil related processes (neutrophil activation,
neutrophil degranulation, neutrophil mediated immunity and immune
responses), innate immune responses in mucosa, humoral immune re-
sponses mediated by antimicrobial peptides, antibacterial humoral re-
sponses, defense responses to bacteria with high statistical significances
(Enrichr p-value < 0.05 and combined score). The association of the
gene products of this sub-network were found to be statistically sig-
nificant (Enrichr p-value < 0.05 and combined score) for the cellular
components involving subcellular and granular secretary functions.
Statistically significant (Enrichr p-value < 0.05 and combined score)
molecular functions like nuclear hormone receptor bindings, iron and
transition metal ion bindings, serine-type endopeptidase activities, en-
donuclease and ribonuclease activities and RNA polymerase-II core
promoter proximal region sequence-specific DNA bindings were also
associated with the gene products of this sub-network. In addition,
KEGG pathway enrichment study included certain signaling pathways
(FoxO, NOD-like receptor and prolactin), several types of microbial
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infections (exerted by Staphylococcus aureus,Mycobacterium tuberculosis,
Leishmania donovani and Hepatitis-B virus) and cancer (pancreatic and
acute myeloid leukemia) in association with the gene products of the
sub-network. Jensen disease enrichment data indicated that the re-
spiratory system disorders (lung diseases, bronchitis and common
colds), immunoinflammation related complications (Wegener's granu-
lomatosis, Mastitis, Arthritis), eosinophilia, brain edema, periodontal
disease were highly enriched in association with the gene products of
the top-ranked sub-network.

4. Discussion

The present study developed a chemo-protein interactome network
(Fig. 3A) on basis of differentially expressed genes in SARS-CoV infec-
tion (Fig. 2) and repurposed drugs for COVID-19 (Table 1). A sub-net-
work (Fig. 3B) was identified that appeared to be involved in neutrophil
activation and degranulation pathways (Fig. 5). The functionally im-
portant hub node MMP9, an immunogenic protease linked to the de-
gradation of cellular matrix, was revealed as the target (Fig. 5) of two
repurposed promising drug candidates (Figs. 3B and 4C) i.e. chlor-
oquine (antimalarial drug) and melatonin (pineal hormone) in COVID-
19. Here, the systematic analytical approach using data integration
reveals the global systems-level relationship (drug vs. target vs. func-
tional annotation) in COVID-19.

ARDS is the main cause of morbidities in COVID-19 and infections
of other coronaviruses [5–7,37,38]. Cytokine storm is a key mechanism

of ARDS materialization leading to multiorgan failure and death
[5,6,39,40]. Till date, the molecular pathogenesis of COVID-19 is un-
clear. Therefore, the similar mechanism of SARS-CoV/MERS-CoV in-
fection can confer a lot to the molecular level of understanding in pa-
thogenesis of COVID-19 [6]. The present study identified a sub-network
(Fig. 3B) that includes the statistically significant pathways of both
neutrophil activation and degranulation (Fig. 5). The sub-network
comprised 29.66% nodes (proteins) and provided 59.38% con-
nectivities of the overall network, which indicated the colossal im-
portance of this sub-network in the whole network model (Fig. 3A–B).
The global and local topological analyses provided ten potential protein
molecules consisting of six proteins corresponding to respective upre-
gulated genes (CAMP, ELANE, FOXO3, ITGAM, MMP9 and MPO) and
four proteins corresponding to respective downregulated genes (CCT2,
SIRT1, SMAD4 and STAT1). These ten nodes appeared to be the hub
nodes of the PPI-CPI interactome network and were chosen for further
study (Fig. 4C). All these molecules had been found to be highly en-
riched in blood after antimicrobial-induced neutrophil-mediated hu-
moral and innate immunity responses in COVID-19 (Fig. 5).

In the present study, MMP9 was found as the functionally important
hub node (protein) and target of the drugs in the central hub node of
the PPI-CPI interactome network (Figs. 3B and 4C). Matrix metallo-
peptidases (MMPs), the zinc-containing and calcium-dependent pro-
teolytic endopeptidases, are released from the intracellular stores and
become active extracellularly [41]. MMPs cause deterioration of a
number of extracellular matrix proteins that help in the extracellular

Fig. 2. Volcano plot analysis to identify the differentially expressed genes (DEGs). The expressions of genes are evaluated by analysis of microarray data of the
peripheral blood samples of SARS-CoV patients (n = 10) versus healthy controls (n = 4) collected from the data source (GSE1739) using Bayesian algorithm in
limma Bioconductor package of bioinformatics tools in R language and environment. A: The volcano plot of the expressions of genes using the logarithmic values of
fold changes (log2 fold change) in x-axis and ‘false discovery rate’ (FDR) adjusted p-values (−log10 adjusted p-value) in y-axis. Dotted lines parallel to x-axis and y-
axis indicate the threshold values using FDR adjusted p-value < 0.05 and | log2 fold change | > 1 respectively to identify the upregulated and downregulated DEGs.
The red, blue and black color dots indicate the upregulated DEGs, downregulated DEGs and non DEGs respectively. B: The gene IDs of upregulated (upper panel) and
downregulated (lower panel) DEGs found in volcano plot. The position of dots of DEGs (45 upregulated and 75 downregulated) are same as those appeared in volcano
plot. The scales of upregulated and downregulated DEGs are adjusted manually for proper presentation of the gene IDs. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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matrix remodelling in various physiological and pathological processes
including inflammation [41–44]. MMPs are widely distributed in tis-
sues and their expressions are controlled by cytokines, growth factors
and hormones. MMP9 (83kD), a glycoprotein with type-IV collagenase
activity, is found in neutrophils, lymphocytes and dendritic cells that
are involved in angiogenesis and inflammatory cytokine generation
[41,44]. Notably, the Enrichr functional analysis in the current study
revealed MMP9 as to be associated with transition ion binding (mole-
cular function under gene ontology) and diverse pathophysiological
conditions viz. neutrophil activation and related immunity (biological
process under gene ontology), transcriptional misregulation in cancer
and hepatitis B infection (KEGG pathways), arthritis, brain edema and
common cold infection (Jensen disease) in human (Fig. 5). The com-
putational study using functional pathways enrichment analysis has
also reported the bidirectional regulation of MMP9 gene expression in
diverse viral infections and predicted MMP9 as the repurposing drug
target [45].

MMP9 is constitutively expressed at low level under physiological
condition. The MMP9 action depends on the balance between its pro-
peptide activation by a serine protease (plasmin) and inhibition
through formation of complexes with ‘tissue inhibitor of matrix me-
talloprotease 1’ (TIMP1). Therefore, the dysregulations of MMP9 sys-
tems (gene expressions, post-translational modifications, levels of ac-
tivators vs. inhibitors) lead to the development of pathological
conditions [46,47]. The low level of TIMP1 and persistent MMP9 ac-
tivity in neutrophils which bring about airway remodelling and con-
gestion in association with the acute inflammatory responses are im-
plicated in development of both ARDS and acute asthma [48–51].
Recently the gene expressions of TIMP1 in the bronchoalveolar lavage
fluid of COVID-19 patients have been found to undergo upregulation in

one victim and downregulation in another one as well as upregulation
in the blood mononuclear cells of the other three victims [52]. In the
present communication, the Enrichr functional analysis (cellular com-
ponents database under gene ontology) exhibited the association of
MMP9 with functional aspects of lumens releasing tertiary granules
(Fig. 5). MMP9 is reported to relate with tertiary lumens for release of
cytokines during neutrophil activation [53]. In monocytes and macro-
phages, MMP9 is over-activated by plasmin and reacts with ‘toll like
receptor 9’ (TLR9) signaling to induce formation of tumour necrosis
factor (TNF) that leads to the development of pro-inflammatory cyto-
kine storm [54,55]. The involvement of MMP9 with serine protease
activities was also noticed in Enrichr functional analysis with molecular
function under gene ontology (Fig. 5). MMP9 deficiency is found to be
protective against severe H1N1 influenza virus A infection in mice
model [56]. Therefore, our findings and other reports support the view
that the approach to MMP9 inhibition and/or alterations of its activa-
tors (plasmin) and inhibitors (TIMP1) may prevent the deadly cytokine
storm and the life-risk of COVID-19 patients.

Here, both chloroquine and melatonin were identified as the re-
purposed drug candidates that appeared to be the interacting partners
of MMP9 (Figs. 3B and 4). Chloroquine treatment decreases serum
MMP9 level in systemic lupus erythematosus [57] and suppresses
MMP9 activity and its mRNA expression in breast cancer [58]. Chlor-
oquine can also lower the TNF-mediated neutrophil apoptosis, neu-
trophil degranulation and cytokine burst [59–63]. Chloroquine/hy-
droxychloroquine efficiently inhibits the human retrovirus activities in
vitro [64]. Recently, a number of studies [17,65,66] and a clinical trial
[67] support the use of chloroquine/hydroxychloroquine for the
treatment of COVID-19. Conversely, certain clinical studies strongly
disagree with its uses [68–70], as it develops cardiac failure in COVID-
19 patients [68], indicating the clinical data about chloroquine/hy-
droxychloroquine are not conclusive [71]. Notably, hydroxy-
chloroquine did not appear in the sub-network in the present study
(Fig. 3B) and remained unattained for further consideration.

Melatonin is responsible for normal sleep and maintenance of the
‘biological clock’ in human [72]. It has anti-inflammatory properties
[73,74], exerts its potential role in anti-viral mechanism [74–78] and
has also been used in Ebola virus infection [78]. The pathophysiological
observation in COVID-19 patients supports the chronobiological uses of
melatonin in its treatment [79,80] and a therapeutic algorithm in this
regard has also been proposed recently [81]. In addition, melatonin is
reported as the promising adjuvant for COVID-19 treatment [21,82]
and its deficiencies may enhance susceptibility of diabetic and hy-
pertensive elderly patients in SARS-CoV-2 infection [80]. The first
clinical trial of melatonin in a small cohort indicates its involvement in
abating ARDS in COVID-19 patients [83]. Interestingly, melatonin can
bind to the active site of MMP9 and inhibit the latter to arrest im-
munoinflammation [84]. Thus, the present network based meta-ana-
lysis justified the involvement of melatonin interaction with MMP9 in
immunocompromised COVID-19.

The cell culture study (kidney cell line Vero E6) and network ana-
lysis reveal that chloroquine [85] and melatonin [21] respectively may
have potential anti-viral role in targeting human cell membrane-bound
ACE2 receptor, a zinc dependent carboxypeptidase, and other asso-
ciated protein partners in COVID-19. Interestingly, separate studies
report that MMP9 level increases in ACE2-knockout mice model [86]
and ACE inhibitors (lisinopril and imidapril) also target MMP9 along
with ACE2 [87]. Therefore, both metallopeptidases i.e. ACE2 and
MMP9 may have cooperativities for immunoinflammation in COVID-19
and can be potential targets of both chloroquine and melatonin thera-
pies.

The glycoprotein-S of surface spikes of corona viruses including
SARS-CoV-2 recognize the membrane-bound ACE2 receptors in airways
and lungs for entry into the body. ACE2 along with transmembrane
serine protease (TMPRSS2) triggers conformational changes in the
glycoprotein-S and releases S-fragments that enable the fusion of viral

Table 1
Summary of the potential drug candidates selected from recent literature on
COVID-19. Drugs are categorized on the basis of their mode of actions.

Category Drug candidate(s)

Analgesic Diperodon, Phenazopyridine, Tetrandrine
Anti-bacterial Dihydrocelastryl diacetate, Monensin sodium,

Oligomycin, Salinomycin sodium, Valinomycin
Anti-depressant Desipramine
Anti-fungal Antimycin A, Exalamide, Phenylmercuric acetate
Anti-helminthic Pyrviniumpamoate, Ivermectin
Anti-histamine Chloropyramine
Anti-hypertensive Alprenolol, Berbamine, Carvedilol,

Doxazosinmesylate, Irbesartan, Propranolol
Anti-infective Cetylpyridinium chloride, Camphor
Anti-inflammatory Colchicine, Emodin, Mesalazine
Anti-malarial Chloroquine, Conessine, Hydroxychloroquine,

Quinacrine
Anti-neoplastic Dactinomycin, Hydroxychalcone, Lycorine,

Mercaptopurine, Mycophenolate mofetil,
Mycophenolic acid, Pristimerin, Toremifene

Anti-Parkinsonian Harmine
Anti-protozoal Nitazoxanide
Anti-psychotic Promazine
Anti-viral Acyclovir, Favipiravir, Ganciclovir, Lopinavir,

Oseltamivir, Penciclovir, Remdesivir, Ribavirin,
Ritonavir, Tilorone

Ca2+ channel blocker Loperamide
Diuretic Eplerenone
Estrogen steroid Equilin
Hormone Melatonin
IL-6 inhibitor Tocilizumab
Immunosuppresants Sirolimus
Muscle relaxant Papaverine, Zoxazolamine
PAF inhibitor Ticlopidine
Protein synthesis blocker Cycloheximide, Emetine
Selective serotonin reuptake

inhibitor
Paroxetine

Steroid hormone Oxymetholone
Serine protease inhibitor Nafamostat
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envelopes with the host cell membrane followed by internalization of
viruses through the formation of endosomes. The viral RNA is processed
within the host cells and replica of viruses are released out of the cells.
The viral infected cells present antigenic peptides through major his-
tocompatibility complexes and elicit humoral and cellular immunities
along with cytokine storm [6,88–93]. The ectodomain of membrane-
bound ACE2 is shed into the extracellular fluid as its soluble form
[88,94–96]. In vitro studies also indicate that the soluble ACE2 can bind
to SARS-CoV/SARS-CoV-2 and is supposed to limit the availability of
viruses to interact with the membrane-bound ACE2 receptors thus
minimizing the chances of viral load [88,92,94]. Notably, ACE2 con-
verts angiotensin-II to angiotensin(1-7), a peptide which causes mod-
ification of inflammatory processes [97]. Angiotensin(1-7) also has a
vasodilatory effect [98] and enhances the heart rate acting on the
caudal ventrolateral medulla in the brain [99], which may contribute to
the development of hypotension and tachycardia as found in SARS/
COVID-19 patients [100]. Moreover, the interaction of SARS/SARS-
CoV-2 with the ACE2 receptors of the support cells in olfactory mucosa
also results in inflammation-induced anosmia [101]. Further experi-
mental studies are needed to elaborate the regulatory role of ACE2
receptor and MMP9 in therapeutic management of COVID-19.

5. Conclusion

The present study using network-based systems biology approach
clearly demonstrates that (a) the upregulation of MMP9 gene and status
of MMP9 protein with its activity/activity regulators, as potentiators of
cytokine storms, may be the key point of etiopathophysiology of
COVID-19 and (b) chloroquine and melatonin may be the drugs that can
target MMP9 to reduce the immunoinflammatory cascades associated
with ARDS symptoms in COVID-19 patients. Consistent with the present
findings, it would also be worthy to mention that the therapeutic ac-
tions of both chloroquine and melatonin may have converged onto the
activities of cell membrane ACE2 receptors of SARS-CoV-2. Recently
the use of chloroquine does not appear attractive as it produces cyto-
toxicity at doses used in the clinical trials. In this respect melatonin
could be a better promising safe drug that needs more clinical trials in
large cohorts to ensure its efficacy in treatment of COVID-19 patients.

Declaration of competing interest

The authors declare that there is no conflict of interest.

Fig. 4. Pictorial summary of the topological properties and the centrality analyses for the top ranked sub-network to identify the hub-bottleneck nodes (A, B, C) using
the CentiScaPe module of Cytoscape software. The identification of nodes of gene products/proteins and drugs are designated by corresponding gene IDs and name of
the drugs. Graphical plots represent the dot plots of values of (A) node degree (x-axis) vs. node betweenness (y-axis), (B) node degree (x-axis) vs. node stress (y-axis)
and (C) Venn diagram of high node degree/connectivity, high node betweenness and high node stress. Here, the term ‘high’ indicates higher than the mean cut-off
thresholds for node degree/connectivity, betweenness and stress, which have been obtained from the CentiScaPe module of the Cytoscape software. Mean centrality
values are presented as dotted lines in the graphs (A, B). The black round dots are hub-bottleneck protein nodes, the blue diamond shapes are non-hub-bottleneck
nodes (proteins and drugs) and red boxes with black borders are the hub-bottleneck drug nodes in the (A, B) graphs. MMP9 in the red outlined boxes in the graph (A,
B) represent the only target of chloroquine and melatonin among other hub-bottleneck nodes of the top-ranked sub-network. (C) Venn diagram indicates the common
nodes that have the topological centrality indices viz. node degree/connectivity, betweenness and stress with the values higher than the mean cut-off respective
threshold values obtained from the CentiScaPe module of the Cytoscape software. The upward and downward arrows indicate the expressions of upregulated and
downregulated genes (gene IDs right to the arrows) corresponding to respective gene products/proteins in the hub-bottleneck nodes of COVID-19. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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