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Abstract

Neural circuits must perform computations and then selectively output the results to other circuits. 

Yet synapses do not change radically at millisecond timescales. A key question then is: how is 

communication between neural circuits controlled? In motor control, brain areas directly involved 

in driving movement are active well before movement begins. Muscle activity is some readout of 

neural activity, yet remains largely unchanged during preparation. Here we find that during 

preparation, while the monkey holds still, changes in motor cortical activity cancel out at the level 

of these population readouts. Motor cortex can thereby prepare the movement without prematurely 

causing it. Further, we found evidence that this mechanism also operates in dorsal premotor cortex 

(PMd), largely accounting for how preparatory activity is attenuated in primary motor cortex 

(M1). Selective use of “output-null” vs. “output-potent” patterns of activity may thus help control 

communication to the muscles and between these brain areas.

Brain areas are highly interconnected yet perform different functions. At the heart of many 

fundamental questions in neuroscience is the question of how different brain circuits 

effectively modulate their connections on and off to allow selective communication1, 2. In 
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this study, we ask one such question about how selective communication operates: how can 

we plan a course of action, while still waiting for the right moment to act3–6?

We employed the monkey motor system to test a new candidate mechanism for controlling 

output from one set of neural circuits to another. When a monkey is cued regarding the path 

of an upcoming reach but required to withhold the movement until a go cue, preparatory 

activity is present before the go cue in both PMd and M17–9 (Fig. 1). Preparatory activity is 

relevant to the upcoming movement: it is tuned for a variety of movement 

parameters7, 10–13, predicts reaction time14, 15, predicts movement variability16, and if 

disrupted delays the movement17. Preparatory activity is prevalent in PMd, somewhat less 

prevalent in M1, present but modest in the spinal cord18, 19, and essentially absent in the 

muscles. This pathway therefore provides an ideal testing ground, because the central 

mystery is readily apparent: each area drives movement9, 20–22, yet PMd and even M1 are 

also active in the absence of movement23. Given this pathway of PMd to M1 to the spinal 

cord, and PMd’s direct projection to the spinal cord as well, how is preparatory activity 

attenuated at each of these stages?

It is often assumed that ‘gating’ of preparatory activity is performed at the target site. For 

example, preparatory activity might simply lie below some spinal activation threshold, or 

await a boost in spinal gain24. Yet this would not explain the empirical observation that 

preparatory activity is not a weaker (and thus potentially sub-threshold) version of 

movement activity25–28. A related hypothesis has been that preparatory activity is held at 

bay by a switch29, 30, such as an inhibitory gate31, as is the case in the brainstem oculomotor 

system32. However, we have recently shown that there are no clear signs of a simple 

inhibitory gating mechanism within PMd or M128, 33. Thus, it has remained unclear how 

neural activity during preparation can be kept local, even though activity in those same 

neurons can drive movement moments later5. Here we test a new candidate mechanism for 

controlling when circuits communicate and when they functionally decouple. We find that a 

population-level mechanism operating in PMd can largely account for how preparatory 

activity is prevented from reaching M1, and that the same mechanism operating in both 

areas can largely account for how preparatory activity is prevented from reaching the 

muscles.

Results

The activity of the muscles is some function of neural activity. Whatever this function is, it 

must accommodate M1 and PMd changing their firing rates during motor preparation 

without movement occurring prematurely. Here, we consider a simple possibility. The 

simplest type of relationship between the neural activity of a brain area ‘A’ and its target is a 

linear one. That is, each target muscle would be driven by a linear combination of neural 

firing rates34:

(1)

where M, W and N are matrices. Each row of M contains the activity of one muscle, and 

each row of N contains the activity of one neuron. Columns correspond to the activities at 
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different times and for different movements. W contains the weights for the linear mapping 

from neurons to muscles. That is, W specifies the weighted sum of neurons’ firing rates that 

drives each muscle.

To build intuition about this model, consider the following extreme, un-physiologically 

simplified situation. Imagine that just two excitatory neurons synapsed directly on a muscle, 

and this muscle produced force proportional to the sum of its two inputs. As long as the sum 

of the two inputs remained constant, the muscle would produce a constant amount of force–

no ‘gate’ or ‘switch’ is required. The activity of these two neurons can be represented as a 

point in a two-dimensional firing rate space. Their pattern of activity over time is a 

trajectory through this space35–37. In the state space, the constant-sum line forms an ‘output-

null’ dimension (Fig. 2, blue line). The muscle’s force output will change only if there is a 

change in the sum of the neurons’ firing rates; we term the direction in which that sum 

changes the ‘output-potent’ dimension (Fig. 2, green line). This idea also generalizes to 

more complex cases: if one of these hypothetical neurons had a net inhibitory effect, the 

dimensions would be switched. With many neurons, we would expect multiple output-null 

dimensions. If there were multiple independent muscles, we would need multiple output-

potent dimensions. This is all to say that activity in the output-potent dimensions would be 

read out by the target muscle or brain area, while activity in output-null dimensions would 

not be visible to the target. Formally, any activity changes in output-null dimensions fall in 

the null space of W. Conversely, activity changes in output-potent dimensions fall in the row 

space of W.

The existence of output-potent and output-null dimensions is likely inevitable, as there are 

more neurons than muscles. The key question is whether the brain exploits these dimensions 

to control when circuits communicate (as opposed to relying on nonlinear thresholds or a 

time-varying gain). The hypothesis that output-null dimensions are used to control 

communication leads to two predictions. First, if this mechanism operates between cortex 

and the muscles, then during motor preparation changes in neural firing rates should occur in 

combinations that produce changes in output-null dimensions, but do not produce changes in 

the dimensions that are output-potent with respect to the muscles (Fig. 2). Second, if this 

same mechanism operates between cortical areas, we would expect PMd preparatory activity 

to preferentially occupy dimensions that are output-null with respect to M1. If this latter 

prediction is correct, this could help produce the well-known reduction in preparatory 

activity between PMd and M1.

Exploitation of output-null dimensions is unlikely to leave any particular signature at the 

level of single neurons. As illustrated in the model (Fig. 2, black insets), changing state 

along the output-null dimension corresponds to activity changes in most of the relevant 

neurons. Such activity cancels out only at the level of the population output. Intriguingly, 

though, this model tends to produce neurons with mismatches in tuning between the 

preparatory and movement periods, as has been observed previously25–28. Thus, if one 

averages over neurons based on their preferred reach condition during movement, their 

preparatory tuning largely averages away (Supplementary Fig. 1). This mismatch is 

suggestive, but forms only an indirect test and is neither necessary nor sufficient to 

demonstrate that such a model is correct (Methods). Testing this hypothesis requires both 
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knowing the population response and estimating the output-null and output-potent 

dimensions.

To test our hypothesis, we used a variant of a standard delayed reaching task with two 

monkeys (Fig. 1, Methods). We recorded the population response using both single- and 

multi-unit neural activity (using single moveable electrodes and silicon electrode arrays) and 

muscle activity (using percutaneous electrodes). Importantly, trial-averaged data were used 

except where noted – the primary goal of these analyses was to explain how there can be 

preparatory tuning without movement, not to explain trial-by-trial variability. Thus, all 

repeats of the same condition were averaged to produce a single rate versus time. The same 

reaches were required every day and monkeys were highly practiced. Repeated reaches to 

the same targets were thus extremely similar to one another over the course of months 

(Supplementary Fig. 2). Data from different days were therefore combined.

As a basic test for the plausibility of exploiting output-null dimensions, we can search for 

neuron pairs whose preparatory activity might cancel out. Activity for one such pair of 

neurons (Fig. 3a, left, center) illustrates a partial canceling out. When the two neurons’ 

activity is added together (right), the sum has less preparatory tuning than either but retains 

the movement activity. In this example, the canceling out is quite incomplete because only 

two neurons were used; the effect might be much greater with more neurons.

Similarly, we can take linear combinations (weighted sums) of many neurons’ activity. 

These linear combinations represent possible linear readouts of the population. Some 

readouts revealed structure in the data that strongly resembles the hypothesized structure 

(see Fig. 2). One such pair of readouts is shown for each of two monkeys (Fig. 3b). Each 

trace represents one trial-averaged reach condition, e.g., the average response for many 

leftwards reaches. In these examples, preparatory activity (blue) for the various conditions is 

spread out in one dimension but confined in the other – the red ellipse showing the envelope 

of preparatory activity is very elongated. Movement activity (green), in contrast, sweeps 

through both dimensions. These projections illustrate that the hypothesis in Figure 2 is 

plausible. Preparatory activity is strongly present in the population, yet a downstream target 

could be largely insensitive to this preparatory activity if it received inputs in a particular 

combination: the linear combination described by the sum of the two dimensions shown (the 

short axis of the red ellipse). Note that this does not mean that preparatory activity is 

functionless. To the contrary, in this case preparatory activity appears to set the initial 

direction and amplitude of the subsequent movement activity25, 38.

Two caveats are worth stressing. First, a two-dimensional view may be insufficient to fully 

test the hypothesis. Second, to properly interpret these results, one wishes to have some 

independent means for identifying which dimensions are output-null versus output-potent. 

We therefore designed a mathematical method for estimating output-potent and output-null 

dimensions. We then tested the degree to which preparatory activity avoids the output-potent 

dimensions. We first test for this structure in PMd/M1 (considered together) with respect to 

the muscles. We then turn to the question of communication between PMd and M1.
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Analysis of PMd/M1 to muscles

The core logic of this analysis is to use EMG data to help identify which neural dimensions 

(linear readouts) are most likely to be output-potent and which dimensions are most likely to 

be output-null. We can then test our central prediction: preparatory activity should avoid 

leaking into the output-potent dimensions, and should mainly be present in output-null 

dimensions. To avoid circularity, putative output-null and output-potent dimensions are 

identified using only movement activity, by finding neural dimensions in which activity 

resembles the EMG recordings. Only then is preparatory activity examined.

Figure 4 shows the results of this analysis. An explanation of the analysis follows, with the 

full derivation in Methods. Output-null and output-potent readouts can be plotted as PSTHs 

(as in the blue and green insets in Fig. 2), since they are made by simply adding and 

subtracting neurons’ responses (see Fig. 3a). Each trace corresponds to a different condition, 

and is a readout of the trial-averaged responses of individual neurons. Two such readouts are 

shown: one readout of a putative output-null dimension (Fig. 4a), and one readout of a 

putative output-potent dimension (Fig. 4b). Both reveal strong movement-related activity. 

However, by construction, only for the output-potent dimension did movement activity 

resemble muscle activity (“regression epoch” in Fig. 4a–b). The output-null dimension also 

contained strong movement-epoch activity, but due to the particular pattern of tuning and 

the temporal structure of the response, it correlated only weakly with muscle activity.

With the dimensions identified, our prediction was that preparatory activity would be 

weaker in the output-potent dimension, to avoid prematurely causing muscle contractions. 

This is indeed what was observed (compare Fig. 4a and b for the “test epoch”): preparatory 

activity in the output-null dimension was more strongly tuned and more different from 

baseline (the sign of this change is arbitrary). A similar effect was found in all datasets 

tested. Preparatory tuning – the spread of the mean firing rates across different conditions – 

was always weaker in the output-potent dimensions (Fig. 4c; explained below).

The analysis in Figure 4 was performed as follows. We first found the putative muscle 

readouts (W from equation 1) using neural and EMG activity from the movement epoch. As 

described above, if the output-null hypothesis is correct, then when we apply these same 

‘muscle readouts’ to preparatory activity the result should have little tuning and should hold 

steady at baseline (as in Fig. 4a). If the output-null hypothesis is incorrect, and movement is 

prevented via a threshold nonlinearity or time-varying gain, then the ‘muscle readouts’ will 

contain preparatory tuning at the same strength as other, output-null readouts. This latter 

expectation also holds if equation (1) is an inappropriate simplification that fails to capture 

the key relationship.

In principle, W can be found using linear regression. However, because different neurons 

have correlated activity patterns (mathematically, N is nearly rank deficient), W cannot be 

found directly. One standard solution to this problem is to use dimensionality reduction first; 

this solution is sometimes called Principal Component Regression. The low-dimensional 

version of the model is:
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(2)

where M̃ and Ñ are the low-dimensional versions of the data matrices M and N, found via 

Principal Component Analysis (PCA). W̃ captures the relationship between them. Unlike N, 

Ñ has orthogonal (uncorrelated) rows, and so regression is viable and W̃ can be found. We 

can choose the number of rows for Ñ and M̃; these values were chosen as six and three, 

respectively (three dimensions for M̃ captured 77–92% of the variance). This produces three 

‘muscle readouts’ (putative output-potent dimensions), and three putative output-null 

dimensions.

To find W̃ , we considered only the activity during the movement. W̃ was then found using 

linear regression. The result of all of the above is to identify a reasonable estimate for how 

the muscles could read out a weighted sum of neurons’ firing rates.

Our overarching goal was to test whether one must propose that preparatory activity is 

reduced by a nonlinearity (threshold or low gain), or whether significant reduction occurs 

due to the structure of W. That is, we ask whether the preparatory activity in N falls mainly 

in the null space of W and is therefore not read out by the muscles. To test this, we compared 

the activity in the ‘muscle readouts’ (output-potent dimensions) with the activity in the 

output-null dimensions, which cannot pass through W̃. Mathematically, the space of ‘muscle 

readouts’ is the row space of W̃ , and the output-null dimensions form the null space of W̃.

As our test, we measured whether more preparatory activity survives in the putative output-

null dimensions or in the putative output-potent dimensions. To avoid circularity, these 

spaces were identified based on movement activity; only then was preparatory activity 

tested. Figure 4c was produced by taking the strength of preparatory tuning in the output-

null dimensions divided by the strength of preparatory tuning in the output-potent 

dimensions (the “tuning ratio,” Methods).

Consider the data in Figure 3b. The tuning ratio asks how elongated the ellipse is, and 

whether it is in fact aligned with the output-null dimensions. If our hypothesis is correct, 

then the tuning ratio should be considerably greater than one. As shown in Figure 4c, the 

tuning ratio ranged from 2.8 to 8.2.

We employed extensive simulations to verify that this analysis detects exploitation of 

output-null dimensions during preparation when appropriate but does not do so when such 

structure is absent. We created simulated datasets, varying how strongly the preparatory 

activity was confined to the output-null dimensions. The simulated neural and muscle 

activity (Fig. 5b, d) qualitatively resembled our recorded neural and muscle activity (Fig. 5a, 

c). We analyzed this simulated data using the method described above. Our method correctly 

detected how strongly the preparatory activity was confined to output-null dimensions, and 

rarely produced false positives (Fig. 5e–h; the results lie nearly along the line y=x, or 

below). This was true even when nonlinearities were introduced to simulate firing rate 

saturation and floor effects (i.e., when firing rates were always positive and median firing 

rates were low; see Fig. 5b, d). As a mathematical note, this nonlinearity changes the 

relationship between neural and muscle activity to M = f(WN), with f a non-time-varying 
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nonlinearity that is not responsible for ‘gating.’ The method was also robust when “errors” 

were made in applying the analysis with the wrong dimensionality (Fig. 5g–h), or when 

unequal numbers of output-null and output-potent dimensions were present in the data 

(Supplementary Fig. 3). When results differed substantially from the true underlying value, 

the results were nearly always underestimates, meaning that the results reported in Figure 4 

are most likely conservative.

Returning to the real data, the tuning ratio was greater than unity in all four datasets obtained 

from two monkeys (Fig. 4c). This indicates that preparatory tuning remained mostly within 

the output-null dimensions, avoiding the output-potent dimensions. This dimensional 

preference was large – on average, the tuning ratio was 4.5 (geometric mean). Using 

conservative Monte Carlo simulation-derived statistics (Methods), all four datasets were 

statistically significant (J: p=0.006; N: p=0.030; JA: p=0.011; NA: p=0.021). To gain a 

sense of how the effect evolves over the course of a trial, we also measured the tuning depth 

separately at each time point for output-null and output-potent dimensions (dataset J shown 

in Fig. 4d, all datasets shown in Supplementary Fig. 4).

Moreover, this effect was present on a trial-by-trial basis. We performed a trial-by-trial 

analysis, which was conceptually similar to our main analysis, but instead of using trial-

averaged data (where all repeats of the same condition were averaged over), we preserved 

the data for each trial. The observed trial-by-trial tuning ratios were greater than unity for 

both datasets for which we had simultaneous recordings: 2.1 for monkey J (p=0.027), and 

2.7 for monkey N (p=0.002). These ratios were smaller than those found using trial-

averaged data, likely in part because trial-by-trial state estimation is noisier; this tends to 

reduce effect sizes. Nonetheless, these results confirm that preparatory activity is 

preferentially confined to the output-null dimensions even when trial-by-trial variability is 

taken into account.

Analysis of PMd to M1

Our second prediction was that this same principle might operate as a more general 

mechanism to modulate communication between one cortical area and another. A natural 

place where such a mechanism might operate is between PMd and M1. M1 is more tightly 

coupled to the spinal cord than is PMd, contributing approximately twice the number of 

spinal projections39. M1 exhibits preparatory activity, but considerably less than PMd. We 

tested whether PMd might avoid driving M1 during preparation by confining its preparatory 

activity to the dimensions that are output-null with respect to M1.

We performed the same analysis as above, except with PMd as the ‘source’ area (N) and M1 

as the ‘target’ (M). As predicted, we found that PMd preparatory activity lay preferentially 

in output-null dimensions with respect to M1 (Fig. 6; two datasets had sufficient recordings 

from both areas for this analysis). This was the case in both monkeys, with an average 

tuning ratio of 2.3 (JA: p=0.017; NA: p=0.029; see also Supplementary Fig. 5). Thus, these 

cortical areas appear to exploit the output-null vs. output-potent distinction. However, this 

effect was not as large as that seen for the muscles. This is consistent with the observation 

that M1 is active during movement preparation, just less so than PMd. Also consistent with 

that observation, we found that both PMd and M1 independently exhibit the output-null 
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effect with respect to muscles when analyzed separately (Supplementary Table 1). However, 

as analyzing PMd or M1 alone splits the dataset in half, the results were somewhat less 

reliable.

Thus, it appears that an output-null space effect can account for much of the loss of 

preparatory activity between PMd and M1, and also between each area and the periphery. 

Moreover, this control of communication was specific, as expected given that PMd has 

stronger preparatory activity than M1. When the same analysis was performed with reversed 

source/target roles, M1 preparatory activity did not preferentially lie in output-null 

dimensions with respect to PMd (Fig. 7a; mean tuning ratio 1.1; p>0.2 for both monkeys). In 

addition to the simulations, this confirms that the analysis does not intrinsically produce 

tuning ratios greater than one; in cases where no effect is expected, the method reports the 

correct value of ~1.

Basic controls

In addition to the simulations, we tested directly whether the main analyses were sensitive to 

the precise dimensionality used. For the cortex-to-muscles analysis, we verified that results 

were similar using a dimensionality of 2 or 4 for M̃ (always using twice as many dimensions 

for Ñ). In 10 of 12 cases (4 datasets × 3 dimensionalities) the expected-direction effect was 

observed. In the two remaining cases, very small and statistically insignificant opposite-

direction effects were obtained; no statistically significant opposite-direction effects were 

found. For the PMd-to-M1 analysis, the relevant dimensionality was higher: PMd and M1 

both had dimensionalities of ~7–15, as in other datasets25, 35, 40. We therefore retained 14 

dimensions for PMd in our main PMd-to-M1 analysis (this captured 64–67% of the 

variance, approximately where the variance captured per dimension leveled off), and 7 for 

M1. We verified that effects were similar with a PMd dimensionality of 10, 12, 16, and 18. 

In all 20 cases (4 datasets × 5 dimensionalities), the expected-direction effect was observed.

Notably, our datasets included both curved and straight reaches. This provided a wider 

variety of movements, but curved reaches might conceivably differ from straight reaches in 

some important way. We therefore repeated our analyses on the 1/3 of our data consisting of 

straight reaches (with no virtual barriers presented). Our effect sizes were reduced, as 

expected when analyzing smaller amounts of data, but the same effect direction was always 

observed. For the cortex-to-muscles analysis, the tuning ratios were 1.9, 2.8, 2.8*, 1.3 

(dataset J, N, JA, NA; star indicates p<0.05). For the PMd-to-M1 analysis, the tuning ratios 

were 1.5 and 2.0* (JA, NA). Since these effect sizes were smaller than when using the full 

range of conditions, replications of this work using only straight reaches would likely 

require a larger number of neurons to reliably obtain statistical significance.

Controls for interpretation

There are two possible interpretations of the above results. First, the activity of different 

neurons may appropriately co-vary (e.g., one neuron’s rate increases while the other’s 

decreases, as in Fig. 2) in order to avoid prematurely causing movement. This would make 

the output-null dimensions a true population-level phenomenon, one that could not be 

observed directly by examining one neuron at a time41–43. Alternatively, the output-null and 
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output-potent dimensions might correspond to segregated populations of neurons. That is, 

output-potent dimensions might include only neurons that are quiet during preparation. We 

reiterate that our dimension identification did not use preparatory activity; it used only time 

points when EMG activity was already strong (Fig. 7b, only the “regression epoch” was 

used for dimension identification). However, it remains possible that some other response 

feature of the strongly preparatory-tuned neurons excluded them from output-potent 

dimensions. If true, use of the null space might not be a true ‘population level’ effect; it is 

already well known that some neurons have stronger preparatory tuning than others.

To distinguish these possibilities, we measured whether strongly preparatory-tuned neurons 

mainly contributed to output-null dimensions. To obtain this measurement, each neuron’s 

contribution to the output-null dimensions was multiplied by the strength of its preparatory 

tuning, then these values were added across neurons. This yields a measure of the total 

amount of preparatory tuning feeding into the output-null dimensions, before any canceling 

out. A similar number was produced for the output-potent dimensions. If our results were 

merely due to preparatory-tuned neurons mainly contributing to the output-null dimensions, 

we would expect the above tuning-strength value to be much greater for the output-null 

dimensions than for the output-potent dimensions. This was not the case. The ratio of these 

two values can be compared with our measured effect sizes (Fig. 7c). Across the six 

datasets, only ~4% of the measured effect was due to this kind of neuron segregation (blue 

bars). The remaining 96% of the observed effect is due to the responses of different neurons 

canceling out in output-potent dimensions (as in Fig. 2). This indicates a fundamentally 

population-level effect, involving coordination across many neurons such that a change in 

the activity of one neuron is countered by a change in the activity of another.

The above control tells us that neurons with strong preparatory tuning contribute almost 

equally to output-null and output-potent dimensions. However, we still do not know the 

following: do separate sets of neurons (perhaps projection vs. local neurons, or inhibitory vs. 

excitatory neurons) contribute to the output-null and output-potent dimensions? Or is the 

situation as in Figure 2, where the same neurons contribute to the output-null and output-

potent dimensions, just with different weights? To test for segregated populations, for each 

unit we computed a “space preference index,” defined as how strongly that neuron 

contributed to the output-potent dimensions minus how strongly it contributed to the output-

null dimensions, normalized by the sum of the two contributions. This index will be +1 if 

the neuron is solely involved in output-potent dimensions, −1 if it is solely involved in 

output-null dimensions, and intermediate if the neuron contributes to both sets of 

dimensions. If two distinct sets of neurons made up the output-null and output-potent 

dimensions, many neurons would have space preference indices near +1 or −1. In our data, 

however, the distribution of space preference indices over neurons (Fig. 7d and 

Supplementary Fig. 6, black histograms) is unimodal, peaks at approximately zero, and 

looks nearly identical to the distribution expected by chance (purple line; SDs shown as bars 

above distributions). Individual neurons that happened to contribute more to output-null or 

output-potent dimensions did not show any systematic qualitative differences in their 

responses (Fig. 7e–g). This indicates that output-null and output-potent dimensions are not 
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made up of segregated groups of neurons. Instead, they are different linear combinations of 

the same neurons.

Discussion

While it was previously known that preparatory activity is attenuated along the PMd-M1-

spinal cord pathway, it was not known how it is attenuated5. We tested a novel model, the 

output-null hypothesis. This model posits that, even if cortical activity is related 

straightforwardly to the activity of that area’s target, it is still relatively simple to control 

communication without resorting to strong nonlinearities or gates: activity which should not 

be read out by the target can be structured to change only in the source area’s output-null 

dimensions, avoiding the output-potent dimensions. While this may not be the only control 

mechanism at work, the following is clear: the structure of preparatory activity is such that it 

largely cancels out in the dimensions most likely to be relevant to the downstream target. 

Thus, exploitation of output-null dimensions appears to be at least part of the mechanism 

that helps to prevent premature contraction of the muscles during movement preparation, 

and to modulate communication between motor cortical areas.

The magnitude of the effect we measured cannot account fully for the observed reduction of 

preparatory activity between cortex and the muscles; EMG typically shows very little 

preparatory activity while the output-potent dimensions still show some. If the relationship 

between cortex and the muscles were perfectly linear – and if we identified the output-null 

and output-potent dimensions perfectly – then it would be mathematically necessary that 

cortical preparatory activity only occupy output-null dimensions. In the real data effects 

were not this strong, yet the output-null mechanism accounted for more than 75% of the 

reduction. This is consistent with a relationship between cortex and muscles that is not too 

far from linear in our task. While other mechanisms such as target gating may be important, 

use of output-null dimensions greatly reduces the burden on other possible mechanisms.

M1, of course, receives many inputs from areas other than PMd. Some of these other inputs 

are likely rich in preparatory activity too, but others may not be. It therefore might have 

been that preparatory signals from PMd were simply diluted out in M1. However, given the 

strong PMd-to-M1 projection, it made sense to ask whether there is an output-null effect. 

Our data suggest that there is. It is thus likely that this is one of the reasons that M1 has less 

preparatory activity than PMd.

The idea of output-potent dimensions helps make sense of several previously puzzling facts. 

For example, individual neurons44, even corticomotor neurons45–47, exhibit heterogeneous 

patterns of activity that often do not resemble muscle responses. Instead, the net input that 

the lower motor neurons and muscles receive is likely a weighted sum of these neurons’ 

responses34, 47, 48. This diverse group of neurons could thus contribute to movement 

generation even though the individual responses do not resemble muscle activity. While 

individual neurons may exhibit confusing responses, the population-level/dynamical systems 

view may provide insight about how a circuit performs its key computations37, 38, 43.
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It has also been known for some time that preparatory activity in neurons does not correlate 

strongly with movement-epoch activity25–28. This is inconsistent with the view of 

preparatory activity as a sub-threshold version of movement activity. However, in light of 

the output-null hypothesis, this finding makes sense; movement activity should be largely 

orthogonal to preparatory activity, and thus this poor correlation should be expected. 

Importantly, though, this orthogonality does not imply that preparatory activity is unrelated 

to the upcoming movement activity. As recently shown25, 38, and as visible in Figure 3b, the 

preparatory state is correlated with the phase and amplitude of the subsequent neural 

trajectory during movement. This relationship is clear at the population level, even though it 

is hidden at the single-neuron level. This may allow M1 and PMd to “set up” the neural 

trajectory that will be needed to produce the correct movement25, 35, 37, 38.

In the dynamical systems view37, “setting up” unfolds as follows. When preparation begins, 

neural activity goes from a relatively less controlled baseline state to a relatively more 

controlled state14, remaining within the output-null dimensions throughout. This preparatory 

process appears to be necessary, even if the preparatory trajectory can differ under different 

circumstances49: when preparation is absent14, 49, disrupted17 (D. J. O’Shea, et al. 

Dynamics of primate premotor cortical recovery following optogenetic disruption of motor 

preparation. 2013 Neuroscience Meeting Planner, Society for Neuroscience), or incorrect49, 

reaction time is slowed relative to a ‘correctly’ prepared reach. Moreover, trial-by-trial 

differences in hand speed16 and movement timing50 depend on details of the preparatory 

state. After preparation, a presently unidentified mechanism enables active dynamics. These 

dynamics are simple and strongly rotational, and produce the movement-epoch neural 

trajectory38. This portion of the neural trajectory travels through both output-null and 

output-potent dimensions, but the present results suggest that only output-potent dimensions 

drive the spinal cord and muscles.

Why, though, should neural activity change in output-null dimensions during movement? 

We speculate that to achieve the required neural trajectory in output-potent dimensions it 

may be necessary to make use of output-null dimensions as well. For example, to describe 

the pendulum in a grandfather clock it is not enough to know the position; when the 

pendulum is centered, it could be swinging either left or right. The oscillation of a second 

variable (velocity), out of phase with the position, is needed. If position forms an output-

potent dimension (because it drives the clock), then velocity forms an output-null dimension 

– it is needed to produce the sine wave in position, but does not drive the clock directly. In 

the motor cortices, having output-potent dimensions available might make it possible to 

have simpler, smoother, less nonlinear dynamics, which would be consistent with the 

smooth tuning curves exhibited by neurons in these areas25, 38. Somehow the cortex must 

learn how to attain preparatory activity patterns that initialize the dynamics while remaining 

in the output-null dimensions; how it does so is a topic for future research.

The present results do not rule out contributions by other mechanisms, such as nonlinearities 

in the spinal cord, in preventing preparatory activity from causing movement. However, the 

magnitude of the effects shown here does imply that the output-null mechanism likely forms 

a major component in producing this functionality. Nonlinearities are almost certainly 

present in the system, but given the present results they need not be the primary mechanism 
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for controlling functional connectivity in the motor system. Even without relying on 

nonlinearities, it appears that these brain areas ‘know’ how to communicate or keep to 

themselves.

Methods

Subjects

Animal protocols were approved by the Stanford University Institutional Animal Care and 

Use Committee. Subjects were two adult male macaque monkeys (Macaca mulatta), J and 

N, trained to perform a delayed reach task on a fronto-parallel screen for juice reward. Use 

of two monkeys is standard practice in the field. In a sterile surgery, the monkeys were 

implanted with a head restraint and standard recording cylinder located over M1 and caudal 

PMd. After single-electrode recordings were completed, EMG was recorded, then two 96-

electrode silicon arrays (Blackrock Microsystems, Salt Lake City, UT) were implanted in 

M1 and caudal PMd of both monkeys (estimated from local anatomical landmarks; 

Supplementary Fig. 7).

Task apparatus and design

Our basic methods have been described previously14, 28. Both monkeys performed a variant 

of the center-out delayed-reach task, called the ‘maze’ task. This task required both straight 

reaches and reaches that curved around virtual barriers. Here, the maze task simply provides 

a way of evoking a variety of reaches (27 or 108 conditions depending on dataset), 

providing a large set of patterns of neural and muscle activity. Each monkey saw the same 

mazes every day and performed highly consistent movements during the entire data 

collection period (4–9.5 months; Supplementary Fig. 2).

For monkey J, each 108-condition dataset consisted of four sub-datasets of different mazes 

(27 conditions per sub-dataset). These sub-datasets were analyzed separately and the results 

averaged to obtain the reported values.

Neural recordings and EMG

Neural and EMG recordings were performed using previously described techniques14, 28. 

Neural recordings were made in the range of medio-lateral locations that best produced 

shoulder or upper arm movements when microstimulation was delivered. Datasets J25, 33, 38 

and N33, 38 have appeared in previous work, as have subsets of JA25, 38 and NA38. For the 

four datasets (J, N, JA, NA), 197, 107, 192, or 118 units passed tuning criteria for the 

cortex-to-muscles analyses: 3 spikes/s during preparation and 5 spikes/s during movement, 

assessed as firing rate range across conditions. For the PMd-to-M1 analyses, 95 (120) 

neurons [JA (NA)] for PMd and 97 (103) neurons for M1 passed tuning criteria. Results 

were similar when no preparatory tuning criterion was used. All single-electrode recordings 

were from well-isolated single units, and the number of recordings was set before these 

analyses were formulated. For array recordings, spike sorting was performed offline using a 

custom software package (now available online as MKsort; https://github.com/ripple-neuro/

mksort); both single units (JA: 47, NA: 22) and stable multi-unit isolations were included. 

The median number of trials per condition was 13, 11, 18, or 48 (J, N, JA, NA), dictated by 
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how long stable recordings could be maintained. When array datasets were combined, data 

from the single best recording day was used for any given electrode.

For monkey J, percutaneous EMG recordings were made from trapezius, latissimus dorsi, 

pectoralis, triceps brachii, medial and lateral aspects of the biceps brachii, and anterior, 

medial and posterior aspects of the deltoid. For monkey N, EMG recordings were made 

from proximal, middle and distal aspects of the trapezius, latissimus dorsi, pectoralis, triceps 

brachii, medial and lateral aspects of the biceps, and anterior, medial and posterior aspects of 

the deltoid. Recordings from the triceps (both monkeys) and latissimus dorsi (monkey N) 

were modulated very weakly during the task and were therefore excluded from subsequent 

analyses.

Working hypothesis

We begin with three conditions, which must hold for our analysis to produce a positive 

result. Condition 1: activity of neurons in M1 and PMd causally affects muscle activity via 

indirect and/or direct connections, and the descending command signals include some 

spatiotemporal details of the muscle activity. Condition 2: before or within the spinal cord, 

descending signals converge and produce a net motor command which is approximately 

(perhaps very approximately) a linear combination of the individual-neuron signals. 

Condition 3: the relationship between neural and muscle activity is similar during movement 

preparation and actual movement (e.g., there is no dramatic gating in the impact of 

descending signals between these two epochs).

If these conditions hold, the below predictions follow; the final prediction is tested directly. 

First, we should be able to identify the linear combinations of neurons which influence the 

muscles (output-potent dimensions) via linear regression between neural data and EMG 

(since the relationship is quasi-linear). Second, not all changes in neural activity should 

influence the muscles, since most linear combinations of neurons do not affect the output-

potent dimensions. Finally, in the absence of nonlinearities or time-varying gating 

mechanisms, any preparatory activity in M1 and PMd must remain in the output-null 

dimensions to avoid causing movement.

If any of the three conditions above were substantially violated, the analysis would have 

returned a negative result. If condition 1 were violated (if neural activity did not contain 

details of muscle activity), we would identify random dimensions as output-null and output-

potent and would see similar levels of preparatory activity in both sets of dimensions. If 

conditions 2 or 3 were violated (nonlinearity or nonstationarity), there would be no reason 

for preparatory activity to avoid output-potent dimensions.

PCA and preprocessing of data

To compare neural activity with EMG, we constructed two data matrices: N and M. N 

contained neural data and was of size n by c*tpv, with n the number of neurons, c the number 

of conditions, and tpv the number of time points per condition during preparation (−100 to 

+400 ms from target onset) and movement (−50 to +600 ms from movement onset; Fig. 7b, 

Supplementary Fig. 8). Time points were spaced 10 ms apart. M contained EMG data and 
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was of size m by c*tv, with m the number of muscle recordings and tv the number of time 

points during movement. Following standard procedures to prepare for Principal Component 

Analysis (PCA) each row of N and M was normalized by its range (maximum minus 

minimum across all times and conditions), and the row means were subtracted off. To 

accommodate the known lag between motor cortical activity and muscle activity, M was 

advanced by 50 ms relative to N34, 46 (the movement period for the muscle data therefore 

began at movement onset).

To obtain the low-dimensional model (equation 2), we performed PCA on N and M. PCA 

produces a new matrix, with (fewer) rows which are linear combinations of the original rows 

and which capture the maximum variance possible. That is:

(3)

where P and Q are coefficients matrices resulting from PCA performed on N and M. Since 

PCA is linear, the low-dimensional model still satisfies the original goal: muscle activity is 

specified as a linear combination of neurons’ activity. To demonstrate this formally, 

substituting and rearranging equations (2) and (3) yields M ≈ Q*W̃PN, where Q* is the 

pseudoinverse of Q. Since Q*W̃P simplifies to a matrix, M and N are related linearly in the 

low-dimensional model (modulo the residuals lost in PCA), as intended.

For a later step, M̃ must have half as many rows as Ñ. Therefore, the first k rows of P and 

k/2 rows of Q were retained. This value k was chosen as 6, discussed below.

Intuitively, PCA identifies natural patterns of covariation in the neural or EMG data. For 

EMG recordings, these patterns are traditionally referred to as “muscle synergies”51. The 

final result of preprocessing is well-behaved matrices M̃ and Ñ that can be used to identify 

putative output-null and output-potent dimensions.

When performing the output-null analysis from PMd to M1, the procedure differed in three 

ways from the above description. First, N contained only the PMd data and M contained the 

M1 data. Second, k, the dimensionality of N, was set to 14. Finally, no lag was used between 

the data in N and M (the epoch used was −50 to +600 ms for both).

Output-null analysis

In the computations below, we first identified the weighted sums of neurons (neural 

dimensions) that appear most likely to activate the muscles, i.e., output-potent dimensions. 

This was accomplished by finding dimensions in which neural activity during the movement 

period resembles EMG activity. We then determined whether, as predicted, neural activity 

during the delay period avoids these output-potent neural dimensions.

A formal explanation follows. We assumed the linear model from equation (1): M = WN. 

Since N is nearly rank-deficient, we reduced the dimensionality of the data as described 

above; we obtain equation (2): M̃ = W̃Ñ. Since all data is trial-averaged, no noise term is 

necessary. M̃ and Ñ are data matrices, so W̃ can be found directly (see next section). W̃ is our 

estimate of the mapping from neural to muscle activity. Critically, W̃ is found using 

movement data only.
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The output-potent dimensions are then the row space of W̃ , denoted W̃
potent. The output-null 

dimensions are the null space of W̃ , denoted W̃
null. The row space and null space were 

found using Singular Value Decomposition. We then found the projections into the output-

null and output-potent spaces:

(4)

(5)

Finally, we assessed how strongly ‘tuned’ neural activity was (how strongly it varied across 

time and condition) in the output-null and output-potent dimensions. This measure was:

(6)

in which  indicates the squared Frobenius norm of a matrix (that is, each element of the 

matrix is squared, then all these values are summed). To make the Frobenius norm 

equivalent to variance, we subtracted off each row’s mean from Ñnull and Ñpotent before 

taking the norm. As a technical point, for the ratio to be meaningful the norms should be 

taken on matrices with the same number of elements; this is why the dimensionality of M̃ 

was chosen as k/2 during preprocessing.

A normalization term (1/γ), derived from the data, helped ensure that the initial 

dimensionality reduction step could not “build in” a result. The term was found to be 

important in case there were unequal numbers of (real, underlying) output-null and output-

potent dimensions (Supplementary Fig. 3). γ was defined as:

That is, γ was the main measure taken on the movement epoch data. This defines the 

“natural” scaling of the row space and null space in the data. 1/γ ranged from 1.17–1.74, and 

all results were in the same direction without this term (Supplementary Fig. 9, 10).

Importantly, the tuning ratio is expected to be greater than one if the central hypothesis, 

including its basic assumption of approximate linearity, is roughly correct. If the central 

hypothesis is not roughly correct, there is no expectation that the tuning ratio should be 

greater than one. This is underscored by a variety of simulations (see below).

Finding W̃

To avoid overfitting, we used regularized regression (Ridge regression) on the low-

dimensional data (equation 2) to find W̃. Again, only peri-movement data were used in this 

regression. The regularization parameter was chosen via cross-validation. The regressions 
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accounted for an average of 65% of the variance of M̃ using W̃Ñ. The three output-null 

dimensions, as expected, correlated less well with EMG activity (mean R2=0.18 for output-

null vs. R2=0.60 for output-potent). These values were somewhat modest, both because the 

regression was performed on low-D data and because regularization was used.

Note that W contains both positive and negative coefficients. Some of the negative 

coefficients likely reflect real net inhibition on the muscles, either because the neurons 

themselves are inhibitory or because of intervening inhibitory interneurons. However, since 

the mean is subtracted off from each neuron’s firing rate before PCA, negative coefficients 

can simply mean that a neuron is modulated below its baseline. In addition, if a neuron a 

tends to anti-vary with a neuron p that has a net positive effect on the muscles, a will receive 

a negative coefficient – even though it does not itself have a direct effect on the muscles.

Statistics

For our main statistical measure, a Monte Carlo simulation was performed in which 

dimensions in the low-D neural space were chosen randomly as output-null or output-potent, 

then the tuning ratio for this random partitioning was measured. This was repeated 10,000 

times to generate a distribution of random effect sizes. This process estimates the likelihood 

that a given effect size (i.e., an apparent avoidance of output-potent dimensions during the 

preparatory period) would occur by chance. The distribution of random effect sizes was then 

compared with the size of the measured effect. This class of statistical method generates a 

‘null hypothesis’ distribution but not error bars, which is why error bars are not shown in 

Figure 4c or 6c.

For display purposes only (Fig. 4d and 6d), a separate bootstrap statistic was used. We asked 

whether a small number of outlier conditions could somehow be driving our effects. We 

therefore resampled conditions at the final step (after PCA and space identification), and re-

computed our measure.

Trial-by-trial output-null analysis

For this analysis, instead of using trial-averaged data, we preserved the data for each trial. 

Thus N and M were wider than in the main analysis, by a factor equal to the number of trials 

per condition. We used Factor Analysis instead of PCA to reduce the neural dimensionality, 

since PCA is inappropriate for single-trial data52. Larger bins of 60 ms were required; the 

time points used were −120 to +360 ms from target onset and 0 to +660 from movement 

onset. Since simultaneous EMG data were not available, and movements were highly 

consistent, we repeated the mean EMG as a proxy for trial-by-trial EMG in the regression 

step. This analysis required large-scale simultaneous neural recordings, and therefore only 

the array datasets (JA, NA) were used. Because Factor Analysis requires a large amount of 

data per dimension estimated, this analysis could only be performed for cortex-to-muscles.

Simulation details

We created simulated neural and EMG data containing varying, known levels of output-null 

structure. We first produced random vectors with the desired structure in low-dimensional 

space. One set of vectors was chosen for preparation (one per condition), then another set of 
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vectors was chosen for movement (three vectors per condition, to use as waypoints for the 

time-varying movement activity). All dimensions of these data were randomly projected out 

as simulated “neurons”; output-potent dimensions (only) were randomly projected out as 

simulated “muscles”. Both neurons and muscles then received a baseline offset, and the 

resulting firing rates were cubic spline interpolated and rectified to form a PSTH-like 

timecourse resembling the real data.

To match the real data’s noise level after smoothing, noise was added from a second-order 

gamma function with 11 trials per neuron per condition, or fourth-order gamma function 

with 11 trials per muscle per condition. As in the real data, 27 conditions were simulated. 

Simulated muscle recordings were delayed by 50 ms relative to simulated neurons. When 

nonlinearities were required (Fig. 5f–h, Supplementary Fig. 3) the mean firing rates for 

neurons and muscles were chosen to be near zero, causing floor effects, and a weakly 

saturating nonlinearity was simulated by raising neural firing rates and muscle responses to 

the power of 0.8. Simulations were run 50 times for each parameter set.

The simulated data also allowed us to assess the impact of the 1/γ term. This normalization 

made the analysis both more precise and more accurate (Supplementary Fig. 3), especially 

when simulating unequal numbers of output-null and output-potent dimensions.

In addition, we asked whether standard models of motor cortex might incidentally yield 

results similar to what we found in the data. We therefore performed the output-null analysis 

on data generated from a “velocity-tuned” model. This model produced simulated neurons 

that were tuned for hand velocity and speed during movement53–55, and endpoint during 

preparation (this model has been used previously25, 38). This model implicitly assumes a 

gating mechanism, since there is an unexplained transition between preparatory and 

movement activity. Activity was structured to have preparatory and movement tuning with a 

low correlation, as in the real data. Firing rate distributions for the simulated neurons were 

based on real datasets. When the output-null analysis was performed on this model, it did 

not produce consistent positive results. This confirms that our effects are not simply an 

incidental consequence of velocity tuning.

Brief proof that changes in tuning between preparation and movement are likely, but 
neither necessary nor sufficient, to demonstrate use of output-null dimensions

Confining preparatory activity to output-null dimensions tends to produce neurons with 

‘mismatched’ tuning between preparation and movement (see Fig. 2). However, mismatched 

tuning is neither necessary nor sufficient to indicate that an output-null mechanism is at 

work; this is why our main analysis was needed.

A counterexample to necessity follows. Imagine that output-null dimensions had ‘matched’ 

tuning and contained most of the total variance. Most neurons would be dominated by the 

high-variance output-null activity. The correlation between preparatory and movement 

tuning would therefore remain large.

Regarding sufficiency, consider Fig. 3b. Imagine that the neural data spanned only these two 

dimensions, and that the variance ellipse for preparation was round (i.e., the red ellipse was 
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a circle). The rotational structure during movement indicates that there is still mismatched 

tuning, since after 180° of rotation the tuning has inverted. But, if preparatory activity 

equally spans both dimensions (and there are only two dimensions), then an output-null 

mechanism cannot be at work. Thus, mismatched tuning is insufficient to indicate an output-

null mechanism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of task and of typical data. a. Layout of maze task. One typical trial shown. The 

same mazes were repeated many times; each maze is hereafter called a ‘condition.’ b. Top, 

task timeline. The monkey initially touched a central spot, then a target and (typically) 

barriers appeared. On some trials, two inaccessible distractor ‘targets’ also appeared. After 

the Go cue, the monkey made a curved reach (which left a white trail on the screen) around 

the barriers to touch the accessible target. Middle, trial-averaged deltoid EMG. Bottom, 

firing rate of one PMd neuron. Times are target onset, go cue, and movement onset. 

Flanking traces show s.e.m. Maze ID100, neuron J-PM48, EMG recording J-PD10.
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Figure 2. 
Simplified output-null model. For illustration, assume a muscle receives input from two 

neurons and produces a response that is the linear sum of the inputs. If the sum is constant 

(“Output-null dimension”), the muscle cannot distinguish between input 1 being high and 2 

low, or vice versa. When the sum changes (“Output-potent dimension”), muscle output will 

change. If preparatory neural activity changes only within the output-null dimension (two 

different reaches illustrated), then the muscle’s activity remains constant; when neural 

activity changes in the output-potent dimension also, movement ensues. Insets: PSTHs for 

the neurons, and PSTH-like views of output-potent and output-null dimensions. T, target 

onset, G, go cue.
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Figure 3. 
Examples suggesting potential output-null structure. a. When the weighted activity of the 

left neuron is added to the activity of the center neuron, the result (right) has less preparatory 

activity than either input. This pair thus illustrate the output-null idea, though with more 

neurons a more complete cancellation occurs. Constant c was set to 0.37. Conditions colored 

based on preparatory activity of left neuron. b. Example readouts of real data. Each panel 

shows a linear, two-dimensional readout of real data, exhibiting the predicted structure 

(compare with Fig. 2). Each trace corresponds to a single, trial-averaged condition. 

Preparatory activity shown in blue, movement activity shown in green, and state at Go cue 

shown as grey circles. Red ellipse shows 2 s.d. of the preparatory activity. As in the model, 

preparatory activity for different conditions is mostly spread out in one dimension, while 

movement-epoch activity travels through both dimensions. Dimensions found using jPCA38.
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Figure 4. 
Output-null results for cortex to muscles. a. Neural activity in one output-null dimension for 

one dataset (JA-2D1). All activity is trial-averaged, and each trace represents the response 

for a different condition. b. Neural data in one output-potent dimension. Dimensions were 

identified relative to EMG activity. This pair of example dimensions has a tuning ratio of 

9.2. Bars indicate “test epoch” (−100 to +400 ms from target onset), where the tuning ratio 

was computed, and “regression epoch” (−50 to +600 ms from movement onset), where 

dimensions were identified. c. Fraction of preparatory tuning (across conditions and times) 

in output-null (gray) and output-potent (black) dimensions for each dataset. Tuning ratios 

indicated above bars; all values were significantly greater than unity. d. Tuning at each time-

point, in the output-null and output-potent dimensions. Flanking traces indicate s.e.m. 

computed via resampling of conditions.
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Figure 5. 
Testing analysis method on simulated data. Simulations produced artificial neural and EMG 

“recordings” with the desired strength of output-null structure (Methods). Our analysis was 

run on this artificial data to quantify accuracy. a. Example real neural recording. Each trace 

shows trial-averaged response for one condition. Conditions color-coded according to 

preparatory activity level. b. Example simulated neuron. Qualitatively, it exhibits similar 

response complexity to real neuron. c. Example real EMG recording. d. Example simulated 

EMG recording. Qualitatively, it exhibits similar response complexity to real muscle. e. 
Analysis of data produced without distorting nonlinearities. Dot indicates median measured 

effect size for set of 50 simulations. Error bars encompass 68% of simulations (equivalent to 

1 s.d.). Grey line shows unity. f. Analysis of data distorted with floor effects and saturating 

nonlinearities. g. Analysis of same data as in f, but underlying dimensionality was 

“underestimated” during analysis: two output-null and two output-potent instead of three 
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and three. h. Same as g, but dimensionality overestimated as four output-null and four 

output-potent. In essentially all cases, adding nonlinearities to the data or misestimating 

dimensionality (including unequal numbers of output-null and output-potent dimensions; 

Supplementary Fig. 3) resulted in underestimates, not overestimates, of true effect size. Our 

results are thus likely conservative.
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Figure 6. 
Output-null results for PMd to M1. Format as in Figure 4. a. Neural activity in one PMd 

output-null dimension for one dataset (NA-D4). b. Neural activity in one PMd output-potent 

dimension. Dimensions were identified relative to M1 activity. This example pair of 

dimensions has a tuning ratio of 3.8. c. Fraction of preparatory and baseline tuning (across 

conditions and times) in output-null (gray) and output-potent (black) dimensions for each 

dataset. Both ratios were significantly greater than unity. d. Tuning at each time-point, in the 

output-null and output-potent dimensions. Flanking traces indicate s.e.m. computed via 

resampling of conditions.
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Figure 7. 
Controls for output-null analysis. a. Results of output-null analysis, with M1 as ‘source’ and 

PMd as ‘target’. As expected, no substantial effect was found. b. Muscle activity over time 

relative to key epochs. Each muscle’s activity was first normalized by its range. Heavy trace 

indicates mean across muscles. Width of thin traces shows mean tuning depth (assessed as 

standard deviation across conditions). Red bar shows epoch used to identify output-potent 

dimensions. Effect size computed using only preparatory data (black bar). Monkey J. c. 
Black bars show measured effect size for each dataset. Blue bars show effect size due to 

neurons with strong preparatory tuning preferentially contributing to output-null dimensions. 

Chance is unity. d. Neurons’ contributions to the output-null and output-potent dimensions. 

For each neuron, a space preference index was computed, which is +1 if the neuron 

contributes solely to output-potent dimensions and −1 if the neuron contributes solely to 

output-null dimensions. Histogram of values from the data are plotted in black (dataset J). 

Chance distribution is plotted in purple. Horizontal bars (above) show ±1 SD. Dots indicate 

means. Values for examples below indicated by green arrowheads. e. PSTH for example 

neuron that mainly contributed to output-null dimensions. Unit J36. f. Same as e, for neuron 

that contributed almost equally to output-null and output-potent dimensions. Unit J2. g. 
Same as e, for neuron that mainly contributed to output-potent dimensions. Unit J149.
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