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Abstract
Quantitative characterization of biotechnological production processes requires
the determination of different key performance indicators (KPIs) such as titer,
rate and yield. Classically, these KPIs can be derived by combining black-box
bioprocessmodelingwith non-linear regression formodel parameter estimation.
The presented pyFOOMB package enables a guided and flexible implementa-
tion of bioprocess models in the form of ordinary differential equation systems
(ODEs). By building on Python as powerful and multi-purpose programing lan-
guage, ODEs can be formulated in an object-oriented manner, which facilitates
their modular design, reusability, and extensibility. Once the model is imple-
mented, seamless integration and analysis of the experimental data is supported
by various Python packages that are already available. In particular, for the iter-
ative workflow of experimental data generation and subsequent model param-
eter estimation we employed the concept of replicate model instances, which
are linked by common sets of parameters with global or local properties. For
the description of multi-stage processes, discontinuities in the right-hand sides
of the differential equations are supported via event handling using the freely
available assimulo package. Optimization problems can be solved by making
use of a parallelized version of the generalized island approach provided by the
pygmo package. Furthermore, pyFOOMB in combination with Jupyter note-
books also supports education in bioprocess engineering and the applied learn-
ing of Python as scientific programing language. Finally, the applicability and
strengths of pyFOOMB will be demonstrated by a comprehensive collection of
notebook examples.
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1 INTRODUCTION

Biotechnological production processes leverage the
microorganisms’ synthesis capacity to produce com-
plex molecules that are hardly accessible by traditional
chemical synthesis. Importantly, modern genetic engi-
neering methods allow for targeted modification of single
enzymes and whole metabolic pathways for biochemically
accessing value-added compounds beyond those naturally
available. However, to render the production of a target
compound economically feasible, a suitable biopro-
cess needs to be developed which fits to an engineered
microbial producer strain. In this context, computa-
tional modeling approaches utilize existing knowledge
on strain and process dynamics, giving rise to modern
systems biotechnology. Once a digital representation of a
biotechnological system has been implemented, in silico
optimizations can be performed to design an improved
bioprocess, effectively reducing the number of wet-lab
experiments. With the availability of new experimental
data the computational model can be refined to increase
its predictive power towards an optimal bioprocess.
Considering the highly interdisciplinary nature of sys-

tems biotechnology requiring expertise in (micro-)biology,
process engineering, computer science, and mathematics,
it becomes obvious that rarely a single person can have
a deep knowledge in all these fields. The more special-
ized and performant a bioprocess model is intended to
be, the higher the knowledge level needed by the user.
Thismayprevent non-experts inmodeling andprograming
from dealing with these highly rewarding topics. Conse-
quently, there is a need for tools that can be quickly learned
and applied by non-experts, with the development of addi-
tional skills determined by demand.
Here, we present the pyFOOMB package that enables

the implementation of bioprocess models as systems of
ordinary differential equations (ODEs) via the multi-
purpose programing language Python. Based on the object-
oriented paradigm, pyFOOMB provides a variety of classes
for the rapid and flexible formulation, validation and appli-
cation of ODE-based bioprocess models. Table 1 gives a
comparative, non-exhaustive overview of software pack-
ages that are suitable for bioprocess modeling. These tools
were developed with partly other application areas in
mind, e.g., modeling and analysis of biochemical networks
or simulation of chemical engineering unit operations.
Consequently, these software packages require different
levels of programing skills and some domain-specific
knowledge for accessibility. Therefore, a major driver to
establish pyFOOMB was to provide a flexible modeling
tool that requires only basic programing knowledge and
thus shows low hurdles for beginners in bioprocess mod-
eling. The latter is supported by a comprehensive collec-

PRACTICAL APPLICATION

Based on the powerful, yet beginner-friendly
Python programing language, the pyFOOMB
package addresses a wide range of users to imple-
ment bioprocess models with growing complexity.
ODE models can be formulated in an object-
oriented manner, which facilitates their modular
design, reusability and extensibility. pyFOOMB
supports the modeling of discrete behaviors in
process quantities, which is an important feature
for the simulation and optimization of fed-batch
processes. The concept of model replicates and
definition of local and global parameters mirrors
the iterative nature of data generation from cycles
of experiment design, execution, and evaluation.
Moreover, seamless integration with existing
and future Python packages for scientific com-
puting is greatly facilitated. Most importantly,
the applicability and strengths of pyFOOMB is
demonstrated by a comprehensive collection of
notebook examples.

tion of ready-to-use working examples which come along
with pyFOOMB.
Due to the full programatic access to Python, com-

plex models can also be implemented. Furthermore, great
importancewas given to convenient visualizationmethods
that facilitate the understanding of qualitative and quan-
titative model behavior. Finally, the enormous popular-
ity of Python as the de facto standard language for data
science applications makes it easy to integrate pyFOOMB
with other advanced tools for scientific computing.

2 MAIN FUNCTIONALITIES OF
pyFOOMB FOR BIOPROCESSMODELING

Bioprocess models are implemented as ODEs for the time-
dependent variables 𝐱(𝑡):

𝑑𝐱

𝑑𝑡
= 𝑓(𝐱(𝑡), 𝛉𝐱, 𝑡), 𝐱(𝑡0) = 𝐱0 (1)

𝐲(𝑡) = 𝑔(𝐱(𝑡), 𝛉𝐲, 𝑡) (2)

which depend on model parameters 𝛉𝐱 and initial values
𝐱0. In practice, some of the variables might not be directly
measurable. Therefore, observation (or calibration) func-
tions 𝐲(𝑡) can be defined that relate these variables to
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TABLE 1 Non-exhaustive comparison of software packages suitable for bioprocess modeling

Tool Description Languages
Main user
interface License

AMIGO2 [1, 2] Provides relevant methods around ODE modeling
like model calibration, uncertainty analyses,
(multi-objective) optimal experimental design.
Definition of global and local parameters among
different experiments.

MATLAB MATLAB editor Free for
academic
users

AMICI [3, 4] Interface to SUNDIALS integrators for efficient
simulation and sensitivity analyses with analytical
gradients (forward, 1st and 2nd order adjoint
sensitivities) for biological ODE models, support
for SMBL models. Supports models with
discontinuities and corresponding event handling
for the MATLAB implementation.

C++, MATLAB,
Python

MATLAB editor,
Jupyter
notebook, Python
IDEs

BSD3-Clause

Berkely
Madonna

Standalone software with graphical interface for ODE
model development. Model construction via
connection of library items, which auto-generates
corresponding equations using a custom equation
syntax. Comprehensive suite for different
visualization tasks. Routines for curve fitting and
parameter scanning. Automated model generation
using conventional chemical notation.

Standalone, own
syntax for ODEs

GUI Commercial

COPASI [5, 6] Developed for metabolic network analysis and
reaction compartment modeling in systems
biology, with provision of typical methods like
EFM analysis and MCA. Definition of global and
local parameters among different experiments.
Simulations of ODEs and stochastic kinetics.
Support for SMBL models.

Standalone, CLI,
Python via
PyCoTools
package

GUI Artistic License
2.0

DAE Tools [7, 8] Industry grade DAE modeling toolbox for chemical
engineering applications and beyond. Code
generation for export and co-simulation
capabilities via FMI. Python as modelling language
and high-level access to performance modules
developed in C++. Supports models with
discontinuities and corresponding event handling.

C++, Python Jupyter notebook,
Python IDEs,
GUI

GNU GPL3

pyFOOMB Rapid prototyping of ODE bioprocess models and
provision of typical methods (model calibration,
sensitivity and uncertainty analyses). Supports
ODE modelling with discontinuities and
corresponding event handling. Definition of global
and local parameters among different experiments.
Low-barrier teaching into bioprocess modelling
and programing. Modelling strictly follows the
object-oriented approach. Depends on assimulo
package interfacing SUNDIALS’ CVODE for ODE
integration and pagmo2/pygmo package for
parallelized optimization following the generalized
island model.

Python Jupyter notebook,
Python IDEs

MIT

The listed tools were developed for different application areas and address different primary needs. Therefore, domain-specific knowledge and programing skills
are required for the packages’ accessibility. All packages provide at least several functionalities required for bioprocess modeling.
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the observable measurements, thus introducing additional
parameters 𝛉𝐲 into the model.
In order to make the user familiar with our pyFOOMB

tool, a continuously growing collection of Jupyter note-
book examples is provided. These demonstrate basic func-
tionalities and design principles of pyFOOMB and serve
as blueprint for the rapid set up of case-specific bioprocess
models (Table A1).

3 MODELINGWORKFLOWWHEN
USING pyFOOMB

In the following we present a typical workflow for imple-
menting and applying bioprocess models with pyFOOMB
(Figure 1). Throughout this section the toy model of Fig-
ure 2A will be employed.

3.1 Model definition

In a first step, the targeted model and its parametrization
is implemented by creating a user-specific subclass of the
provided class BioprocessModel (Figure 2B). This basic
class provides all necessary methods and properties to run
simulations for the implemented model. Essentially, the
abstract method rhs()must be formulated by the user.
Noteworthy, the pyFOOMB package does not allow for

consistency checking of units for the state variables or
model parameters. This responsibility is left to the user
while formulating a model, i.e., before coding the model
as BioprocessModel subclass.

3.1.1 Discrete behavior

To monitor and control the dynamics of specific model
variables so-called state_events() and change_
states() methods can be defined. This is for example
required for the modeling of multi-phased processes such
as fed-batch with event-based changes in feeding regimes.

3.1.2 Observation of model states

In order to connect the model variables to measurable
quantities, an ObservationFunction can be created, with
the mandatory implementation of the observe()method
for each relevant calibration function. Noteworthy, a vari-
able’s state can be linked to different observation func-
tions, reflecting the fact that there are typically several
analytical methods available for one specific bioprocess
quantity. This approach allows to separate the bioprocess

F IGURE 1 High-level description of a typical bioprocess mod-
eling workflow with pyFOOMB. For a full description of all classes
and methods including a complete list of all arguments and default
values, please see the provided Jupyter notebook examples and
source code documentation
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F IGURE 2 Toy example of a sequential reaction cascade. (A) Mathematical representation of the ODE system with initial conditions
(IC). (B) Object-oriented implementation in pyFOOMB. The ODE is defined within the rhs()method. Initial values andmodel parameters are
defined as dictionaries. (C) Results of a simulation. At 𝑡 = 10 an event occurs, where the conversion from B to C is switched on, i.e., 𝑘2 > 0
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model from corresponding observations functions and
thus, increases re-usability of the different parts. By deriv-
ing initial guesses for the parameters, a simulation from
the model is typically used to verify the intended qualita-
tive behavior in comparison to the experimental data.

3.1.3 Global and local parameters

A key feature of pyFOOMB is the possibility to inte-
grate measurement data from independent experimental
runs (replicates) by creating a corresponding number of
new instances of the same model. These can still share
a common set of model parameters that are defined as
“global”, but at the same time differ in some other “locally”
defined parameters.
Typical global parameters of an ODE-based bioprocess

model are the maximum specific growth rate 𝜇max or
the substrate specific biomass yield 𝑌X/S, while all initial
values are reasonable defined as local parameters (see
Application example II). Different values for the local
parameters reflect biological or experimental variability
that may arise from slight deviations in preparing, run-
ning or analyzing each replicate experiment. Alternatively,
such variability might be introduced by purpose when
conducting replicate experiments with intentionally very
different starting conditions. The latter refers to a classical
design-of-experiment approach aiming for experimental
data with a maximum information gain with respect to
the global parameters.

3.1.4 Working with the model

The implementedmodel (including an initial parametriza-
tion) is passed to the instantiation of the Caretaker class
(Figure 1). During the instantiation procedure several san-
ity checks run in the back and, in case of failure, direct the
user to erroneous ormissing parts of themodel. The result-
ing object exposes important and convenient methods typ-
ically applied for a bioprocess model, such as running sim-
ulations, setting parameter values, calculating sensitivi-
ties, estimating parameters, and managing replicates of
model instances.

3.2 Simulation

For a certain set of model parameters the time-dependent
dynamics of the model variables and corresponding
observations are obtained by running a simulation (cf.
Figure 1). Integration of the ODE system is delegated to
the well-known Sundials CVode integrator with event

detection [9]. Its Python interface is provided by the
assimulo package [10], which implements seamless event
handling hidden from the user. Running some simulations
with subsequent visualization is a convenient approach
to verify the qualitative and quantitative behavior of the
implemented model (Figure 2C).
pyFOOMB provides a class with convenient methods

for that purpose, e.g., plotting of time series data cover-
ing model simulations and measurement data, corner
plots for one-by-one comparison of (non-linear) corre-
lations between parameters from Monte-Carlo sampling
as well as visualization of the results from sensitivity
analysis.

3.3 Sensitivity analysis

Local sensitivities 𝜕𝑦𝑖(𝑡)∕𝜕𝜃𝑗 are available for any model
response 𝑦𝑖 (model state or observation) with respect to
any model parameter 𝜃𝑗 (including ICs and observation
functions). The sensitivities are approximated by the cen-
tral difference quotient using a perturbation value of ℎ ⋅

𝑚𝑎𝑥(1, |𝜃𝑗|). Sensitivities can also be calculated for an
event parameter that defines implicitly or explicitly a point
in time where the behavior of the equation system is
changed (cf. Figure 3A). This is useful for, e.g., analyzing
induction profiles of gene expression or irregular pulsed
additions of nutrients.

3.4 Parameter estimation

Finding those parameter values for a model that
describe a given measurement dataset best is imple-
mented as a typical optimization problem. Here, the
estimate_parallel() method is the first choice,
because it employs performant state-of-the-art meta-
heuristics for global optimization, which are provided
by the pygmo package [11]. In contrast to local optimiza-
tion algorithms, there are no dedicated initial guesses
needed for the parameters to be estimated (“unknowns”).
Instead, lower and upper estimation bounds are required.
As a good starting point such bounds can be derived
from explorative data analysis (see Application example
II), literature research, or expert knowledge by simply
assuming three orders of magnitude centered around the
precalculated or reported parameter value.
In principle, the pyFOOMB package allows to estimate

values for any model parameter, initial value, and obser-
vation parameter. Of course, a successful parameter esti-
mation depends on sufficiently informativemeasurements
and on the structure of the model itself. To reduce the
dimensionality of the underlying optimization task values
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F IGURE 3 Essential steps of model validation supported by pyFOOMB. (A) Sensitivity analysis of the model states with respect to the
three parameters 𝑘1, 𝑘2 and 𝑡𝑎𝑑𝑑 . (B) Parameter estimation using artificial experimental data with random noise (black dots with error bars)
in combination with parallelized MC sampling (red lines). The median of 125 single parameter estimations is shown in grey. (C) Uncertainty
analysis using a corner plot of the resulting empirical parameter distributions. Diagonal elements show the individual distributions as histogram
with a kernel density estimate, while off-diagonal elements indicate one-by-one comparisons of each parameter pair. The plot was generated
using the show_parameter_distributions()method of pyFOOMB’s Visualization class
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can be fixed, e.g., based on expert knowledge or litera-
ture data. Furthermore, model reformulation or simplifi-
cation can be considered to reduce complexity, and here
the model family concept (see below) allows a direct com-
parison of different model variants.
Noteworthy, pygmo provides Python bindings to the

pagmo2 package written in C++. It implements the asyn-
chronous generalized island model [12], which allows to
run several, different algorithms cooperatively on the given
parameter estimation problem. As an inherent feature of
this method, an optimization run can be executed for a
given number of so-called “evolutions” and after inspec-
tion of the results, the optimization can be continued from
the best solution found so far (Figure 3B). This powerful
approach allows to traverse multi-modal, non-convex opti-
mization landscapes.
Currently, the maximum likelihood estimators (cover-

ing its classical variants least-squares and weighted-least-
squares) are implemented. In general, a parameter vector �̂�
is to be found that minimizes a certain optimization (loss)
function. For example, for the negative log-likelihood
(NLL) function for normally distributed measurement
errors it holds:

�̂� = 𝑎𝑟𝑔min
𝛉

∑
𝑖

∑
𝑗

∑
𝑘

=
1

2
⋅ log

(
2𝜋𝜎2

(
𝑦𝑖,𝑗,𝑘

))
(3)

+

(
𝑦𝑖,𝑗,𝑘 (𝛉) − 𝑦𝑖,𝑗,𝑘

𝜎
(
𝑦𝑖,𝑗,𝑘

) )2

(3)

Given a specific measurement �̂�𝑖,𝑗,𝑘, for each correspond-
ingmodel response 𝑖 at sampling time point 𝑗 and replicate
𝑘, the NLL is calculated and summed up. By default, it is
assumed that all measurements follow normal distribu-
tions based on mean values and corresponding standard
deviations. The log-likelihood function is constructed
by pyFOOMB when starting the parameter estimation
procedure. For the case that measurements are assumed
to follow other distributions, this can be specified when
creating the Measurement object and pyFOOMB will
take care for the definition of the correct log-likelihood
function.
Noteworthy, it is not required to provide complete mea-

surement datasets, i.e., a specific replicate may contain
only onemeasurement or even unequal data points for dif-
ferent model responses.

3.5 Uncertainty analysis

An approximation of the parameters’ variance-covariance
matrix is provided by inversion of the Fisher informa-

tion matrix, which is calculated from local sensitivities
(see above). Besides, non-linear error propagation is
available by running a repeated parameter estimation
procedure starting from different Monte-Carlo samples
(so called “parametric bootstrapping”, Figure 3C). A
parallelized version of this method is provided based on
the pygmo package.

3.6 Result visualization

Following parameter estimation and uncertainty analy-
sis via parametric bootstrapping, (non-)linear correlations
between each pair of parameters can be readily visualized
with the method show_parameter_distributions(). In
addition, results are typically inspected by visualizing the
set ofmodel predictions according to the calculated param-
eter distributions. Using the compare_estimates_many()
method, a direct comparison between measurements and
repeated simulations is possible, which makes it easier to
assess the validity of the model.

3.7 Implementation of model variants

Usually, when starting to formulate a bioprocess model
there is not only one option to link a specific rate term
with a suitable kinetic model. Depending on how infor-
mative the available measurements are in relation to the
unknown kinetics, it could make sense to directly start the
whole workflow by setting up a “model family”.
Following the object-oriented approach of pyFOOMB,

a model family can be easily set up based on inheritance
(Figure 4A). In principle, for each relevant part of the
original model additional submodels can be introduced
by declaring separate methods. In a programing context,
this approach is also known as “method extraction”, as
the calculations in question are extracted into further
dedicated methods. The model family is then realized
by building on a common model structure encoded in
the BaseModel and a set of subclasses encoding the
specific submodels. On a technical level, the definition of
“abstract” methods is required to enforce the individual
members of the model family to implement their specific
submodel.
In an extended version of the running example, the

rhs()method of the BaseModel class now depends on the
two additional methods get_r1() and get_r2() to sep-
arate the calculation of rates 𝑟1 and 𝑟2, respectively (Fig-
ure 4B). The latter is declared as an abstract method to
enable a family of models (ModelVariant01-03) for com-
paring different rate expressions of 𝑟2.
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F IGURE 4 Implementation of model variants using inheritance. (A) UML class diagram for three model variants of the toy model. The
kinetic rate law for reaction 𝑟2 is set as either Mass action, Michaelis-Menten, or Michalis-Menten with product inhibition. (B) Python imple-
mentation of the base class BaseModel with the abstract method get_r2() and two example subclasses. (C) Resulting simulations comparing
the model variants
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In the following sections two different applications
examples will be presented that apply the introduced
modeling workflow of pyFOOMB.

4 APPLICATION EXAMPLE I:
SMALL-SCALE REPETITIVE BATCH
OPERATION

In the first example workflow specific growth rates within
an Adaptive Laboratory Evolution (ALE) process are
determined. ALE processes utilize the natural ability of
microorganisms to adapt to new environments to improve
certain strain characteristics, such as growth on a specific
carbon source.
Here, a Corynebacterium glutamicum strain which

was able to slowly (𝜇max < 0.10 h-1) utilize d-xylose,
was cultivated repeatedly in defined medium containing
d-xylose as sole carbon and energy source. The cultivation
was done in an automated and miniaturized manner,
delivering a biomass-related optical signal, “backscatter”,
with a high temporal resolution. This signal was used
to automatically start a new batch from the previous
one, as soon as a backscatter threshold was reached.
The threshold was deliberately chosen to be in the mid-
exponential phase, where no substrate limitation was to
be expected. Six individual clones were cultivated over
one preculture and seven repetitive batches, as shown in
Figure 5A.

4.1 Model development

In order to keep the number of parameters and computa-
tion times as low as possible, a rather simple bioprocess
model as shown in Figure 5B was employed.
Growth is determined solely by the growth rate

𝜇. Substrate limitations are not taken into account,
since the experimental design (see above) should avoid
these sufficiently. Biomass 𝑋 is not measured directly,
instead, backscatter is introduced to the model via an
ObservationFunction. This function describes a linear
relationship between backscatter and biomass and takes
the blank value 𝐵𝑆0 of the signal into account. A rela-
tive measurement error for the backscatter signal of 5% is
assumed based on expert knowledge. The model describes
the whole ALE process for each clone, not an individual
batch. Therefore, state events are used to trigger a state
change of 𝑋, where 𝑋 is multiplied by a dilution factor
𝑓dil. Additionally, the maximum growth rate parameter is
switched for each repetitive batch. As a result, an individ-
ual 𝜇max for each repetitive batch and each clone is gained.
Since initial inoculation of the different clones and the

inoculation procedurewithin the experimentwas the same
for all, initial biomass concentration𝑋0 and dilution factor
𝑓dil are considered as global parameters.

4.2 Parameter estimation and
uncertainty analysis

In total, model parameters for six clones are esti-
mated, which form six replicates in the context of
pyFOOMBs modeling structure. For each clone, seven
maximum growth rates are to be determined, plus 𝑋0,
𝑓dil, and 𝐵𝑆0 as global parameters, thus 44 parameters
in total. Parallelized MC sampling was used to obtain
distributions for all parameters. Results are shown in
Figure 5C and D.
The estimated backscatter signals follow the actual data

closely, resulting in narrow distributions for the parame-
ters of interest, the individual 𝜇max values for each clone
and repetitive batch. For example, clone F starts with
growth rates of 0.071± 0.005 h-1 to 0.086± 0.005 h-1 for the
first four batches. In the fifth batch, a notable raise in max-
imum growth rate to 0.122 ± 0.008 h-1 is visible, indicating
one or more beneficial mutation events. Finally, clone F
reaches a growth rate of 0.212 ± 0.013 h-1. Overall, the esti-
mated growth rates are in good agreement with findings
from the original paper.
In another style of ALE experiment, which is not

subject in this study, a subpopulation of cells with
beneficial mutations was enriched, yielding strain
WMB2𝑒𝑣𝑜, which is analyzed in the second application
example.

5 APPLICATION EXAMPLE II:
LAB-SCALE PARALLEL BATCH
OPERATION

In this example workflow some KPIs of an engineered
microbial strain cultivated in a bioreactor under batch
operation are determined. Often, such KPIs represent
process quantities that are not directly measurable (e.g.,
specific rates for substrate uptake, biomass and product
formation) and therefore have to be estimated using a
model-based approach.
The data originates from two independent cultiva-

tion experiments with the evolved C. glutamicum strain
WMB2𝑒𝑣𝑜 as introduced before [13]. Following successful
adaptive laboratory evolution this strain has now improved
properties for utilizing d-xylose as sole carbon and energy
source for biomass growth. At the same time the strain pro-
duces significant amounts of d-xylonate, a direct oxidation
product of d-xylose.
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F IGURE 5 Modeling and analysis of small-scale repetitive batch processes. (A) Experimental layout for fully automated repetitive batch
operation in microtiter plates (taken from [13]. Each cycle was started from six independent clones followed by seven consecutive batches. (B)
ODE model for describing the biomass dynamics including state events for multiple sampling and growth rate estimation. (C) Time course of
online backscatter data (black dots) and corresponding model fits (straight colored lines). (D) Evolution of maximum specific growth rates in
each cycle. Mean values and standard deviations were estimated by parallelized MC sampling (𝑛 = 200)
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5.1 Explorative data analysis and model
development

Before implementing a suitable bioprocess model with
pyFOOMB, the data from one replicate bioreactor cultiva-
tion is visualized and used for explorative data analysis.
In Figure 6A, the time courses of biomass (𝑋), d-xylose
(𝑆), and d-xylonate (𝑃) are presented in one subplot. It can
be seen that biomass formation stops with depletion of d-
xylose and, thus, modeling the cell population growth by a
classical Monod kinetic is reasonable (Figure 6B). The for-
mation of d-xylonate is also strictly growth-coupled, lead-
ing to a simple rate equationwith the yield coefficient𝑌P/X
as proportionality factor. Finally, the d-xylose uptake rate
equals the combined carbon fluxes into biomass and d-
xylonate, which are related to the yield coefficients 𝑌X/S
and 𝑌P/S respectively.
The time courses of substrate and product are measured

in molar concentrations, while the bioprocess model is
formulated using mass concentrations of the respective
species. Themappings are realized by defining correspond-
ing observation functions (Figure 6C).
Finally, the strain-specific parameters like 𝜇max

and 𝑌X/S are defined as global parameters, while
experiment-specific parameters (ICs for biomass 𝑋

and substrate 𝑆) are defined as local parameters since
the cultivation media and inoculation material were
prepared individually for each reactor. Please note, even
this very simple process model now already contains
eight model parameters (i.e., three ICs and five kinetic
parameters) that have to be estimated from the given
measurements.

5.2 Parameter estimation and
uncertainty analysis

In order to facilitate the parameter estimation problem,
good initial guesses for all parameter values are important.
First approximations for 𝜇max as well as all yield coeffi-
cients can be derived by following ordinary and orthogo-
nal distance regression analysis on the raw data assuming
linear relationships (Figure 6A). For Python, correspond-
ing methods are available from the NumPy [14] and SciPy
[15] packages.
From the obtained initial guesses corresponding param-

eter bounds are fixed to run a parallel parameter estimation
procedure (Figure 7A). As a result, a first set of best-fitting
parameter values is obtained from which new bounds can
be derived for the subsequent uncertainty analysis using
again parallelizedMC sampling. Corresponding results are
summarized in Table 2.

TABLE 2 Estimated parameter values of the bioprocess model
applying parallelized MC sampling

Parameter Property Unit
Median (16, 84
percentile)

𝑘𝑆 global g𝑆 L-1 1.86 (1.83–1.89)
𝜇max global h-1 0.33 (0.33–0.33)
𝑌P/S global g𝑃 g𝑆 -1 0.80 (0.68–0.99)
𝑌P/X global g𝑃 g𝑋 -1 0.63 (0.63–0.63)
𝑌X/S global g𝑋 g𝑆 -1 0.63 (0.58–0.69)
𝑆0,R1 local g𝑆 L-1 23.04 (22.76–23.36)
𝑆0,R2 local g𝑆 L-1 22.78 (22.50–23.09)
𝑋0,R1 local g𝑋 L-1 0.070 (0.070–0.071)
𝑋0,R2 local g𝑋 L-1 0.088 (0.088–0.088)

The pair-wise comparison of parameter distributions
shown in Figure 7B reveals a distinct non-linear corre-
lation between the yield coefficients 𝑌P/S and 𝑌X/S. This
effect is expected due to the formulation of the biomass-
specific substrate consumption rate 𝑞𝑆 (Figure 6B). Equal
values for 𝑞𝑆 can be derived for different combination of
substrate conversion rates into biomass and product, and
the yield coefficients are the corresponding scaling factors.
The latter is also the reason why the estimated yield coef-
ficients are significantly higher as compared to the explo-
rative data analysis, which does not allow this separation
and therefore leads to false-to-low predictions (Table 2 and
Figure 6A).
Finally, the estimated biomass yield 𝑌X/S for d-xylose is

close to the value reported for the wild-type strain growing
ond-glucose, i.e., 0.63 [CI: 0.58–0.69] vs. 0.60± 0.04 g𝑋 g𝑆 -1
[16]. This indicates a comparable efficiency of C. glutam-
icumWMB2𝑒𝑣𝑜 in utilizing d-xylose for biomass growth.

6 CONCLUSIONS

The pyFOOMB package provides straight-forward access
to the formulation of bioprocess models in a programatic
and object-oriented manner. Based on the powerful, yet
beginner-friendly Python programing language, the pack-
age addresses a wide range of users to implement mod-
els with growing complexity. For example, by employing
event methods, pyFOOMB supports the modeling of dis-
crete behaviors in process quantities, which is an impor-
tant feature for the simulation and optimization of fed-
batch processes. The concept of model replicates and
definition of local and global parameters mirrors the iter-
ative nature of data generation from cycles of experiment
design, execution and evaluation.Moreover, seamless inte-
grationwith existing and future Python packages for scien-
tific computing is greatly facilitated.
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F IGURE 6 Modeling of lab-scale batch processes. (A) Explorative data analysis for one replicate culture. Concentrations for biomass,
d-xylose and d-xylonate are denoted by symbols 𝑋, 𝑆, and 𝑃, respectively. Following linear regression analysis first estimates for the model
parameters𝑌X/S,𝑌P/S and𝑌P/X can be derived (for later comparison values are transformed tomass-based units). (B) ODEmodel using classical
rate equations. (C) Formulation of specific observation functions to map the state variables to the measurements. Here simple transformations
from measured molar concentrations to simulated mass concentrations are performed
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F IGURE 7 Results from repeated parameter estimation using parallelized MC sampling (𝑛 = 200). (A) Comparison of model predictions
with experimental data. (B) Uncertainty analysis using a corner plot of the resulting empirical parameter distributions. For the sake of brevity,
only the global model parameters are shown
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In summary, pyFOOMB is an ideal tool for model-based
integration and analysis of data from classical lab-scale
experiments to state-of-the-art high-throughput biopro-
cess screening approaches.

7 AVAILABILITY

The source code for the pyFOOMB package is freely avail-
able at github.com/MicroPhen/pyFOOMB. It is published
under theMIT license. Currently, its compatibility is tested
with Python 3.7 and 3.8, for Ubuntu and Windows operat-
ing systems. The use of pyFOOMB within a conda envi-
ronment is recommended, since the most recent versions
of important dependencies are maintained at the conda-
forge channel.
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APPENDIX A: NOTEBOOK EXAMPLES

TABLE A1 Jupyter notebook examples provided with the pyFOOMB package

# Title Topic
1 Modeling Demonstrates basic usage of the pyFOOMB package based on a simple toy mass-action kinetic, i.e. how to

implement the right-hand-side of the resulting equation system and how to run and visualize
simulations. The concept of model replicates is introduced and resulting effects are visualized.

2 Events The previous model is extended by events, which are timepoints where the model behavior can be
changed safely without interfering with the multistep logic of the ODE integrator. Shows how to use
different parameter values before and after an event, as well as how to manipulate the model state
values upon reaching an event.

3 Observation
functions

Introduces observation functions that map a model state to an observation, according to a specific,
parametrized function.

4 Parameter
estimation

Describes one of the major functionalities of the pyFOOMB package. Parameter values of an implemented
model are estimated based on (artificial) noisy data. The presented methods use algorithms from
Scipy’s optimize module. Besides approximation of uncertainties for estimated parameters based on
Fisher information matrix, Monte-Carlo sampling is introduced as method for non-linear error
propagation. Suitable visualization methods are used for interpretation of results.

5 Sensitivities Shows how to calculate local sensitivities with subsequent visualization.
6 Bioprocess

models
Implements several example bioprocess models, serving as starting point for implementation of
user-specific ones.

7 Fed-batch
models

Demonstrates the implementation of fed-batch bioprocess models at various complexities. Shows how to
use the models to derive further performance indicators such as maximum yield and productivity and
how to get these from a model parameters’ search. In addition, the formulation of the corresponding
optimization problem is presented.

8 Measurement
data

Loading measurement data from spreadsheet files with subsequent creation of “Measurement” objects,
focusing on three use cases that are based on: 1) Individual time vectors of varying lengths, with a
shared time vector; 2) A shared time vector but missing data points for several measurements, and 3)
Multi-replicate experiments with a shared time vector but missing data points.

9 Parallel
parameter
estimation
(PPE)

Introduces PPE and the concept of continuation of an estimation job.

10 PPE - Optimizer
comparison

Compares different optimization algorithms for PPE of a simple bioprocess model utilizing artifical noisy
data. Comparison is based on runtimes and achieved losses for the given optimization problem.

11 PPE - Hyperpa-
rameter
adjustment

Demonstrates how different parameter settings of the “de1220” and “compass_search” algorithms affect
runtime and quality of the model calibration outcome.

12 PPE - Monte
Carlo
sampling

Introduces the application of PPE for Monte-Carlo sampling as method for non-linear error propagation.

13 PPE - Monte
Carlo
Sampling

In addition to the previous examples, the possibility to apply further constraints (beyond simple box
bounds for parameters) is demonstrated.

14 Tracking
specific rates
during
integration

Shows how specific rates can be derived and visualized as time-dependent performance indicators.

15 Non-negative
states

For enforcing non-negative state values, events can be employed. Without, state values can take very
small but negative numbers due to the operation mode of the integrator, which treats those values
internally as zero (depending on the specified tolerances).
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