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Abstract

Background: Disease mapping has become popular in the field of statistics as a method to explain the spatial
distribution of disease outcomes and as a tool to help design targeted intervention strategies.
Most of these models however have been implemented with assumptions that may be limiting or altogether lead
to less meaningful results and hence interpretations. Some of these assumptions include the linearity, stationarity
and normality assumptions. Studies have shown that the linearity assumption is not necessarily true for all covariates.
Age for example has been found to have a non-linear relationship with HIV and HSV-2 prevalence. Other studies have
made stationarity assumption in that one stimulus e.g. education, provokes the same response in all the regions under
study and this is also quite restrictive. Responses to stimuli may vary from region to region due to aspects like culture,
preferences and attitudes.

Methods: We perform a spatial modeling of HIV and HSV-2 among women in Kenya, while relaxing these assumptions
i.e. the linearity assumption by allowing the covariate age to have a non-linear effect on HIV and HSV-2 prevalence
using the random walk model of order 2 and the stationarity assumption by allowing the rest of the covariates to vary
spatially using the conditional autoregressive model. The women data used in this study were derived from the 2007
Kenya AIDS indicator survey where women aged 15–49 years were surveyed. A full Bayesian approach was used and
the models were implemented in R-INLA software.

Results: Age was found to have a non-linear relationship with both HIV and HSV-2 prevalence, and the spatially
varying coefficient model provided a significantly better fit for HSV-2. Age-at first sex also had a greater effect on
HSV-2 prevalence in the Coastal and some parts of North Eastern regions suggesting either early marriages or
child prostitution. The effect of education on HIV prevalence among women was more in the North Eastern, Coastal,
Southern and parts of Central region.

Conclusions: The models introduced in this study enable relaxation of two limiting assumptions in disease mapping.
The effects of the covariates on HIV and HSV-2 were found to vary spatially. The effect of education on HSV-2 status for
example was lower in North Eastern and parts of the Rift region than most of the other parts of the country. Age was
found to have a non-linear effect on HIV and HSV-2 prevalence, a linearity assumption would have led to wrong results
and hence interpretations. The findings are relevant in that they can be used in informing tailor made strategies for
tackling HIV and HSV-2 in different counties. The methodology used here may also be replicated in other studies with
similar data.
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Background
The World Health Organization (WHO) places at more
than 1 million, the number of people who acquire sexu-
ally transmitted infections (STI) daily. By 2013 more
than 530 million (about 7.5 %) had the virus that causes
genital herpes or the herpes simplex virus type 2 (HSV-2)
[1]. Out of these, it is estimated that about 123.7 million
or 23 % resided in sub-Saharan Africa, among whom 63 %
were women [2]. HSV-2 prevalence in the age group
15–49 in sub-Saharan Africa region ranges from 30 to
80 % among women and from 10 to 50 % among men
[3]. There were about 35 million individuals living with
HIV in sub-Saharan Africa by the end of 2013 with 2.1
million new infections [4]. HSV-2 is associated with a
two to three-fold increased risk of HIV acquisition and
an up to five-fold increased risk of HIV transmission
per-sexual act, and may account for 40 to 60 % of new
HIV infections in populations where HSV-2 has a high
prevalence [2]. HIV and HSV-2 share common risk fac-
tors e.g. education level, place of residence, and age
among others. Therefore understanding the spatial dis-
tribution, the dynamics and the underlying factors that
propagate the spread of these diseases will help in ul-
timately winning the war against them. STIs can have
serious consequences beyond the immediate impact of
the infection itself, through mother-to-child transmis-
sion (MTCT) of infections and chronic diseases. Drug
resistance is a major threat to reducing the impact of
STIs worldwide [1]. The national HIV and HSV-2
prevalence rates in Kenya within the adult population
(15–64 years) were estimated to be as high as 5.6 % and
7.1 % respectively [5], with a wide gender and geo-
graphical variation. The North Eastern region had HIV
prevalence of as low as 2.1 % while regions around Lake
Victoria and the Western region had prevalence ran-
ging from between 13–25 % [6]. HIV and HSV-2 preva-
lence by age have a non-linear relationship assuming an
inverted U shape [6, 7]. HIV prevalence increases with
age until it plateaus at between ages 25–35, then starts
decreasing with increasing age. HSV-2 prevalence in-
creases with age up to between ages 35–45 then begins
to decline with increasing age.
In the conventional generalized linear regression

models applied to spatial data, many studies have as-
sumed stationarity in that the same stimulus of a disease
predictor provokes the same response in all parts of the
study region [8–10]. This assumption is highly untenable
for spatial processes. This may be as a result of sampling
variation, intrinsically different relationships across space
e.g. attitudes, cultures, preferences and model misspeci-
fication. It is therefore realistic to assume that the re-
gression coefficients vary across space [11]. The issue
of spatial non-stationarity can be addressed by allowing
the relationships we are measuring to vary over space

through the geographically weighted regression (GWR)
model where the weights applied to observations in a
series of locally weighted regression models across the
study area are determined by a spatial kernel function
[11], or the Bayesian spatially varying coefficients process
(BSVCP), where spatially varying coefficients are modeled
as a multivariate spatial process [12]. In the BSVCP model
as discussed by Assuncao et al, the covariates are allowed
to vary spatially by assigning its coefficients the Bayesian
autoregressive (BAR), simultaneous autoregressive (SAR)
or the conditional autoregressive (CAR) model [13].
Assuncao et al applied the BSVCP to model agricultural
development in Brazil. The model showed significant re-
gional differences in agricultural development [14]. Evi-
dence of spatially varying parameters, even against strong
prior belief on the absence of such variation, can be indi-
cative of spatial differences of database collection proce-
dures e.g. large differences on underreporting rates [13].
Several studies that use the linear predictor class of
models including both the general and generalized linear
models assume that all the covariates in the study have a
linear relationship with the response variable. This linear
relationship may not hold for all variables as in our case;
age, which has a non-linear relationship with the response
variable. Our objective is to perform a spatial modeling
analysis while relaxing the stationarity and the linearity
assumption by respectively employing the BSVCP and the
random walk model of order 2 to model HIV and HSV-2
among women in Kenya.

Methods
Data
The data for this study was obtained from the Kenya
AIDS Indicator Survey (KAIS) which was carried out by
the Kenyan government with financial support from the
United States President’s Emergency Plan for AIDS Relief
(PEPFAR) and the United Nations (UN). The main aim of
the survey was to obtain high quality data on the preva-
lence of HIV and Sexually Transmitted Infections (STI)
among adults and to assess the knowledge of HIV and
STIs in the population.
The sampling frame for KAIS was the National Sample

Survey and Evaluation Programme IV (NASSEP IV). It
consisted of 1800 clusters comprising 1260 rural and
540 urban clusters; of these, 294 rural and 141 urban
clusters were sampled for KAIS. The overall design for
KAIS 2007 was a stratified, two-stage cluster sampling
design. The first stage involved selecting clusters from
NASSEP IV, and the second stage involved the selection
of household for KAIS with equal probability in the
urban-rural strata within the districts. A sample of 415
clusters and 10,375 households were systematically se-
lected for KAIS. A uniform sample of 25 households per
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cluster was selected using an equal probability system-
atic sampling method.
The survey was twofold: A household questionnaire

was used to collect the characteristics of the living envir-
onment and an individual questionnaire to collect infor-
mation on demographic characteristics and the knowledge
of HIV and STIs on men and women aged 15–64 years. A
representative sample of households and individuals was
selected from eight provinces in the country. Each indi-
vidual was asked for consent to provide a venous blood
sample for HIV and HSV-2 testing. More information
on survey methodologies used in collecting the data is
found in the final KAIS, 2007 report [6]. This study
uses the 2007 data even though a new round of KAIS,
2012 [5] has been done. The final release of this new
data had not been made hence the data was not avail-
able for use. This study uses the women’s data from the
KAIS, 2007 survey. Information from 4864 women,
aged 15–64 years who had provided venous blood for
HIV and HSV-2 testing and also had full covariate in-
formation was used in the analysis. In the data, age was
captured as both categorical and continuous while all
other covariates were categorical. Readers are directed
to the KAIS, 2007 report [6] for more information. An
initial exploratory data analysis was carried out using a
univariate standard logistic regression model to deter-
mine the association of each single covariate with the
outcome variable (HIV and HSV-2 status). These vari-
ables were categorized into four groups, namely: demo-
graphic, social, biological and behavioral [9].
From this initial analysis, education level, age at first

sex, perceived risk, partners in the last 1 year, marital
status, place of residence, STI status in the last 1 year
and age of the respondent were found to be associated
with HIV and HSV-2 infection.

Statistical model
The covariates were tested for significance by fitting a uni-
variate standard logistic model between each single covari-
ate with the outcome variables (HIV and HSV-2 status).
The association was considered significant at 5 % signifi-
cance level. These are shown in Tables 1 and 2.
Let yijk be the disease k status (0/1), k = 1 for HIV and

k = 2 for HSV-2, for individual j in county i: i = 1, 2,…,
46. yij1 = 1 if individual j in county i is HIV positive and
zero otherwise and yij2 = 1 if individual j in county i is
HSV-2 positive and zero otherwise. This study assumes
the dependent variable yij1 and yij2 are univariate Bernoulli
distributed, i.e. yij1|pij1 ~ Bernoulli(pij1) and yij2|pij2 ~
Bernoulli(pij2).
The p continuous independent variables are contained

in the vector Xijk = (xij1, xij2,…, xijp)
' while Wijk = (wij1,

wij2,…,wijr)
' contains r categorical independent random

Table 1 Exploratory data analysis for HIV

Variable P-Value Unadjusted OR

Demographic characteristics

Place of residence (Ref Rural)

Urban 0.001 0.749 (0.635, 0.884)

Age (Ref 15–19) 0.000

20–24 0.000 2.825 (1.982, 4.026)

25–29 0.000 3.055 (2.133, 4.375)

30–34 0.000 4.656 (3.276, 6.618)

35–39 0.000 3.682 (2.544, 5.328)

40–44 0.000 2.796 (1.869, 4.181)

45–49 0.000 2.783 (1.858, 4.169)

50–54 0.000 2.347 (1.490, 3.696)

55–59 0.294 1.352 (0.770, 2.375)

60–64 0.173 0.487 (0.173, 1.371)

Social Characteristics

Wealth Quantile (ref poorest) 0.525

Second 0.652 1.058 (0.827, 1.353)

Middle 0.392 0.896 (0.696, 1.153)

Fourth 0.564 1.074 (0.843, 1.369)

Richest 0.592 0.938 (0.741, 1.186)

Media access (Ref No)

Yes 0.257 0.913 (0.781, 1.068)

Education level (Ref none) 0.000

Primary 0.386 1.078 (0.910, 1.276)

Secondary 0.574 0.929 (0.720, 1.200)

Higher 0.000 0.451 (0.303,0 .671)

MaritalStatus (Ref Married, 1 partner) 0.000

Married, +2 partners 0.001 1.536 (1.192, 1.980)

Divorced/separated 0.000 2.503 (1.960, 3.197)

Widowed 0.000 3.301 (2.645, 4.120)

Never married 0.000 0.647 (0.510,0 .820)

Perceived-Risk (Ref No risk) 0.000

Small Risk 0.000 0.325 (0.231,0 .457)

Moderate Risk 0.000 0.447 (0.335, 0.597)

Great Risk 0.574 0.916 (0.676, 1.242)

Age-first-sex (Ref Never had sex) 0.000

Under 11 0.000 8.524 (3.569, 20.358)

Between 12–14 0.000 10.162 (5.774, 17.885)

Between 15–17 0.000 8.636 (5.034, 14.817)

Over 18 0.000 4.870 (2.833, 8.371)

Biological characteristics

Had STI (Ref Yes)

No 0.000 0.406 (0.277, 0.597)

Ever given birth (Ref Yes)

No 0.061 0.405 (0.316,0 .519)
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variables with the first component accounting for inter-
cept. In this study, p = 1 (age) and r = 8.
The unknown mean response namely E(yijk) = pijk re-

lates to the independent variable as follows:

h pij1
� �

¼ XTβ1þWTγ1; for HIV and

h pij2
� �

¼ XTβ2þWTγ2 for HSV‐2:

Where h(.) is a logit link function, β is a p dimensional
vector of regression coefficients for the continuous inde-
pendent variables, and γ is a r dimensional vector of re-
gression coefficients for the categorical independent
variables. A random walk model of order 2 (RW2) and a
convolution model were employed in order to cater for
both the non-linear effects of the continuous covariates
and the spatial autocorrelation in the data.
The RW2 model approach relaxed the highly restrictive

linear predictor by a more flexible semi-parametric pre-
dictor, defined as:

h pij1
� �

¼
Xp
t¼1

f t xijt
� �þ f spat si1ð Þ þWTγ1 for HIV and

h pij2
� �

¼
Xp
t¼1

f t xijt
� �þ f spat si2ð Þ þWTγ2 for HSV‐2

The function ft(.) is a non-linear twice differentiable
smooth function for the continuous covariate and
fspat(sik) is a factor that caters for the spatial effects of
each county. This study utilized the convoluted spatial
structure which assumes that the spatial effect can be
decomposed into two components: spatially structured
and spatially unstructured i.e. fspat(sik) = fstr(sik) + funstr(sik) ,
k = 1, 2 [9, 15]. The spatially unstructured random effects
cover the unobserved covariates that are inherent within
the counties or the correlation within the counties e.g.
common cultural practices, climate, cultures etc. while the
spatially structured random effect accounts for any unob-
served covariates which vary spatially among counties.

This is called spatial autocorrelation and it is technically
defined as the dependence due to geographical proximity.
Thus the final model is expressed as:

h pijk
� �

¼
Xp
t¼1

f t xijt
� �þ f str sikð Þ þ f unstr sikð Þ þWTγk ;

with k ¼ 1 forHIV and k ¼ 2 forHSV−2

Parameter estimation
This study used a full Bayesian estimation approach
where parameters were assigned prior distributions as
will be discussed in the priors’ specification section.

Non-linear effects
Several studies have discussed extensively the methods
for estimating the smooth function ft(.) [16–18]. The pe-
nalized regression splines model proposed by Eliers and
Marx [18] for example is commonly used. Here, the as-
sumption is that the effect of the continuous covariates
can be approximated using the polynomial spline. They
assumed that the smooth function ft(.) can be estimated
by a spline of degree l with K equally spaced knots;
xp,min = ψp1 < ψp2⋯ < ψpk − 1 < ψpK = xp,max. Many studies
have explored the relationships between the Gaussian
Markov Random Fields (GMRF) and smoothing splines
[19–21].In this study we used the random walk model
for estimating the smooth function ft(.). This is briefly
discussed in Appendix 1.

Spatially varying coefficients
As stated before, many studies have been done with the
assumption that the relationship between the explana-
tory variable and the response variables in a regression
model are constant across the study region [8–10]. This
assumption is unrealistic for spatial processes as factors
such as sampling variation, different relationships across
space e.g. attitudes, preferences, culture etc. contribute
to a different response to the same stimuli as one moves
across space. Two competing spatially varying models
are the GWR and the BSVCP. The GWR addresses this
by estimating the coefficients β's by the weighted least
squares method, where more emphasis in terms of
weights are placed on the observations which are close
to location i, since it is assumed that the observations
close to i exert more influence on the parameter esti-
mates at location i than those farther away [11]. The
weighting schemes can be fixed or adaptive. In the fixed
scheme, observations that are within some distance d
are given the weight of 1 while those farther away be-
yond some distance d from location i are given a weight
of zero, while in the adaptive scheme, weights inside
some radius d are made to decrease monotonically to

Table 1 Exploratory data analysis for HIV (Continued)

Behavioral Characteristics

Partners in last 1 year
(Ref No partner)

0.000

1 partner 0.034 1.021 (0.314,0.812)

2 partners 0.665 1.232 (0.771,3.433)

3 or more partners 0.999 2.455 (1.759,11.233)

Travel away (didn’t stay away) 0.029

Stayed away 1–2 times 0.015 1.241 (1.042, 1.477)

Stayed away 3–5 times 0.006 1.362 (1.092, 1.698)

Stayed away 6–10 times 0.451 1.170 (0.778, 1.761)

Stayed away > 11 times 0.748 0.894 (0.451, 1.772)
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zero as the radius increases. In this study we used the
BSVCP (Appendix 2) model to relax the stationarity as-
sumption, the covariates are allowed to vary spatially by
assigning its coefficients the conditional autoregressive
(CAR) model [13].

Priors for the spatial components
The prior for the structured random effects was defined
to follow the CAR model while for the unstructured ran-
dom effects, the independently and identically distrib-
uted normal distribution.

Posterior distribution
This is the distribution of the parameters after observing
the data. The posterior distribution is obtained by updat-
ing the prior distribution with the observed data. Since
our study is fully Bayesian, inference is made by sam-
pling from this posterior distribution. Markov Chain
Monte Carlo (MCMC) is the most common approach to
do inference for latent Gaussian models however this
method is slow and performs poorly when applied to
such models [22]. The Integrated Nested Laplace (INLA)
criterion is a relatively new technique developed to cir-
cumvent these shortfalls [22]. The posterior distribution
for the latent Gaussian model is:

πðx;θ yj ÞαπðθÞπðx θj Þ
Y
i∈I

π yi xi; θj Þð

απ θð Þ Q θð Þj jn2 exp
�
−
1
2
xTQ θð Þxþ

X
i∈I

logπðyi xi; θj Þ
�
:

Where x is the class of latent fields, θ is the set of
hyper parameters and y is the data. In the INLA ap-
proach, the posterior marginals of interest are:

πðxi yj Þ ¼
Z

πðxi θ; yj Þπðθ yj Þdθ and πðθj yj Þ ¼
Z

π θ yj Þdθ‐j;
�

and these are used to construct the nested approximations:

Table 2 Exploratory data analysis for HSV-2

Variable P-Value Unadjusted OR

Demographic characteristics

Place of residence (Ref Rural)

Urban 0.000 0.823 (0.746,0 .907)

Age (Ref 15–19) 0.000

20–24 0.000 2.745 (2.254, 3.343)

25–29 0.000 4.374 (3.591, 5.329)

30–34 0.000 6.794 (5.559, 8.303)

35–39 0.000 8.299 (6.739,10.220)

40–44 0.000 9.389 (7.538, 11.694)

45–49 0.000 8.641 (6.936, 10.765)

50–54 0.000 8.378 (6.592, 10.649)

55–59 0.000 8.661 (6.720, 11.162)

60–64 0.000 5.751 (4.279, 7.729)

Social Characteristics

Wealth Quantile (ref poorest) 0.051

Second 0.011 1.199 (1.042, 1.381)

Middle 0.466 1.053 (.916, 1.212)

Fourth 0.001 1.279 (1.113, 1.469)

Richest 0.569 1.039 (0.910, 1.186)

Media access (Ref No)

Yes 0.821 1.010 (0.924, 1.104)

Education level (Ref none) 0.000

Primary 0.000 0.814 (0.738, 0.898)

Secondary 0.000 0.704 (0.610,0 .813)

Higher 0.000 0.457 (0.381, 0.548)

Marital Status (Ref Married, 1 partner) 0.000

Married, +2 partners 0.000 2.381 (2.042, 2.778)

Divorced/separated 0.000 1.904 (1.607, 2.256)

Widowed 0.000 3.238 (2.719, 3.857)

Never married 0.000 0.292 (0.257,0 .333)

Perceived-Risk (Ref No risk) 0.000

Small Risk 0.000 0.452 (0.371,0 .551)

Moderate Risk 0.000 0.581 (0.483, 0.699)

Great Risk 0.675 0.957 (0.778, 1.177)

Age-first-sex (Ref Never had sex) 0.000

Under 11 0.000 12.572 (7.554, 20.922)

Between 12–14 0.000 18.384 (13.685, 24.697)

Between 15–17 0.000 15.053 (11.477, 19.743)

Over 18 0.000 9.797 (7.487, 12.818)

Biological characteristics

Had STI (Ref Yes)

No 0.000 0.556 (0.407,0 .760)

Ever given birth (Ref Yes)

No 0.052 0.187 (0.163, 0.215)

Table 2 Exploratory data analysis for HSV-2 (Continued)

Behavioral Characteristics

Partners in last 1 year
(Ref No partner)

0.009

1 partner 0.802 0.990 (0.873,1.276)

2 partners 0.831 1.108 (1.925, 6.294)

3 or more partners 0.938 0.535 (0.699,1.434)

Travel away (didn’t stay away) 0.000

Stayed away 1–2 times 0.000 1.251 (1.133, 1.380)

Stayed away 3–5 times 0.000 1.468 (1.289, 1.672)

Stayed away 6–10 times 0.017 1.324 (1.052, 1.665)

Stayed away > 11 times 0.198 1.258 (0.887, 1.786)
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~πðxi yj Þ ¼
Z

~πðxi θ; yj Þ ~πðθ yj Þdθ and ~πðθj yj Þ ¼
Z

~π θ yj Þdθ‐j:
�

The analyses in this study were carried out using the R
software with the INLA package. The codes used for this
analysis can be found in Additional file 1.

Model diagnostics
The models were compared using the deviance informa-
tion criterion (DIC) suggested by Spiegelhalter et al.
[23]. The best fitting model is one with the smallest
DIC. The DIC value is obtained as: DIC ¼ �D θð Þ þ pD ,
where �D is the posterior mean of the deviance that mea-
sures the goodness of fit while pD gives the effective
number of parameters in the model which penalizes for
complexity of the model. In DIC, low values of �D indi-
cate a better fit while small values of pD indicate model
parsimony. One challenge with the DIC is, how big the
difference in DIC values of two competing models needs
to be in order to declare one model as being better than
the other is not well defined. Studies have declared that
a difference in DIC of 3 between two models cannot be
distinguished while for a difference of between 3 and 7
the two models can be weakly differentiated [23].

Application/Data analysis
The following sets of models were investigated in order
to understand the effect of the observed covariates and
unobserved effects on the distribution of HIV and HSV-2
in Kenya among the female population.
Model 1: This is a model of fixed categorical covari-

ates which are assumed to have linear effects on the re-
sponse variable namely, education level, age at first sex,
perceived risk, partners in the last 1 year, marital status,
place of residence, STI status in the past 1 year, number
of times one had stayed away from home in the past 1
year and one continuous covariate, age, modeled with a
non-linear smooth function: the RW2 model. Model 1
does not take into account the spatially structured and
the spatially unstructured random effects and the two
diseases are modeled independently.
Model 2: This is an additive model that assumes linear

effects of the categorical covariates listed in model 1
above, non-linear effect of the continuous covariate age
and spatially unstructured random effect which caters
for the unobserved covariates that are inherent within
the counties specified by the identically and independ-
ently distributed (iid) normal distribution.
Model 3: This model explores the effect of the linear

covariates listed in model 1 above, non-linear covariate
age and spatially structured random effect which accounts
for any unobserved covariates which vary spatially among
counties, specified by the CAR model.

Model 4: Examines the effects of the nonlinear effects
of age, linear effects of the categorical covariates and a
convolution of spatially structured and spatially unstruc-
tured random effect, specified by the CAR model and
the iid normal distribution respectively.
Models 5–8 are similar to models 1–4 respectively,

the only difference is that the regression coefficients γ in
these models are assumed to vary spatially and are assigned
CAR priors.

Model1 : logit ρij1

� �
¼ β01 þ f ageð Þ þ wTγ for HIV

logit ρij2

� �
¼ β02 þ f ageð Þ þ wTγ for HSV−2

Model2 : logit ρij1

� �
¼ β01 þ f ageð Þ þ wTγ þ f unstr si1ð Þ for HIV

logit ρij2

� �
¼ β02 þ f ageð Þ þ wTγ þ f unstr si2ð Þ for HSV−2

Model3 : logit ρij1

� �
¼ β01 þ f ageð Þ þ wTγ þ f str si1ð Þ for HIV

logit ρij2

� �
¼ β02 þ f ageð Þ þ wTγ þ f str si2ð Þ for HSV−2

Model4 : logit ρij1

� �
¼ β01 þ f ageð Þ þ w′γ þ f unstr si1ð Þ

þ f str si1ð Þ f orHIV

logit ρij2

� �
¼ β02 þ f ageð Þ þ w′γ þ f unstr si2ð Þ

þ f str si2ð Þ f orHSV−2

Model5 : logit ρij1

� �
¼ β01 þ f ageð Þ þ wTγ forHIV

logit ρij2

� �
¼ β02 þ f ageð Þ þ wTγ forHSV−2

Model6 : logit ρij1

� �
¼ β01 þ f ageð Þ þ wTγ þ f unstr si1ð Þ f orHIV

logit ρij2

� �
¼ β02 þ f ageð Þ þ wTγ þ f unstr si2ð Þ for HSV−2

Model7 : logit ρij1

� �
¼ β01 þ f ageð Þ þ wTγ þ f str si1ð Þ for HIV

logit ρij2

� �
¼ β02 þ f ageð Þ þ wTγ þ f str si2ð Þ forHSV−2

Model8 : logit ρij1

� �
¼ β01 þ f ageð Þ þ w′γ þ f unstr si1ð Þ

þf str si1ð Þ forHIV

logit ρij2

� �
¼ β02 þ f ageð Þ þ w′γ þ f unstr si2ð Þ

þ f str si2ð Þ for HSV−2

Ethical statement
Ethical clearance was granted by the institutional review
board of the Kenya Medical Research Institute (KEMRI)
and the US Centers for Disease Control and Prevention.
No ethical clearance was required from the University of
Kwazulu-Natal or any other institution save for the
aforementioned. The consent procedure, stated below,
was approved by KEMRI and the US centers for Disease
Control and Prevention.
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Participants provided separate informed oral consent for
interviews, blood draws and blood storage and the inter-
viewer signed the consent form to indicate whether or not
consent was given for each part. An oral informed consent
was given for participants in the age of 18–64 while for mi-
nors, in the age group 15–17, oral informed consent was
obtained from a parent/guardian or other adult responsible
for the youth’s health and welfare before the youth was
asked for his/her consent. Only after the parent or guard-
ian had agreed, was the consent of the adolescent sought.
Investigators in the study got a waiver of documenta-

tion of informed consent for all participants due to the
fact that the research presented very minimal risk of
harm to the individuals. The waiver did not adversely
affect the rights and welfare of the participants, and the
survey involved no procedures for which written consent is
normally required outside the research context in Kenya.

Results
Model assessment and comparison
Table 3 shows the DICs for the four separately fitted
models for HIV and HSV-2. These four models were as-
sumed to have stationary coefficients. Table 4 shows the
DICs for the four separate models with spatially varying
coefficients. The model with the smallest DIC provides
the best fit. Studies have however reported that two
models with a difference of 3 or less in DIC are indistin-
guishable, while a difference of between 3 and 7 suggests
that the two models are weakly distinguishable [23].
From the tables, all the spatially varying models have a
lower DIC as compared with their corresponding station-
ary models. For HIV, Spatially varying coefficient models
6, 7, 8 are not significantly different form each other and
from the corresponding stationary model counterparts as
the difference in DIC is less than 3. This suggests that the
covariates for HIV do not vary significantly across space.
For HSV-2, the spatially varying models are significantly
better than the stationary models since they have signifi-
cantly lower DICs. This suggests that the covariates pro-
voke different responses across space for HSV-2. Spatially
varying model 8 provided the best fit for HSV-2.
We therefore present and discuss the results based on

model 8 for both HIV and HSV-2, which allows the covar-
iates to vary spatially by the CAR model and also captures
the structured and the unstructured random effects.

Spatially varying effects
The DIC values indicate that the SVC models are better
than the stationary ones, especially for the HSV-2 model.
The choropleth maps show the varying effects of each
covariate across space. Figure 1 shows the map of Kenya.
Kenya is positioned on the equator on Africa’s East
Coast. The administration units in Kenya were provinces
before changing to counties after the 2010 promulgation
of the constitution. There are 47 counties in Kenya but
this study discusses results from 46 counties as the KAIS
2007 was not conducted in Samburu County due to
insecurity.

HIV
Though the SVC model for HIV was not significantly
different from its stationary counterpart, the choropleth
maps suggest that the effects of some of the covariates
vary across space. The effect of education on HIV preva-
lence among women was more in the North Eastern,
Coastal, Southern regions and parts of Central region in-
dicated by the yellow to orange shading in the choro-
pleth map in Fig. 2. Age at first sex also had a greater
effect in those parts where education had greater effects
as compared with the other parts of the country sug-
gesting a correlation between education and age at first
sex. The effect of number of partners had in the last 1
year was almost the same across the country except for
some parts of West, Lake and Central region, where the
effect was greater indicated by yellow/orange shading on
the choropleth map in Fig. 2. The effect of frequency of
travel away was also evident in the North Eastern, Coastal
and Southern regions and parts of Central region while
that of marital status was dominant in the Lake region.

HSV-2
The effect of education on HSV-2 status was lower in
North Eastern and parts of Rift region than most of the
other parts of the country shown by the blue shading on
the map in Fig. 3. Age at first sex also had a greater
bearing in the Costal and some parts of North Eastern,
parts of Rift and West and Lake (pink/yellow shading)
suggesting either early marriages or child prostitution.
The highest rates of arranged marriages among adoles-
cent girls in Kenya are found in Northeastern (73 %),
Rift Valley (22 %), and Coast (21 %) provinces [24]. A
study by the University of Chicago in Kenya and Zambia

Table 3 Stationary model

Model 1 Model 2 Model 3 Model 4

HIV HSV-2 HIV HSV-2 HIV HSV-2 HIV HSV-2

pD 12.83 13.71 38.50 51.28 38.84 51.17 38.47 51.28

�D θð Þ 2509.47 6202.83 2366.25 5827.92 2367.05 5827.87 2366.24 5827.90

Total DIC 2522.30 6216.54 2404.75 5879.20 2405.89 5879.04 2404.71 5879.18
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found that among 15-to-19 year old girls who are sexu-
ally active, being married increased their chance of HIV
and other STIs by more than 75 %. This is due to the
fact that most of these young marrieds were more likely
to be in a polygamous union [25]. Partners had in the
last 1 year had more effect on HSV-2 status in the West
and Lake regions and some parts of the Central and
Southern regions depicted by yellow shading on Fig. 3,
while the number of partners had in the last 1 year had
less effect in the regions with blue shading. The effect of
place of residence also varied spatially. The effects were
higher in the West and Lake, Southern and parts of
Central and Coastal and Rift regions depicted by yellow
shading on Fig. 3.
The spatial effects based on model 4 indicate that HIV

prevalence varies spatially with areas in the Central,
West and Lake regions recording the highest prevalence.
HIV prevalence is lowest in the North Eastern region
(shown by blue shadding on Fig. 4) with some significant
prevalence in some parts of the Coastal region. On the
other hand, HSV-2 prevalence is also highest in the
West and Lake regions, but also generally high across
the country as shown in the yellow/orange shadding on
the choropleth map in Fig. 4. Most regions with high
HSV-2 prevalence had aslo a high HIV prevalence. Iden-
tifying the effects of individual covariates on each area

can go a long way in informing strategies to deal with
HIV and HSV-2 prevalence.

The non-linear effect of age
Figure 5 shows the nonlinear association between age of
an individual and HIV infection and age of an individual
and HSV-2 infection. The figures give the posterior
mean of the smooth function and their corresponding
95 % CI. From the figures it is evident that there is a
nonlinear relationship between age and HIV and HSV-2
infection. An assumption of linear relationship would
have led to misleading results and subsequently wrong
interpretations. The chance of HIV infection increases
with age up to an optimum age of about 30 years then
starts declining with increase in age. For HSV-2, the
likelihood of infection increases with age up to an
optimum age of about 40 years then starts to decline
thereafter with increasing age. The results depict that
the prevalence of HIV peaks earlier in age than HSV-2.

Discussion
This study found that the effect of the covariates on
HIV and HSV-2 prevalence varied spatially, although the
spatially varying HIV model was not significantly different
from the stationary one. This could be due to bias intro-
duced by deletion of cases. A stationarity assumption

Table 4 Spatially varying coefficients

Model 5 Model 6 Model 7 Model 8

HIV HSV-2 HIV HSV-2 HIV HSV-2 HIV HSV-2

pD 32.43 61.70 38.68 69.58 39.05 68.57 38.58 69.34

�D θð Þ 2430.02 5932.32 2365.98 5773.91 2365.77 5779.05 2365.80 5773.84

Total DIC 2462.45 5994.02 2404.66 5843.49 2404.82 5847.62 2404.38 5843.17

Fig. 1 Map of Kenya
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would therefore have masked these varying effects. The
major strength of the spatially varying model is that it is
able to unmask the effect of each covariate on HIV and
HSV-2 prevalence in each region. Age at first sex had
greatest effect on HSV-2 prevalence in the Central and
parts of Rift region and more effect on HIV prevalence in

the Coastal, North Eastern and Central regions. This may
suggest either early marriages,child prostitution or teenage
sex. Intervention strategies geared towards delaying the
age at first sex, stoping childhood prostitution or early
marriages can be put in place in these regions. Partners
had in the last 1 year had more effect on HSV-2 status in

Fig. 2 Spatially varying effects of covariates on HIV status

Fig. 3 Spatially varying effects of covariates on HSV-2 status
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the West and Lake regions and some parts of the Central
region. Residents in these regions can be educated on
faithfulness, use of protection and/or absteinance. Place of
residence had more effect on HSV-2 prevalence in the
Southern, parts of Central, West, Lake and Coastal regions.
Various studies have documented that education level is in-
versely related to HIV and HSV-2 infection [26, 27]. Educa-
tion level provoked more response in HIV prevalence in
the North Eastern, Coastal, Southern and parts of Central
region. In the Coastal region where tourism is rife, vices
such as child prostitution and drug abuse can greatly con-
tribute to the prevalence of HIV and HSV-2. Education can
not only detract an individual from activities that can lead
to acquisition of HIV and/or HSV-2, but also make them
aware of the safe practices. The effects of frequency of
travel away on HIV prevalence was dominant in Coastal,
Central and Rift regions, with some parts of North Eastern

region having a near zero effect while for HSV-2 preva-
lence, the effect was dominant in the West and Lake re-
gions and some parts of Central and Rift region. This
shows that frequency of travel away has different effects
across the regions suggesting that women in the Coastal,
Central and Rift regions travel away from their homes/re-
gions more than women from the rest of the country.
Frequency of travel away also has different effects on HIV
and HSV-2. Since its effect on HSV-2 is dominant in West
and Lake region, this could mean that the regions visited
by these women have high HSV-2 prevalence and the same
applies for HIV. The 2011-12 Tanzanian HIV/AIDS and
malaria indicator survey found that women who traveled
away from home five or more times in a year were twice
likely to be infected with HIV(STIs) compared to women
who did not travel [28]. This could be due to the fact that
these women are more likely to engage in risky sexual

Fig. 4 Spatial effects of HIV and HSV-2

Fig. 5 Non-linear effect of age on HIV and HSV-2
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behaviours when they are away from home. The effect of
marital status on HIV prevalence was dominant in the
West and the Lake region. This could be attributed to
traditional practices such as wife inheritance which is
rife in these regions. Wife inheritance is a widespread
cultural practice in sub-Saharan Africa that increases
the risk of HIV acquisition and transmission [29, 30]
Age was found to have a non-linear effect on both

HIV and HSV-2. i.e. an inverted “U” shape. The likeli-
hood of HIV infection among women increases with age
up to about age 30 then reduces thereafter with increasing
age. On the other hand the likelihood of HSV-2 infection
increases with age up to about age 40 and then starts de-
clining with age. These findings were consistent with
other studies [31]. Spatial effects in the model account for
unobserved variables that represent those variables that
vary spatially. Identifying high prevalence areas and the re-
lationship between HIV and HSV-2 can provide more
insight that can be useful in coming up with campaigns
and prevention strategies for specific regions. There was
evidence of spatial variation of HIV and HSV-2 infection
among counties. HIV prevalence was lowest in the North
Eastern region with some significantly high prevalence in
some parts of the Coastal, Central, Western and lake re-
gions. HSV-2 prevelance was highest in the West and
Lake regions, but generally high across the country. Iden-
tifying the effects of individual covariates on each region
will help in informing region specific strategies to deal
with HIV and HSV-2 prevalence.
The spatially varying coefficient model has a huge epi-

demiological implication. With limited resources such as
funds, time and personnel, intervention strategies may
be tailor made for specific regions instead of rolling out
blanket intervention strategies. More emphasis for ex-
ample can be put in delaying the age at first sex in those
regions where the effect of age at first sex on HIV and
HSV-2 was great etc. Areas where individuals engage in
sexual activities with multiple partners can for example
be targeted with intervention strategies tailored to either
help these individuals stick to one partner or educate
them on the use of protection rather than addressing is-
sues that do not contribute much to the prevalence of
HIV and HSV-2 in that particular area thereby wasting
valuable resources.

Conclusion
This study used a full Bayesian approach to relax the sta-
tionarity assumption of the coefficients using the condi-
tional autoregressive model [12]. The non-linear effects of
age were modeled using the random walk model of order
2 [32], while the spatial effects and the spatially unstruc-
tured random effects in the model were modeled using a
Gaussian Markov Random Field (GMRF) and a zero mean
Gaussian process respectively. We determined that the

effects of the covariates on HIV and HSV-2 prevalence
vary across space while age had a non-linear effect on
HIV and HSV-2 prevalence. The posterior distribution
was obtained by updating the prior distribution with
the observed data. Since our study was fully Bayesian,
inference was made by sampling from this posterior
distribution. Markov Chain Monte Carlo (MCMC) is
the most common estimation approach to inference for
latent Gaussian models, however the method is slow
and performs poorly when applied to such models [22].
The Integrated Nested Laplace (INLA) criterion, a rela-
tively new technique developed to circumvent these
shortfalls was used instead [22]. The SVC model was
found to be better than the stationary model on the ac-
count of DIC.
The covariates used in these study had full informa-

tion. This was obtained by deleting all missing values.
More accurate results may be obtained by incorporating
the weights to account for these deletion a task impossible
for this study as the weights were based on different ad-
ministrative units (provincial) instead of counties. The
models introduced in this study can be replicated in other
studies with similar data. Further work could be con-
ducted to get the effect of the particular categories of the
covariates e.g. for marital status, the effect of divorce, or
single status e.t.c on each county. A comparison of this
analysis with the recent KAIS 2012 data would reveal how
the effects of the covariates in each region have changed
over time and if the intervention strategies put in place
have helped. Other models such as the simultaneous auto-
regressive model can be used in place of the conditional
autoregressive model to relax the stationarity assumption.
Since the CAR assumes normality, this assumption can
be relaxed or we may altogether use a non-parametric
approach.

Data availability
The authors confirm that all data underlying the findings
are fully available without restriction. The data is held by
the Kenya National Bureau of Statistics and freely avail-
able to the public but a request has to be sent to the
Kenya National Bureau of Statistics. The link to access it
is http://statistics.knbs.or.ke/nada/index.php/catalog/25.

Appendix 1
The Random walk model
Random walk (RW) models can be used as priors to de-
rive the discretized Bayesian smoothing spline estimator
[32]. The Random walk was made spatially adaptive by
introducing local smoothing parameters into the models
[33, 34]. The random walk model of order 2 (RW2) for
the Gaussian vector X = (x1,…, xn) is constructed assum-
ing independent second-order increments:
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Δ2xi¼xi‐2xiþ1þxiþ2eN 0; τ‐1
� �

The density of X is derived from its n-2 s-order decre-
ments as:

πðX τj Þμτ n‐2ð Þ=2exp ‐
τ

2

X
Δ2xi
� �2n o

¼τ n‐2ð Þ=2exp ‐
1
2
XTQX

� 	
The term xi ‐ 2xi + 1 + xi + 2 can be interpreted as an

estimate of the second-order derivative of a continu-
ous time function x(t) at t = i using the values of x(t)
at t = i, i + 1, i + 2 [35]. The RW2 model is quite flex-
ible due to its invariance to addition of a linear trend,
and also computationally convenient due to its Markov
properties i.e.
π(xi|x− i) = π(xi|xi − 2, xi + 1, xi + 2) for 2 < i < n − 2. RW2

is also a GMRF for which efficient numerical methods
for sparse matrix in place of Markov chain Monte Carlo
algorithms exists [36, 37].

Appendix 2
The Bayesian Spatially Varying Coefficient Process
(BSVCP)
The specification of the BSVCP is in a hierarchical manner.
The first stage is to specify the distribution of the data con-
ditional on unknown parameters, and the second stage is
specifying these unknown parameters conditional on other
parameters.
The SVCP model is:

yijk pijkeBernoulli pijk
� �

:





hðpijkÞ ¼ XTβk þWTγk

The prior distribution for the regression coefficients is
given as:

γ μγ;
X

γ




 i
¼ N 1n�1⊗μγ;

X
γ

� �h
[12]

Where:

μγ ¼ μγ0
; ;μγ1

;…; ;μγp

� �Τ
is the vector of means of

the regression coefficients corresponding to each of P
explanatory variables. Spatial dependence is taken into
account through the covariance ∑γ. This is achieved by
specifying the priors for γ's as an aerial unit model e.g.
the conditional autoregressive model (CAR) or the
spatial autoregressive model (SAR) [38] or a geostatisti-
cal approach, where a parametric distance-based covari-
ance function is specified [12]. Our focus is on the aerial
unit model and in particular we assume the CAR priors
for the γ's.

Conditional autoregressive (CAR) Model
Consider a vector ϕ = (ϕ1,…, ϕp)

T of p components that
follows a multivariate Gaussian distribution with mean 0
and B as the inverse of the dispersion matrix, so that B
is a p × p symmetric and positive definite matrix. The
density for ϕ is given by:

p ϕð Þ ¼ 2πð Þp2 Bj j12 exp −
1
2
ϕTBϕ

� �
For the CAR model, the conditional distribution of a

particular component given the remaining compo-
nents is considered. In terms of the elements of the
matrix B = (bij), from the normal theory, ϕi has a full
conditional distribution;

pðϕi ϕ−ij Þ∝ exp −
1
2
bii

�
ϕi−
X
j≠i

−bij
bii

ϕj

�
2

 !

which is normally distributed i.e. ϕijϕ−i∼N
X
j≠i

−bij
bii

ϕj;
1
bii

 !
[39]

Mardia [40] showed the conditions under which the
full conditional distributions specified above uniquely
define a full joint distribution.

We let cij ¼ −bij
bii

and bii ¼ 1
σ2i

and form a matrix C with

cii ¼ 0and cij ¼ − −bij
bii

, and another matrix M =Diag(σi
2)

and M− 1 =Diag(bii)). The inverse of the dispersion
matrix, B is then related to C and M as:

B ¼ M−1 I−Cð Þ:

I is the identity matrix and the joint distribution of ϕ
is MVN(0,M− 1(I −C)). C and M must be modeled prop-
erly to ensure the symmetry of B, and this is achieved by
conditioning cijσj

2 = cjiσi
2. The C matrix is also specified

to show relationship between neighbors. The elements
of matrix C are defined as cii ¼ 0and cij ¼ 1

mi
[39], if j is

adjacent to i and zero otherwise. This is a commonly
used adjacency matrix for lattice data. mi represent the
number of neighbors of region i. Define another matrix
W to hold the adjacency structure, where, wij = 1 if re-
gion i and region j are neighbors and zero otherwise.

Then, C ¼ WswhereWs ¼ diag 1
mi

� �
W . i.e. Ws is a

scaled adjacency matrix, the ith row being scaled by the
number of neighbors of region i. The above expressions
for the elements of C and M translate to the following
specifications for inverse covariance matrix B: bii = λmi,
and bij = − λ if j is adjacent to i and 0 otherwise. Thus B is
symmetric and it can be expressed as B = λ(Diag(mi) −C).
The expression M− 1(I −C) has a positive definite structure
for the conditional distribution to give rise to a valid prob-
ability distribution function (pdf). The definition of the ad-
jacency matrix above leads to an improper joint pdf. This is
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overcome by introducing a parameter α into the precision
matrix B, to give:

B ¼ M−1 I−αCð Þ

If |α| < 1 then the matrix M− 1(I − αC) is diagonally
dominant and symmetric. Symmetric and diagonally
dominant matrices are positive definite [41].
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